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A B S T R A C T

Spatial variation in population densities across a landscape is a feature of many ecological systems, from

self-organised patterns on mussel beds to spatially restricted insect outbreaks. It occurs as a result of

environmental variation in abiotic factors and/or biotic factors structuring the spatial distribution of

populations. However the ways in which abiotic and biotic factors interact to determine the existence

and nature of spatial patterns in population density remain poorly understood. Here we present a new

approach to studying this question by analysing a predator–prey patch-model in a heterogenous

landscape. We use analytical and numerical methods originally developed for studying nearest-

neighbour (juxtacrine) signalling in epithelia to explore whether and under which conditions patterns

emerge. We find that abiotic and biotic factors interact to promote pattern formation. In fact, we find a

rich and highly complex array of coexisting stable patterns, located within an enormous number of

unstable patterns. Our simulation results indicate that many of the stable patterns have appreciable

basins of attraction, making them significant in applications. We are able to identify mechanisms for

these patterns based on the classical ideas of long-range inhibition and short-range activation, whereby

landscape heterogeneity can modulate the spatial scales at which these processes operate to structure

the populations.

� 2015 Elsevier B.V. All rights reserved.
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1. Introduction

One of the great challenges in ecology is to uncover and explain
the mechanisms that lead to observed spatial patterns of species
distributions. For many species, abundance varies spatially as
individuals track environmental variation, such as abiotic factors
or resources, across a landscape (Leroux et al., 2013; Ergon et al.,
2001). Alternatively, spatial distribution patterns can arise in the
absence of external forces, due to the pattern-formation mecha-
nism of short-range activation and long-range inhibition (Zelnik
et al., 2015; Rietkerk et al., 2002; Wang et al., 2010b), or due to
density-dependent dispersal leading to phase separation (Liu et al.,
2013). These two mechanisms typically create stationary patterns,
although moving patterns occur in the presence of advection (Siero
et al., 2015; Perumpanani et al., 1995; Sato and Iwasa, 1993).
Temporally varying patterns may also arise from asynchronous
cycling caused by invasions or obstacles (Sherratt et al., 1995,
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2002; Petrovskii and Malchow, 2001). The best-studied of these
processes is the Turing mechanism, and ecologists have recently
identified appropriate long-range inhibition in a number of natural
ecosystems and documented corresponding patterns (Rietkerk and
van de Koppel, 2008; Deblauwe et al., 2008; Meron, 2012). Our
work is concerned with the interplay between extrinsic and
intrinsic generation of temporally constant spatial patterns. We
develop a theoretical framework and illustrate it with some
examples of how environmental variation and intrinsic interaction
can combine to create patterns at various spatial scales.

Spatial variation in environmental conditions occurs at various
(landscape) scales both naturally, e.g. altitude variation within
mountainous regions, and through human intervention, e.g.
networks of marine reserves, managed forests, or agricultural
systems. Spatial scales of population patterns arising from species
interactions (Turing scale) depend on the range of activation and
inhibition, i.e. the strength of these interactions and the relative
movement of individuals. On one extreme, if the landscape scale is
much smaller than the Turing scale, then one can expect to observe
intrinsically generated patterns that extend over large regions in
space, potentially with small variations to reflect local conditions.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecocom.2015.10.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecocom.2015.10.001&domain=pdf
http://dx.doi.org/10.1016/j.ecocom.2015.10.001
mailto:christina.cobbold@glasgow.ac.uk
http://www.sciencedirect.com/science/journal/1476945X
www.elsevier.com/locate/ecocom
http://dx.doi.org/10.1016/j.ecocom.2015.10.001
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Conversely if the landscape scale is large compared to the Turing
scale of species interaction, one expects intrinsically generated
patterns that change on the long spatial scale of environmental
variation (Voroney et al., 1996).

Several authors have studied Turing pattern formation in
heterogeneous landscapes. Benson et al. (1993b) investigated
pattern formation with constant kinetic parameters and spatially
varying diffusion coefficients, see also Benson et al. (1993a, 1998).
Voroney et al. (1996) studied the interplay of Turing patterns and
cyclic dynamics that result from a chemical reaction with an
additional immobile but spatially heterogeneous complexing
agent. Page et al. (2003) considered the generation of patterns
near an interface where kinetic parameters change their values
abruptly. Subsequent work included smoothly varying monotone
and periodic changes in kinetic parameters (Page et al., 2005), see
also Garzón-Alvarado et al. (2012) for more intensive numerical
simulations in patchy, 2-dimensional domains. Recently Sheffer
et al. (2013) and Yizhaq et al. (2014) investigated the interplay
between environmental templates and self-organisation in the
formation of patterned vegetation in semi-arid regions. Using both
theoretical and empirical approaches, they showed that both
mechanisms play significant roles in the pattern formation
process, with their relative contributions depending on rainfall
levels.

