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Abstract

Mathematical modelling of cell movement has traditionally focussed on a single population of cells, often moving in response to

various chemical and environmental cues. In this paper, we consider models for movement in two or more interacting cell

populations. We begin by discussing intuitive ideas underlying the extension of models for a single-cell population to two interacting

populations. We then consider more formal model development using transition probability methods, and we discuss how the same

equations can be obtained as the limiting form of a velocity-jump process. We illustrate the models we have developed via two

examples. The first of these is a generic model for competing cell populations, and the second concerns aggregation in cell

populations moving in response to chemical gradients.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Mathematical modelling of cell movement has a long
and successful history. A key early paper was that
of Keller and Segel (1970), who developed a partial
differential equation model to study the biochemical
regulation of bacterial movement. Their highly influen-
tial equations have been the basis for models of
phenomena as diverse as slime mould aggregation
(H .ofer et al., 1995), tumour angiogenesis (Chaplain
and Stuart, 1993), primitive streak formation (Painter
et al., 2000) and wound repair (Pettet et al., 1996). In the
1980s, a separate area of research developed, in which
models were proposed for the movement of isolated
single cells. This work was lead initially by Oster (Oster,
1984; Oster and Perelson, 1985), and has subsequently
been developed by a range of authors (Bottino and
Fauci, 1998; Bottino et al., 2002). In principle, these two
modelling approaches should converge to give a
macroscopic model that reflects in detail microscopic
cell behaviour. There have been a number of recent
papers in this direction; e.g. Othmer and Stevens (1997)
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and Schnitzer et al. (1990) explore the derivation of
macroscopic equations for chemotaxis from a biased
random walk incorporating detailed microscopic beha-
viour rules, while Dallon and Othmer (1997) considers
the individual movement of discrete cells in a continuous
chemical field.

In this paper, we consider modelling a different aspect
of cell movement, namely behaviour in a mixture of two
interacting cell populations. This is a very common
scenario in physiological contexts. For example, tumour
cells typically move through and interact with the
surrounding population of untransformed cells, and
wound healing in the corneal epithelium depends on the
migration into the wound of interacting subpopulations
of epithelial cells. In development, the reorganization of
undifferentiated cells of the early embryo into multiple-
tissue types during gastrulation requires the coordinated
movement of distinct subpopulations.

Despite these and other important examples, very
little previous work has been done in this area. Most
models of interacting cell populations include movement
very simply, via independent linear diffusion of each
population (Sherratt and Nowak, 1992; Pettet et al.,
1996; Gaffney et al., 1999). This will typically be
appropriate when the individual cells are widely
separated. However, when cells are close enough for
regular contacts, those of one type will inevitably
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influence the movement of the other cell population. The
objective of this paper is to consider how this can be best
reflected in partial differential equation models. In
Section 2 we discuss intuitive ideas behind models for
interacting cell populations, and in Section 3 we develop
model equations using a space-jump approach. In
Section 4 we consider suitable functional forms for
motility coefficients and their biological implications,
and in Section 5 we discuss the possibility of deriving the
equations using the alternative velocity-jump formalism.
Finally, in Sections 6 and 7 we present two examples of
the application of our model to particular types of cell
behaviour.
2. Intuitive considerations

2.1. One-cell population

When individual cells in a population are widely
separated, they will have little direct interaction. There-
fore, one can reasonably assume that in the absence of
external cues biasing their motion, each cell will undergo
an unbiased random walk. At the population level, this
implies that diffusion is the appropriate mathematical
model. As the cell density increases, individual cells will
interact more often, with an inevitable effect on motility.
However, in the absence of external cues their motion
will remain unbiased, so that one expects a diffusion-like
term to still be appropriate. This suggests a model with a
nonlinear diffusion coefficient, dependent on cell den-
sity. Denoting this density by uð

%
x; tÞ; the appropriate

model is thus

@u=@t ¼ Dr � ½QðuÞru�: ð1Þ

(We omit any cell kinetic terms at this stage to focus on
motility). It is most convenient to define D as the
diffusion coefficient when the individual cells are widely
separated; this implies that Qð0Þ ¼ 1: As the cell density
goes up, we expect the diffusion coefficient to decrease
as a result of cell–cell interactions, so that Qð:Þ is
decreasing.

2.2. Multiple cell populations

In the case of interacting cell populations, modelling
is again straightforward when individual cells are widely
separated. If there are no external cues biasing motion,
we can again reasonably assume that each cell under-
goes an unbiased random walk, which means that at
the population level, the appropriate model is linear
diffusion for each population. As the cell density
increases, cell–cell interactions will again affect move-
ment. The simplest case to consider is when the two-cell
populations have identical movement properties. If we
take uðx; tÞ and vðx; tÞ to be the densities of the two cell
% %
types, then the total cell density u þ v will satisfy the
nonlinear diffusion equation (1)

@ðu þ vÞ=@t ¼ Dr � ½Qðu þ vÞrðu þ vÞ�: ð2Þ

To separate this into equations for u and for v; it is
helpful to reconsider the interpretation of the nonlinear
diffusion. At a macroscopic level, Eq. (1) implies that
cells move down gradients of their own density, at a rate
that depends on that density via the function Qð:Þ: In the
case of two-cell populations, cells may move in response
to either the gradient in their own density, or the
gradient in total cell density. This will depend on the
details of cell behaviour. In general, we can divide
the term Qðu þ vÞrðu þ vÞ in (2) into two parts: Aðu þ vÞ
rðu þ vÞ which is the movement of cells down gradients
of their own density, and Bðu þ vÞrðu þ vÞ which is the
movement of cells down gradients of total cell density.
Here A þ B ¼ Q: The first term implies a contribution
Aðu þ vÞru to the movement of the u cell population,
and Aðu þ vÞrv to the movement of the v population.
The second term will divide between the two popula-
tions simply according to the ratio of their densities,
giving contributions u=ðu þ vÞBðu þ vÞrðu þ vÞ and
v=ðu þ vÞBðu þ vÞrðu þ vÞ to the movement of the two
populations. Therefore, the overall equations governing
cell movement are

@u

@t
¼ Dr � Aðu þ vÞru þ

u

u þ v
Bðu þ vÞrðu þ vÞ

� �
; ð3aÞ

@v

@t
¼ Dr � Aðu þ vÞrv þ

v

u þ v
Bðu þ vÞrðu þ vÞ

� �
: ð3bÞ

The forms of the functions Að:Þ and Bð:Þ will depend on
the details of cell behaviour, and some potential
functions are discussed below. Intuitively we expect
that, like the function Qð:Þ discussed above, Að:Þ and Bð:Þ
will be decreasing functions.
3. Jump probability calculations

Continuous equations for cell movement are com-
monly derived from two classes of movement, coined
‘‘velocity-jump’’ and ‘‘space-jump’’ in Othmer et al.
(1988). The former models movement as periods of
smooth motion punctuated by reorientations, while the
latter assumes a sequence of discrete jumps in space.
Both approaches enable continuum equations to be
derived in appropriate limits, but this process is more
straightforward for the space-jump formalism. There-
fore we consider this first, and return briefly to the
velocity-jump approach in Section 5.

To derive our model for movement, we employ
the method of Othmer and Stevens [for more details,
see Othmer and Stevens (1997) and the reference there-
in], where a master equation for a continuous-time,
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discrete-space random walk on a one-dimensional
equidistant lattice is considered. We define uiðtÞ to be
the probability of a cell to be at iAZ at time t;
conditioned on beginning at i ¼ 0 at t ¼ 0: We assume
this evolves according to the continuous-time discrete-
space equation:

@ui

@t
¼ Tþ

i	1ui	1 þT	
iþ1uiþ1 	 ðTþ

i þT	
i Þui: ð4Þ

In the above, T7
i ð�Þ defines the transitional probabilities

per unit time of a one-step jump to i71: The above
model simply describes the changing cell numbers as
individuals enter or leave a site, and herein we shall
equate the probability distribution with the cell density.

The simplest assumption is that the jump probability
is equal in either direction and uniform across the
lattice, i.e. T7

i ¼ a; constant. Thus,

@ui

@t
¼ aðui	1 þ uiþ1 	 2uiÞ: ð5Þ

We set x ¼ ih; reinterpret x as a continuous variable and
extend the definition of ui accordingly. By introducing a
scaling of the transition probabilities such that T7 ¼
lT7; and expanding the right-hand side as Taylors
equations in functions of x we obtain

@p

@t
¼ lh2a

@2p

@x2
þ Oðh4Þ:

As the spatial scale h is changed, the transitional
probabilities of a jump must be changed accordingly.
Thus we assume that the following limit exists:

lim
h-0
l-N

lh2 ¼ constant 
 c;

and one derives the diffusion equation:

@u

@t
¼ Du

@2u

@x2
;

where Du ¼ ca is a constant.
The assumption of a uniform isotropic jump prob-

ability is inappropriate for most cell populations, whose
movement is strongly influenced by interaction with
environmental signals (e.g. chemicals, gravity, light), or
contact with other cells (e.g. contact inhibition, adhe-
sion). This can be incorporated into the above model by
assuming a dependence in the jump probabilities. This
was studied in the context of chemosensitive movement
in Othmer and Stevens (1997), where different macro-
scopic (PDE) models were derived, depending on the
local strategy for environment sensing.

3.1. Strategies for sensing

Here, we develop a general model for the biased
movement of a cell on a lattice, where the jump
probabilities depend on a variety of environmental
factors (e.g. other cell populations or chemicals). For
present, we keep the approach general, but later we shall
explicitly consider the case where cell movement
depends on the total cell density. We denote by E the
matrix of the environmental cues, where Ej;i indicates
the density or concentration of the j-th factor at
lattice site i: For example, for the situation discussed in
Section 2, j would only take the value 1, with E1;i being
the total cell density at site i:

We consider four sensing strategies:

1. Strictly local: information only at the present position
is considered.

2. Neighbour based: considers information at the target
jump site.

3. Local average: considers the average of the informa-
tion between the particles present and target site.

4. Gradient: considers the local difference in information
between the target and local site.

Of course, this by no means characterises all the
strategies a cell may employ. In particular, other
mechanisms may incorporate longer ranging informa-
tion, for example if a cell extends filopodia out into its
environment.

1. Strictly local models: For strictly local rules, we
choose Tþ

i ¼ T	
i ¼ f ðEiÞ where Ei represents the

information at i: The Master equation becomes

@ui

@t
¼ f ðEiþ1Þuiþ1 	 2f ðEiÞui þ f ðEi	1Þui	1:

Under the appropriate scaling, the following PDE is
derived:

@u

@t
¼ D

@2

@x2
ðf ðEÞuÞ: ð6Þ

2. Neighbour based: For neighbour-based rules we
assume T7

i ¼ gðEi71Þ; resulting in the following Master
equation:

@ui

@t
¼ gðEiÞðuiþ1 þ ui	1Þ 	 uiðgðEiþ1Þ þ gðEi	1ÞÞ;

and in the PDE limit we derive

@u

@t
¼

@

@x
gðEÞ

@u

@x
	 u

@gðEÞ
@x

� �
: ð7Þ

Phenomenologically, for decreasing g; this models
processes such as ‘‘space-limitation’’, in which a cell is
only able to move into a neighbouring site if there is
sufficient space available.