In this work, we take a landscape ecology perspective and
subdivide the environment into distinct patches. A patch is defined
as an environmentally homogeneous geographic region whose
spatial extent is comparable to the species’ dispersal scale so that a
population can be assumed relatively homogeneous within a
patch. Population dynamics on each patch are then coupled via
migration between patches. Such multi-patch models have a long
and distinguished history in spatial and community ecology (see
for example Cantrell et al., 2012 for a discussion). In this
framework, we study conditions for spatial patterns to evolve in
the interesting range where the landscape scale is comparable to
the Turing scale (see above). We implement habitat heterogeneity
through patch attributes and movement bias.

A series of papers explores pattern formation in epithelia where
cell–cell interaction is dominated by nearest-neighbour (juxta-
crine) signalling (Owen and Sherratt, 1998; Owen et al., 2000;
Webb and Owen, 2004a; O’Dea and King, 2011, 2013; Wearing
et al., 2000; Wearing and Sherratt, 2001). In these works, all cells
have equal properties (i.e. there is no spatial variation), and
interaction between neighbouring cells is non-linear. We will
adapt some of the analytical methods used there for our model. A
closely related model for a linear inhomogeneous array of coupled
chemical reactors was studied in Horsthemke and Moore (2004) as
a discretised version of the work in Voroney et al. (1996).

We begin by deriving the predator–prey patch model that forms
the basis of our study. We explore emergent patterns with a
numerical bifurcation analysis when the number of patches is
small. We find a large number of patterns, often stably coexisting,
and complex bifurcation diagrams. In the second part, we perform
a linear stability analysis when the number of patches is large. For
reference and comparison, we identify the stability conditions for
the spatially homogeneous model. We compare and contrast these
results and discuss the ecological implications of our findings.

2. The model

In a linear landscape of patches of two types (type 1 and type 2),
arranged to be periodically alternating, we denote by u1;2; v1;2 the
respective densities of two interacting species. In our explicit
calculations, we focus on predator–prey interaction where a type-1
patch is suitable for the prey and a type-2 patch is not. Viewing
landscapes as mosaics of patches of different quality is common in
landscape ecology and also arises in managed ecosystems, for
example, a series of marine reserves along a coastline (Botsford
et al., 2001; Gouhier et al., 2010) or intercropping in agriculture
(Jones and Sieving, 2006).

On a patch of type i, the dynamics of these species evolve
according to the equations:

u̇i ¼ f iðui; viÞ; v̇i ¼ giðui; viÞ: (1)

Throughout, we assume that functions fi, gi are sufficiently smooth
and that the system preserves non-negativity of solutions.

We denote by Li the length of patch type i, and by L = L1 + L2 and
l = L1/L2 the landscape period and patch size ratio, respectively. We
say that a tile consists of a patch of type 1 and its adjacent patch of
type 2 on the right. Hence, a tile represents one period of the
landscape (see Fig. 1(a)). We denote species’ densities on tile j by
uj

1;2; vj
1;2. We note here that ‘‘tile’’ is introduced only as a convenient

way to describe the system, not as an ecological unit.
We model movement by a discrete diffusion process, so that

moving from one good patch to the next requires moving through a
bad patch. Individuals of species u (v) leave a patch of type 1 with
migration rate mu (mv) and move to one of the adjacent patches of
type 2 with equal probability. The leaving rate for patch type 2 is
multiplied by ku (kv) to account for patch-dependent dispersal
behaviour. If ku;v > 1 (ku;v < 1) then the average time spent in a
patch of type 2 is shorter (longer), so that overall movement is
biased towards patch type 1 (type 2). The spatially coupled model
system reads
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where the multiplication of mu; mv by l in the equations on type-2-
patches is the scaling factor that accounts for conservation of
individuals. In the case of a finite number of tiles (N) we close the
system by assuming periodic boundary conditions such that u1

i ¼
uN

i and v1
i ¼ vN

i . Periodic boundary conditions allow for easy
comparison to dynamics on an infinite domain, moreover they are
equivalent to Neumann boundary conditions on a domain of
length N/2.