3. Local average: We assume T7
i ¼ hððEi71 þ EiÞ=2Þ:

If substituted into the master equation we obtain

@ui

@t
¼ h

Eiþ1 þ Ei

2

� �
ðuiþ1 	 uiÞ 	 h

Ei þ Ei	1

2

� �
ðui 	 ui	1Þ

and the PDE equation is derived as

@u

@t
¼

@

@x
hðEÞ

@u

@x

� �
: ð8Þ



ARTICLE IN PRESS

Table 1

Table illustrating how the terms of the generic model vary for different

local rules

Scheme Example function AðwÞ BðwÞ

Local f ¼ gw gw gw

Neighbour g ¼ 1 	 w=T 1	 w=T w=T

Average h ¼ 1 	 w=T 1	 w=T 0

Gradient w > 0; D ¼ 0 0 ww

g;T ; w and D are all assumed constant.
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4. Gradient-based models: The gradient-based model
assumes transitional probabilities of the form

T7
i ¼ aþ bðtðEiÞ 	 tðEi71ÞÞ

and the resulting PDE is

@u

@t
¼

@

@x
D

@u

@x
þ u

dt
dE

dE

dx

� �
: ð9Þ

The above equation has been employed extensively to
model tactic responses in cell populations, such as
chemotaxis, haptotaxis or phototaxis.

5. Combined models: Since cell movement involves the
processing of multiple signals, each of which may act on
the cell in different ways, a combination of the above
strategies may be necessary to most accurately reflect
cell movement. While the mathematical form of the
equations quickly becomes complex, the derivation is
relatively straightforward. For example, combining each
of the local, neighbour and gradient-based models above
gives

T7
i ¼ f ðEiÞgðEi71Þðaþ bðtðEiÞ 	 tðEi71ÞÞÞ:

The PDE corresponding to this combined movement
rule is

@u

@t
¼

@

@x
gðEÞ

@

@x
ðf ðEÞuÞ 	 f ðEÞu

@gðEÞ
@x

�

þ ugðEÞf ðEÞ
dt
dE

dE

dx

�
: ð10Þ

4. Forms of motility functions for interacting cell

populations

We now consider the case outlined in Section 2, where
two cell populations u and v interact via the movement
depending on the total cell density, w ¼ u þ v: Cases (1)–
(4) above thus give rise to the following equations for
the dynamics of the u population:

@u

@t
¼

@

@x
f ðwÞ

@u

@x
þ u

@f ðwÞ
@w

@w

@x

� �
;

@u

@t
¼

@

@x
gðwÞ

@u

@x
	 u

@gðwÞ
@w

@w

@x

� �
;

@u

@t
¼

@

@x
hðwÞ

@u

@x

� �
;

@u

@t
¼

@

@x
D

@u

@x
þ uwðwÞ

@w

@x

� �
:

In the above, wðwÞ ¼ cdt=dw: Clearly, all of the above
models fit into the intuitively derived forms, Eqs. (3).

How could the total cell density affect the movement
properties of the cells? Here we shall restrict our
attention to those mechanisms which may lead to
dispersal of the population (i.e. we ignore adhesive
type processes). We consider the following general
mechanisms:

* ‘‘Population pressure’’: We assume that a high cell
density results in increased probability of a cell being
‘‘pushed’’ from a site, for example due to the pressure
exerted by neighbouring cells. This might be achieved
phenomenologically using the strictly local formula-
tion and f ðwÞ increasing.

* ‘‘Limited space’’: Here we assume that no more cells
can enter a site above a total cell density. In the
context of the local rules, above, this may be achieved
with either the neighbour or average-based model,
and choosing gðwÞ or hðwÞ such that there exists some
T for which gðTÞ ¼ 0 when w ¼ T :

* ‘‘Gradient’’ detection: Cells may detect and respond to
a local gradient in the cell density, in which case we
assume the gradient model. To ensure that cells move
down gradients in the total density (i.e. homogeniz-
ing) we require wðwÞ > 0: If we assumed further that
movement occurs only when a gradient is detected
then we would choose D ¼ 0:

For simple choices of the functional forms, the above
mechanisms give rise to the forms for A and B given in
Table 1. Note that for the above mechanisms A and B

are X0 (providing wpT). Thus we expect the equations
to be well-defined.

4.1. Cell-marking experiments

We first illustrate the effect cell–cell interactions by
comparing the movements of a cell population for a
model in which this is incorporated (we use the
‘‘neighbour’’ scheme form of Table 1) to the indepen-
dent movement scenario [i.e. A 
 1; B 
 0 in Eq. (3)].
To monitor the mixing, we assume a hypothetical
experimental set-up in which a population of identical
cells is seeded at high density at one end and a low
density at the other (see schematic in Fig. 1). A
proportion of the cells are marked in a manner such
that those cells form a homogeneous distribution. Under
independent movement, while the total cell density
evolves to a homogeneous movement, no net movement
is observed in the marked subpopulation, Fig. 1(a).
When interaction is included, however, although the
total cell density evolution is the identical, clear
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Fig. 1. Comparison of independent (i.e. A 
 1; B 
 0) and interacting scenarios. Top row; schematic showing distribution of marked (black, v)/

unmarked (white cells, u). (a) Evolution for independent diffusion (A ¼ 1; B ¼ 0). (b) Evolution for interacting scenario (choosing ‘‘neighbour’’

scheme from Table 1, with T ¼ 2). In both sets, time shown are t ¼ 0 (dotted line), t ¼ 100 (solid), t ¼ 1000 (dot-dash) and t ¼ 10 000 (dashed).
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distinction can be seen in the movements of marked/
unmarked subpopulations, with the marked cells ex-
periencing a flux due to the total cell density gradient,
Fig. 1(b). We note that when the cells are seeded at
much lower densities (i.e. such that the total cell density
5T), this effect is less pronounced: away from the
maximum packing, cell contact is less frequent, and we
are closer to the independent movement scenario.

We now address the question of whether differences
in the local mechanisms considered in Table 1 can be
understood through the behaviour of the macroscopic
equations by considering two hypothetical experimental
set-ups. In the first, Fig. 2(a), a population of (motile)
identical cells are seeded with a gradient in the cell
density. A fraction of these cells are labelled with a
marker such that the density of labelled cells is uniform.
In the second set-up, Fig. 2(b), the population is initially
seeded at a uniform density, while the marked fraction is
set in a graded manner.

In Fig. 2 we summarize the results of the experiments.
The local and neighbour-based rules show very similar
behaviour, as may be expected by the comparatively
close forms of the PDE, see Fig. 2. For type I
experiments, u has a uniform distribution, yet the total
density varies. The resulting flux from the total density
induces a net migration of u cells down this gradient,
before both populations eventually become homoge-
neously distributed. For type II experiments, the total
cell density is constant; and thus each population moves
down its own gradient. A difference can be seen when
looking at the behaviour at the maximum packing
density, where the limited-space model predicts that no
movement can occur and cells are fixed in the initial
configuration.

In contrast, if there is no flux contribution due to the
total cell gradient (i.e. average based model), differences
in behaviour can clearly be seen in the type I experiment,
Fig. 2. Despite a gradient in total cell density, u; the cells
remain homogeneously distributed. The type II set-up
shows the same behaviour as described above.

The gradient system can also be easily distinguished.
Here, cells respond only to the total density gradient.
Thus for type II experiments, no movement occurs, and
the cell populations remain in the initial configuration.
For type I experiments, mixing occurs until the total cell
density becomes homogeneous, though the subpopula-
tions themselves may remain inhomogeneously mixed.
5. Velocity-jump calculations

Before presenting the application of our equations to
specific situations, we consider briefly the possibility of
deriving model equations using the ‘‘velocity-jump’’
approach (Othmer et al., 1988). This assumes that cells
undergo periods of smooth motion punctuated by
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Fig. 2. Comparison between the various movement rules for two hypothetical experiment set ups. Top rows: Schematic showing distribution of

marked (black)/unmarked (white) cells for the experiments. Bottom rows: Snapshots in the time evolution for different schemes, with AðwÞ and BðwÞ
forms corresponding to those given in Table 1, showing total cell density (solid), marked cell density (dashed) and unmarked cell density (dotted).

The T ¼ 10 000 plots indicate the steady-state solutions. Simulations use T ¼ 2; g ¼ 1; w ¼ 1 where appropriate.

1The derivation of the parabolic limit in Hillen and Stevens (2000)

assumes that the quantity 2l	 ð1=sÞ@s=@t is independent of x: More

generally, although the underlying telegraph equation is different, the

same parabolic equation emerges in the limit of high cell speed and

turning rate (Hillen, personal communication).
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reorientations. In one space dimension, this means that
movement can be characterized by three parameters: the
cell speed (s say), and the rates at which cells moving
to the left and right change direction (l7d; say). Any
difference between these last two parameters (i.e. da0)
indicates a directed component to the movement.

Hillen and coworkers (Hillen, 2002) have studied in
detail the development of partial differential equations
to describe velocity-jump processes. In particular, Hillen
and Stevens (2000)1 showed that in the limit of high cell
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speed and high turning rate with s2=l remaining finite,
the underlying telegraph equation approaches a para-
bolic limit, given by

@u

@t
¼

@

@x

s3

2sl	 @s=@t

@u

@x
þ

s2ð@s=@x þ 2dÞ
2sl	 @s=@t

u

� �
: ð11Þ

In applications to interacting cell populations, s; l and
d will be functions of total cell density w and its
derivatives. For simplicity we assume that they depend
only on w; wx and wt (but not higher derivatives). In this
case Eq. (11) has form (3a) provided that s; l and d have
the following forms:

s ¼ sðwÞ an arbitrary function;

l ¼
1

2

sðwÞ2

AðwÞ
þ

s0ðwÞ
sðwÞ

@w

@t

� �
;

o ¼
1

2

BðwÞsðwÞ
wAðwÞ

	 s0ðwÞ
@w

@x

� �
:

Thus the mean turning rate depends on both the total
cell density and its rate of change, while the difference in
left and right turning rates depends on the total density
and its spatial gradient.
6. Example 1: Competing cell fronts

A useful illustration of the movement terms derived
above is given by considering two cell populations
whose kinetics are of competition type. This may be
competition for a nutrient, or simply for physical space.
0 50 100
0

0.5

1

u

in
de

pe
nd

en
t

0 50
0

1

2

0 50 100
0

0.5

1

ne
ig

hb
ou

r

0 50
0

1

2

0 50 100
0

0.5

1

lo
ca

l

0 50
0

1

2

Fig. 3. Travelling wave solutions for different interactions in the two-cell com

centre row: ‘‘neighbour-rule’’, ðA ¼ 1	 ðu þ vÞ=3;B ¼ ðu þ vÞ=3Þ; bottom ro

indicated waves speeds of 2, 1.63 and 1.15 respectively, confirming validity of

wave profiles are plotted at time intervals of 2.
We retain our assumption that the two populations have
identical movement properties, but we assume that the v

cells have a competitive advantage over the u cells. On a
one-dimensional domain, the appropriate model equa-
tions for this situation are

@u

@t
¼D

@

@x
Aðu þ vÞ

@u

@x
þ

u

u þ v
Bðu þ vÞ

@ðu þ vÞ
@x

� �

þ uð1 	 u 	 vÞ; ð12aÞ

@v

@t
¼D

@

@x
Aðu þ vÞ

@v

@x
þ

v

u þ v
Bðu þ vÞ

@ðu þ vÞ
@x

� �

þ vðg	 u 	 vÞ; ð12bÞ

where g > 1 reflects the competitive advantage of the v

cells. A specific instance to which this model could be
applied is early tumour growth. Here u and v would be
the density of untransformed and tumour cells, respec-
tively; g would represent the proliferative advantage
given by an oncogenic mutation.