2.1. Dynamics on a patch

On patches of type 1 (‘good’) we choose the non-dimensional
Leslie or May model (May, 1974; Strohm and Tyson, 2009;
Mukhopadhyay and Bhattacharyya, 2006) for predator species v
and prey species u, given by

f 1ðu; vÞ ¼ uð1�uÞ� uv

b þ u
; g1ðu; vÞ ¼ sv 1� v

qu

� �
: (3)

In this scaling, b denotes the half-saturation constant of the Holling
type II functional response. The predator grows logistically with
intrinsic rate s and carrying capacity qu. This formulation arises
from the assumption of variable predator-territory size (Turchin,
2001).

Patches of type 2 (‘bad’) are unsuitable for the prey so that we
replace the logistic growth term by a linear death term. Predator



u
2
j−1 u

1
j u

2
j u

1
j+1

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

Tile number

Pr
ey

 / 
pr

ed
at

or
 d

en
si

ty
 

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

Tile number

Pr
ey

 / 
pr

ed
at

or
 d

en
si

ty

patch type 2patch type 1

L
2

L
1

... ...

(c)

(b)

(a)

Tile j

Fig. 1. Diagram of patch and tile structure (a) and example pattern solutions (b, c). (a) illustrates the landscape made up of a series of tiles, with each tile made up of two

patches, one of type 1 and one of type 2 with patch sizes L1 and L2, respectively. (b) illustrates a stationary solution of the model (2) and (3) for the parameter values mu = 0.5,

mv ¼ 5, l = 1, b = 0.1, s = 0.2, m = 0.6, ku;v ¼ 1, q = 2.8. Prey density is denoted by stars and solid lines and predator density by squares and dashed lines. The pattern in prey

density uj
i is of period 4 on a periodic landscape consisting of eight tiles. The white regions correspond to the type 1 (‘good’) patches and the light grey regions correspond to

the type 2 (‘bad’) patches. The prey density in the ‘good’ patches on tiles 1, 4, 5, and 8 is low, in particular it is lower than the prey density in the ‘bad’ patch on tiles 2 and 6. (c)

illustrates the result of converting the patches 1, 4, 5 and 8 from (b) to bad patches. The result is that the prey density on the remaining good patches is increased while the

predator density is decreased on all patches.
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dynamics depend only on prey abundance and not on patch type.
Hence, model equations on patches of type 2 are given by

f 2ðu; vÞ ¼ �mu� uv

b þ u
; g2 ¼ g1: (4)

On an isolated good patch, there is a unique positive steady
state, given by

u� ¼
1

2
ð1�b�q þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�b�qÞ2 þ 4b

q
Þ; v� ¼ qu�: (5)

Parameter q is the ratio of predator-to-prey steady-state densities
and will be used as a bifurcation parameter later. The community
matrix at this state,

J ¼ 1�2u��
bð1�u�Þ
b þ u�

� u�
b þ u�

sq �s

" #
(6)

has positive determinant. The stability therefore depends on the
sign of the trace. The trace is zero when

1�2u��b
1�u�
b þ u�

¼ s: (7)
If s is large, then this equation has no solution and the steady state
is stable. If s is small enough, there are two critical values qH,1 < qH,2

where a Hopf bifurcation occurs. The steady state is unstable for
qH,1 < q < qH,2 and a stable limit cycle exists. Depending on
parameter values, the bifurcation at qH,2 may be subcritical so that
a limit cycle may exist for values q > qH,2 (Gasull et al., 1997). For
the parameter values we use in the next section (b = 0.1, s = 0.2),
these critical points are qH,1 � 0.895, and qH,2 � 4.05, and the latter
bifurcation is subcritical.

2.2. Dynamics on a tile

When we couple the dynamics on a good patch with those on a
bad patch, migration has a stabilising effect on the dynamics. For
all parameters sets that we have studied, numerical investigation
suggests that there is a unique positive stable coexistence steady
state. We do not attempt to find exact conditions for when this
happens since our focus is on the question of spatial pattern
formation at a landscape level.