Fig. 3 illustrates a typical solution of Eq. (12) for A

and B determined using the local and neighbour-based
functions from Table 1. We use initial conditions
consisting of uniform densities of the two-cell popula-
tions in adjacent regions of space. This initial solution
evolves into an advancing wave front in v and a receding
front in u; reflecting the competitive advantage of the v

population. For comparison, we also show in Fig. 3 the
solution of Eq. (12) in the case of cell populations which
undergo independent linear diffusion, which is given by
setting A 
 1 and B 
 0: The qualitative form of the
100

v

0 50 100

1

2

u+v

100 0 50 100

1

2

100 0 50 100

1

2

petition model. Top row: independent linear diffusion ðA ¼ 1;B ¼ 0Þ;
w: ‘‘local-rules’’, ðA ¼ ðu þ vÞ=3;B ¼ ðu þ vÞ=3Þ: Numerical calculation

the analytical expression. Other parameters were set at D ¼ 1; g ¼ 2 and
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solution is the same, but the speed of the wave front is
noticeably higher in this case; this reflects the inhibitory
effect of cell–cell interactions in cell movement.

A simple analytical argument gives an indication of
the difference in wave speed in the cases shown in Fig. 3.
Following a standard approach for travelling wave
problems of this kind, we linearize Eq. (12) about the
steady-state v ¼ 0; u ¼ 1; which is the limiting solution
ahead of the wave. The linearized v equation decouples,
to give

@v

@t
¼

@

@x
Að1Þ

@v

@x

� �
þ ðg	 1Þv þ Oðv2Þ:

By analogy with standard theory for scalar equations
such as the Fisher equation, we thus expect the wave
speed to be 2½Að1Þðg	 1Þ�1=2: This formula is confirmed
by numerical simulation, and indicates that the ratio of
the speeds between the independent and non-indepen-
dent cases in Fig. 3 is

ffiffiffiffiffiffiffiffiffiffi
Að1Þ

p
: Note that this relation

does not apply in the special case A 
 0; calculation of
the wave speed is more complicated in this case, and is
discussed in detail in Sherratt (2000).
7. Example 2. Aggregation in tissues

As a second example, we explore how the interactions
in movement may affect processes of aggregation.
Chemotaxis is employed by both bacteria and eukar-
yotic cells for directed movement and organization: for
example, the aggregation of Dictyosytelium cells under
starvation conditions is initiated by chemotactic move-
ment up gradients of self-produced cAMP chemical
waves, while in embryonic development guided cell
movement is essential in many processes of spatial
patterning and morphogenesis.

The majority of continuous treatments of chemotaxis
have ignored how the complexity of the tissue environ-
ment may influence the movement dynamics. We use the
framework here to address some of these issues.

The most commonly employed models for chemotaxis
are based on the PDE systems proposed in Keller and
Segel (1971):

@u

@t
¼ Dur2u 	r � ðuwðcÞrcÞ þ f ðu; cÞ;

@c

@t
¼ Dcr2c þ gðu; cÞ;

where u and c represent cell density/chemoattractant
concentrations. The function wðcÞ is commonly referred
to as the chemotactic sensitivity function. This system
has been studied extensively, in particular for its ability
to exhibit pattern formation/self-organization under
suitable chemical kinetics. For example, for the choice
of f ðu; cÞ ¼ 0; gðu; cÞ ¼ gu 	 dc and w sufficiently strong,
an initially homogeneous cell distribution forms a
spatial pattern of cell aggregations. This is intuitively
understood through the self-reinforcing mechanism in
which cells move up gradients of a chemical they are
secreting. Variations of the model have been used to
model a variety of processes of aggregation in bacteria
populations (e.g. Tyson et al., 1999) or development
(e.g. Painter et al., 2000).

Of course, the above formulation also assumes
independent movement by the cells, and thus does not
realistically describe the behaviour of cells under
aggregation. This is elegantly demonstrated by the
tendency of the above systems to exhibit ‘‘blow-up’’
behaviour, in which aggregations of infinite cell density
form. To develop a more realistic model for cell
behaviour a model for chemotaxis was proposed by
Painter and Hillen (2003), Hillen and Painter (2001).
Their model incorporated the idea of ‘‘limited-space’’, as
discussed above but within the context of a single-cell
population. The inhibition of movement at higher
densities prevented the ‘‘blow-up’’ behaviour observed
in previous models and smooth aggregations developed
(cf. Fig. 4(a) vs. (b)).

As our second example, we consider the situation
where the tissue comprise two cell-types, u and v; of
which at least one is chemotactically stimulated by
gradients of a chemical c: By assuming movement is
influenced via combination of local, neighbour and
gradient rules, we can derive the following two-cell
model for chemotaxis using Eq. (10):

@u

@t
¼

@

@x
DugðwÞ

@f ðwÞu
@x

	 Duuf ðwÞ
@gðwÞ
@x

�

	 ugðwÞf ðwÞw
@c

@x

�
; ð13aÞ

@v

@t
¼

@

@x
DvgðwÞ

@f ðwÞv
@x

	 Dvvf ðwÞ
@gðwÞ
@x

�

	 vgðwÞf ðwÞf
@c

@x

�
; ð13bÞ

@c

@t
¼ Dc

@2c

@x2
þ g1u þ g2v 	 dc; ð13cÞ

where g1; g2; d; w;f;Du;Dv and Dc are all assumed
constant and w ¼ u þ v: Initially we shall restrict our
attention to the case where the cell–cell interaction
occurs through ‘‘neighbour’’ rules only, and we there-
fore choose gðwÞ ¼ 1 	 w=T and set f ðwÞ 
 1: Note that
the constant chemotactic sensitives above are derived by
considering t ¼ wc or fc for u and v; respectively in
Eq. (10). We assume zero-flux boundary conditions on
the one-dimensional domain ½0;L�:

The incorporation of two-cell populations allows us
to study a number of relevant biological scenarios
according to whether ‘‘autocrine’’or ‘‘paracrine’’ beha-
viours are in operation. Here, the term autocrine refers
to a situation where a single-cell type both secretes the



ARTICLE IN PRESS
K.J. Painter, J.A. Sherratt / Journal of Theoretical Biology 225 (2003) 327–339 335
chemical and migrates in response, while paracrine
indicates a response in which one population secretes the
chemical and the other migrates. The conditions under
which we can expect aggregation can be calculated by
performing a linear stability analysis on the above
equations, and we refer to the appendix for details.

7.1. Case 1. Autocrine ðf ¼ 0; g2 ¼ 0Þ

We assume one cell both secretes and is attracted
by the chemical (‘‘auto-aggregation’’): the second cell
population is passive, and can only influences the
dynamics via its ‘‘obstruction’’.

For comparison, we have included the equivalent
independent movement scenario (achieved by addition-
ally setting gðwÞ ¼ 1 above). This gives rise to the
‘‘classical’’ chemotaxis model, and for suitable para-
meters an initially homogeneous distribution of u

develops into a sharp cell aggregation. The v population
remains unperturbed from its homogeneous distribu-
tion, and has no effect either on the ability of patterns to
form or the time-scale of patterning. Typical simulations
are shown in Fig. 4(a).

Aggregation also occurs for the corresponding model
incorporating the limited space interaction (we choose
gðwÞ ¼ 1 	 w=T). The condition for aggregation is given
by the following equation (see appendix for details):

w >
dDu

g1u�ð1 	 u�=TÞ
:
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Fig. 4. Autocrine (auto-aggregation) case. (a) Two non-interacting cell p

limitation for T ¼ 5:0 for (b) vi ¼ 0:0; (c) vi ¼ 1:0; (d) vi ¼ 3:9: Other param

domain of L ¼ 5: Initial conditions are given by uðx; 0Þ ¼ 1; vðx; 0Þ ¼ vi and

solid line ¼ u density, dotted line ¼ v density.
Clearly, the passive population does not affect the
conditions for spatial patterning to occur. This is shown
by choosing three initial densities for the v distribution.
In the absence of v cells [Fig. 4(b)] the u cells aggregate
into a smooth distribution, with the space limitation
preventing the sharp aggregates characteristic of the
linear case. This situation has been studied in detail in
Painter and Hillen (2003), Hillen and Painter (2001).
Increasing the density of v-cells does not affect the shape
of the resulting aggregation of u-cells, [Fig. 4(c,d)], but it
clearly changes the time for the aggregation to form.
This follows intuitively from the ideas behind the limited
space models.

7.2. Case 2: Paracrine ðw ¼ 0; g2 ¼ 0Þ

We now explore the paracrine case, in which u secretes
the chemical, and v migrates in response to it. The
comparable independent movement case is shown in
Fig. 5(a): Pattern formation (see appendix for the
analysis) is not possible in this model, since the secreting
cell population remains homogeneously distributed
throughout space.

The corresponding model incorporating interaction of
the cells through space-limitation, however, does admit
the possibility of pattern formation. This can intuitively
be understood through the influence of the total cell
density gradients on both populations, which results in
the secreting cell population becoming inhomogeneously
distributed. The linear stability analysis predicts that
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opulations (i.e. linear diffusion). (b)–(d) Interaction through space-

eters are w ¼ 1:0; g1 ¼ d ¼ Dc ¼ 1:0; g2 ¼ f ¼ 0:0; Du ¼ Dv ¼ 0:1 on a

cðx; 0Þ ¼ 1:0	 0:01 cosð2px=LÞ: Bold dashed line ¼ total cell density,
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Fig. 5. Paracrine case. (a) Two non-interacting cell populations (i.e. linear diffusion). (b), (c) Interaction through space-limitation for T ¼ 5:0 for (a)

ui ¼ 0:25; (b) ui ¼ 1:0: Other parameters are given by f ¼ 	1:0; g1 ¼ d ¼ Dc ¼ 1:0; g2 ¼ w ¼ 0:0; T ¼ 5:0 Du ¼ Dv ¼ 0:1 on a domain of L ¼ 10:
Initial conditions are given by vðx; 0Þ ¼ 1; uðx; 0Þ ¼ ui and cðx; 0Þ ¼ 1:0	 0:1 cosð2px=LÞ: Bold dashed line ¼ total cell density, solid line=u density,

dotted line ¼ v density.
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aggregation occurs under the following condition:

fo	
TdDv

u�v�g1
:

Thus, pattern formation is only possible for a chemor-
epulsion response to the chemical. The density of the
non-chemotacting population is crucial, and at low
densities no aggregation is possible. Typical simulations
at different densities of the non-chemotacting popula-
tion ðuÞ are shown in Fig. 5(b), (c).