Qualitatively, this stabilisation occurs when the bad patch is large
enough, movement rates are large enough, and movement
preference for the good patch is not too strong. The periodic orbits
for intermediate values of q on a single good patch can also be
present on a tile if the influence of the bad patch is weak enough. The
latter scenario arises, for example, when the size of the good patch is
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much larger than that of the bad patch, when migration rates are
very small so that the patches are only weakly coupled, or when
migration preference for the good patch is particularly strong.

For our base-line parameters, we fix patch sizes to be equal (l = 1)
and choose migration without patch preference (ku;v ¼ 1). We also
fix migration rates so that the prey moves much less (mu = 0.5) than
the predator (mv ¼ 5). The population dynamics parameters are
fixed at b = 0.1, s = 0.2, and m = 0.6. Then, numerically, the dynamics
on an entire tile show a unique, globally stable positive steady state
for all q 2 (0, 10] even though the dynamics on a single good patch
can have oscillations for intermediate values of q. We will return to
some aspects of cyclic dynamics in Section 3.2.

3. Methods and results

We structure our analysis of pattern formation in the
heterogeneous landscape into two parts. Firstly, we use a
numerical bifurcation method to study patterns when the number
of tiles is relatively small. Depending on our bifurcation parameter
q, we document a large number of complex, stable, steady spatial
patterns. Secondly, we use linear analysis to derive the dispersion
relation of the ‘spatially homogeneous steady state’ on an infinite
patchy landscape. This approach allows us to identify stability
boundaries and the onset of spatial patterns with respect to all
other parameters, in particular those parameters governing
movement and landscape attributes. Finally, we discuss the
similarities and differences between the two approaches.

The term ‘homogeneous steady state’ warrants some explana-
tion. Our system does not support a homogeneous steady state in
the classical sense where prey and predator densities are constant
in space, i.e. independent of patch type. However, if we consider
the tile as the basic spatial unit, we do obtain a steady state
solution where each of the four densities u j

1, u j
2, v j

1 and v j
2 is

independent of tile-number j. We refer to this solution as our
homogeneous solution or tile-independent solution.

Unless otherwise stated explicitly, parameter values in this
section are mu = 0.5, mv ¼ 5, l = 1, b = 0.1, s = 0.2, m = 0.6, ku;v ¼ 1
and q = 1.8.

3.1. Numerical bifurcation results for small systems

The simplest solution of our model is the homogeneous steady
state. Our extensive programme of numerical simulations suggests
that when parameter q is either sufficiently small or sufficiently
large, there is a unique solution of this type, which is globally stable.

For intermediate values of q, simulations reveal ‘‘patterns’’ by
which we mean locally stable time-independent solutions in
which the predator and prey densities are not the same in all tiles.
We undertook a numerical investigation of such patterns via
numerical bifurcation analysis, for which we used the software
package AUTO (Doedel, 1981; Doedel et al., 1991, 2006). For a
relatively small value of q (e.g. q = 1) we calculated numerically the
j-independent solution. We then continued this solution numeri-
cally, looking for bifurcations to patterned solutions and then
continuing these pattern solution branches. AUTO is able to detect
not only the existence of patterns, but also to determine their
stability as model solutions. This approach to investigating
periodic solutions of spatially discrete systems has been used
previously in developmental biology, for epithelia in which there is
direct cell–cell contact via juxtacrine signalling (Wearing and
Sherratt, 2001; Webb and Owen, 2004b; O’Dea and King, 2013).
Although it is simple in concept, the approach raises many
technical difficulties in the present context, and we discuss these in
detail in Appendix A, focussing here on the results of our analysis.

Fig. 2 shows the bifurcation diagrams for N = 2, 4, 6, 8 tiles,
plotting the values of u j

1 against q; (examples of bifurcation
diagrams for odd number tiles can be found in the Supplementary
material). The thin black lines denote unstable patterns (spatially
non-constant steady states), and the thin yellow-black dashed
lines denote unstable tile-independent solutions. The thick bright
yellow lines are stable tile-independent (‘‘period 1’’) solutions, and
the other thick coloured lines denote stable patterns; representa-
tive patterns are shown in the same colours above the main plot.
The black stars denote results from a series of 1000 simulations for
each of q = 1.0, 1.25, 1.5, . . .. Here we solved the equations with
initial conditions in which each variable was chosen randomly
from a uniform distribution between 20% and 200% of its value in
the tile-independent solution. In these simulations, we solved for a
long time and then plotted the values of uj