7.3. Case 3. Autocrine + paracrine ðg2 ¼ 0Þ

Finally, we consider a combined autocrine and
paracrine response. Here the instability condition is

Dvð1 	 u�=TÞw	
Duv�

T
f >

dDuDv

u�g1
:

The sign structure of w	 f influences the type of pattern
that develops. If both cells are attracted by the chemical,
the autocrine attraction ðwÞ must be sufficiently large
such that these cells can ‘‘overcome’’ the paracrine
population and aggregation take place. The resulting
patterns take the form shown in Fig. 6(a), with the
autocrine cells forming the aggregation core, and the
paracrine cells confined mainly to the boundary.

For the autocrine population attracted (w > 0) and the
paracrine population repelled ðfo0Þ; the total cell
density has multiple peaks, with attractant cells forming
a core aggregation in the centre of the domain, and the v

cells repelled away to form aggregations at the chemical
minima.

Patterning can even occur when the autocrine
population is repelled by the chemical gradients ðwo0Þ;
provided that the paracrine cells show sufficiently strong
chemorepulsion. A typical pattern is shown in Fig. 6(c).
7.4. Inclusion of other total density effects

In the above, the only tissue influence on movement
resulted from space limitation. It is, of course, highly
likely that other effects may occur at higher densities.
For example, highly motile cells may force other cells
out of the way as they pull themselves through the tissue
environment. We incorporate such an effect phenomen-
ologically by also including a ‘‘population-pressure’’
term in which a cell increases its tendency to move from
a site as the density increases. Thus, we now additionally
assume f to be an increasing function of the total cell
density, in addition to the previously chosen forms of g;
t in Eqs. (13).

As a test scenario, we consider the same generic case
as illustrated in Fig. 6(a), where both cells are
chemotactically attracted by gradients in the chemical
concentration (though one cell shows decreased sensi-
tivity). A choice of linear f does not significantly change
the behaviour, Fig. 7(a). However, it may be more
appropriate to consider a form for f such that it has
little effect at low densities (i.e. when cells are widely
spread out), but a strong effect when they are closely
packed. For such forms, the results show a similar
behaviour, but now the cells which have less sensitivity
are ‘‘pushed’’ from the core of the aggregation to the
periphery.
8. Discussion

Continuum models provide a convenient tool for
describing the movements of populations. While de-
tailed modelling of the movement in a tissue environ-
ment must incorporate a mechanical description of the
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Fig. 6. Steady-state aggregations for two chemotacting populations (a) w ¼ 2:0;f ¼ 1:0 (b) w ¼ 2:0;f ¼ 	2:0 (c) w ¼ 	1:0;f ¼ 	8:0: Other

parameters are given by g1 ¼ d ¼ Dc ¼ 1:0; g2 ¼ 0:0; T ¼ 5:0 Du ¼ Dv ¼ 0:1 on a domain of L ¼ 5; with initial conditions uðx; 0Þ ¼ 1; vðx; 0Þ ¼ 1:0
and cðx; 0Þ ¼ 1:0	 0:01 cosð2px=LÞ: Bold dashed line ¼ total cell density, solid line=u density, dotted line=v density.
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Fig. 7. Steady-state aggregations for two chemotacting populations including a ‘‘local pressure’’ effect. (a) f ðwÞ ¼ aw (b) f ðwÞ ¼ 1þ expð2ðw 	 3ÞÞ
(c) f ðwÞ ¼ 1þ expð10ðw 	 3ÞÞ where w ¼ 2:0;f ¼ 1:0; g ¼ D ¼ Dc ¼ 1:0; T ¼ 5:0 Du ¼ Dv ¼ 0:1 on a domain of where L ¼ 5; with initial conditions

uðx; 0Þ ¼ 1; vðx; 0Þ ¼ 1:0 w0 ¼ 2 and cðx; 0Þ ¼ 1:0 	 0:01 cosð2px=LÞ:
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various forces exerted by the cells, by adopting a
phenomenological approach we have explored how
interaction between different cell types may influence
the macroscopic movements of cell populations. Our
work here has focussed on scenarios for which the tissue
exerts an equal effect on all cell populations. In reality,
different populations vary in factors such as their
adhesion to the matrix or the deformability of the
membrane. Such variations may easily be incorporated
into the framework here by choosing different func-
tional forms/parameters in the movement equations.

The case studies in Sections 6 and 7 illustrate the
importance of incorporating the interaction between cell
populations into models for cell movement. In Section 6,
this was demonstrated by the effect on the speed of wave
propagation. In Section 7, a number of differences
emerged in scenarios of aggregating cell populations.
For example, in the ‘‘paracrine’’ problem, aggregation
was only possible when interactions with another cell
population were included.

The equations for competing cell populations given in
Section 6 are highly generic, but the movement terms we
have presented could be adapted to a range of more
specific models. For example, competition between
different subpopulations of cells is an integral part of
the early growth of solid tumours. As well as the
competition between tumour and normal cells, the cells
within the tumour are a mixture of dividing and
quiescent populations, which are self-organized into a
characteristic layered structure. These various processes
demand relatively sophisticated modelling of movement
in interacting cell populations, and provide a potential
case study for the ideas developed in this paper.

The simulation results of Section 7.4 bear similarities
to processes of ‘‘cell sorting’’, in which an aggregate of
initially mixed multiple cell types reorganize to form
distinct regions, such that one-cell type forms the core of
the aggregate while the other cells form the boundary.
Explanations have primarily focussed on the ‘‘differ-
ential adhesion hypothesis’’ proposed by Steinberg
(1970), in which differences in the levels of adhesion
between the cells lead to the sorting. The results here
suggest that the response to a diffusible chemical signal
may also be a viable mechanism for certain sorting
processes. In fact, such mechanisms has been shown to
drive cell sorting of pre-stalk and pre-spore cells during
Dictyostelium mound formation, (e.g. Weijer, 1999).
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Appendix A

Here we detail the results of a linear stability analysis
on the model for multi-cell chemotaxis, Eqs. (13), with



ARTICLE IN PRESS
K.J. Painter, J.A. Sherratt / Journal of Theoretical Biology 225 (2003) 327–339338
f ðwÞ 
 1: Assuming zero-flux boundary conditions on
the one-dimensional domain ½0;L�; then for suitable
initial conditions (i.e. nonnegative) these equations have
a single homogeneous steady state, ðu�; v�; c�Þ; where
u� and v� are determined as u� ¼

R L

0 uðx; 0Þ dx=L; v� ¼R L

0 vðx; 0Þ dx=L and c� ¼ ðg1u� þ g2v�Þ=d:

A.1. Independent case

If there is no direct interaction between the cells
through the movement (i.e. gðwÞ ¼ 1), then a lineariza-
tion of Eqs. (13). about the homogeneous steady state
determines the following eigenvalue problem:

	l	 Duk2 0 wu�k2

0 	l	 Dvk2 fv�k2

g1 g2 	l	 k2Dc 	 d

�������

�������
¼ 0;

where l is the (temporal) eigenvalue and k is the
wavenumber (or spatial eigenvalue) [e.g. see Murray
(1993) for more details]. Thus the dispersion relation is a
cubic polynomial of the form:

l3 þ aðk2Þl2 þ bðk2Þlþ cðk2Þ ¼ 0:

Instability of the homogeneous solution, and thus the
possibility of spatial pattern formation, occurs for
RðlÞ > 0: Since we can determine aðk2Þ > 0 for all
positive k2; then this can only occur if there exists a
range of k2 for which bðk2Þo0 or cðk2Þo0: We note that
for bðk2Þo0 and cðk2Þ > 0 the eigenvalue may have
imaginary components implying, at least initially,
(temporally) oscillating solutions. For cðk2Þo0 we need

DuDvdoDug2fv� þ Dvg1wu�

and for bðk2Þo0:

Dvdþ Dudog2fv� þ g1wu�: ðA:1Þ

In this paper, we concentrate on scenarios where at
least one of g1; g2; w or f is zero. Under this constraint,
it is easy to show that if bðk2Þo0 then we must also
have cðk2Þo0: Thus the condition for instability of the
homogeneous solution is given by Eq. (A.1) alone and
positive eigenvalues are real.

Since all parameters are positive, it can be seen
immediately from the above that aggregation is only
possible if there is at least one autocrine response (i.e. g2
and f non-zero or g1 and w non-zero)—this corresponds
to Cases 1 and 3 in Section 6. For the pure paracrine
problem, (e.g. g1 and f non-zero, g2 ¼ w ¼ 0), then the
linear analysis does not predict spatial patterning.

A.2. Interaction through neighbour rules

A similar analysis can be performed for the case
where the cells directly influence each others movement.
Here we set gðwÞ ¼ 1 	 w=T for w ¼ u þ v; and stipulate
that uðx; 0Þ þ vðx; 0ÞpT (thus w� ¼ u� þ v�pT). By
linearization about the homogeneous steady state, we
now yield the following eigenvalue problem:

	l	 k2 Du
ð1 	 v�Þ

T

� �
	

Duu�k2

T
wu�

ð1 	 w�Þk2

T

	
Dvv�k2

T
	l	 k2 Dv

ð1 	 u�Þ
T

� �
fv�

ð1 	 w�Þk2

T

g1 g2 	l	 k2Dc 	 d

���������

���������
¼ 0:

Again, we yield a cubic dispersion relation, and the
conditions for cðk2Þo0 and bðk2Þo0 are, respectively:

wu�

Du

ðg1T 	 v�g2 	 u�g1Þ

þ
fv�

Dv

ðg2T 	 v�g2 	 u�g1Þ > Td ðA:2Þ

and

g1wu� þ g2fv� >
Dudð1 	 v�=TÞ þ Dvdð1 	 u�=TÞ

ð1 	 ðu� þ v�Þ=TÞ
: ðA:3Þ

Again we concentrate on the conditions for the two
main scenarios in Section 6. For the pure paracrine
problem (Case 2), it is clear that Eq. (A.3) cannot be
satisfied. Thus stability can only be lost through
condition (A.2) being satisfied.

For the autocrine case (Case 1) we set f ¼ g2 ¼ 0:
Eqs. (A.2) and (A.3) reduce to

wu�g1ð1 	 u�=TÞ > Dud

and

wu�g1 >
Dudð1 	 v�=TÞ þ Dvdð1 	 u�=TÞ

1 	 ðu� þ v�Þ=T
:

By multiplying through by 1 	 ðu� þ v�Þ=T in the latter
it is easy to demonstrate that if the second condition
holds, then so does the former. Thus, once again we do
not expect any temporally oscillating solutions to the
linearized system and we can reduce our stability criteria
to the single condition.

In the scenario where only one of f; w; g1 or g2 is zero,
then it also possible to determine parameter values such
that bðk2Þo0 while cðk2Þ > 0: In such scenarios, we may
have imaginary eigenvalues, leading to the possibility of
temporally oscillating patterns.
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