1 for each j.
For N = 2, the bifurcation diagram is relatively simple. The tile-

independent solution is stable for q < 1.89 and q > 4.03. At these
two critical values it changes stability, giving rise to a looped
branch of period-2 solutions. For N = 4, the tile-independent
solution loses stability a little earlier, at q = 1.59, with a patterned
solution branch emanating subcritically. There are three different
stable portions of patterned solution branches, with small over-
laps. These overlaps imply two coexisting stable patterns, and this
is confirmed by simulation results for q = 3.75, with 607/1000 of
the initial conditions generating the purple pattern, and the
remaining 393/1000 giving the bright green pattern. Note that a
doubled version of the pattern solution branch for N = 2 is
necessarily also a solution for N = 4, but it is unstable on the
larger domain. For N = 6 the number of solution branches is
significantly greater, forming a complicated network, and there are
eight separate stable sections of solution branches: one of period 2,
two of period 3, and five of period 6. The brown solution branch is a
tripled version of the pattern solution branch for N = 2: the whole
of this branch is necessarily a solution for N = 6, but only a small
part of it is stable. For some values of q there are three coexisting
stable patterns, all of which are observed in our simulations. For
N = 8 the bifurcation is slightly simpler, but again there are
multiple coexisting stable patterns for significant ranges of q.

To illustrate the rapidly increasing complexity of emergent
patterns, Fig. 3 shows the results for N = 12 and N = 16. The network
of solution branches is so complicated that in many places no space is
visible between them, and there are many stable pattern branches:
19 for N = 12 and 54 for N = 16. Moreover the wide variety of
coexisting stable patterns is reflected in the results of our
simulations: for most values of q in our range, many different
patterns develop, depending on initial conditions. Note that to
improve clarity, we do not show simulation results in Fig. 3 but they
are included in the online Supplementary material, where we show
bifurcation diagrams for N = 2, 3, . . ., 10, 12 and 16, plus
representative patterns from each stable portion of a solution branch.

The overall message of our results is that unless the number of
tiles N is very small, there is a rich and highly complex array of
stable patterns, located within an enormous number of unstable
patterns. Moreover, our many of the stable solution branches arise
in our simulations using random initial conditions, which indicates
that they have appreciable basins of attraction, and should
therefore be observable in real systems. Since the numerical
bifurcation methods applied in this section require intensive
computations, we present an alternative approach to study pattern
formation in the next section.

3.2. Dispersion relation, stability and patterns

An analytic approach for studying pattern-formation conditions
is to linearise at a spatially constant steady state and to derive the
dispersion relation that gives the temporal growth rate of
perturbations of a certain wave number. This technique is well
established in reaction–diffusion equations (Murray, 2001) and



Fig. 2. Bifurcation diagrams showing the values of uj
1 in stationary solutions of the model ((2) and (3)) as a function of q, for N = 2, 4, 6, 8 tiles. Thin black lines denote unstable

solutions, thick bright yellow lines denote stable tile-independent (period-1) solutions, and thick coloured lines denote patterns. Each stable part of a solution branch is

plotted in a different colour, and representative examples of the corresponding patterns are shown above the main figure panels. Black stars denote results from a series of

1000 simulations for each of q = 1.0, 1.25, 1.5, . . .. Here we solved the equations with the value of each variable at t = 0 chosen randomly from a uniform distribution between

20% and 200% of its value in the tile-independent solution. We plot the values of uj
1 for each j at t = 108: this large solution time is necessary because there can be long

transients near unstable solutions. To avoid numerical solutions getting trapped near solutions that are only just unstable, we used a small absolute tolerance of 10�8. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of the article.)
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coupled lattices (Webb and Owen, 2004a; Wearing et al., 2000;
Lubensky et al., 2011) and networks (Wolfrum, 2012). As discussed
previously, we obtain a homogeneous solution only on the level of
tiles. We denote this tile-independent state as ðu�1; u�2; v�1; v�2Þ. The
spatial relation of u�1; v�1 and u�2; v�2 within a tile needs to be reflected
in the perturbation ansatz. Hence, after we linearise the equations
in (2), we look for solutions of the form

~u j
1ðtÞ ¼ u1expðst þ jkiÞ; ~u j

2ðtÞ ¼ u2exp st þ j þ 1

2

� �
ki

� �
; (8)
and similarly for vn, where un is a constant, and i2 = �1. The
temporal growth rate of the solution is given by s, the wave
number is k, and j is the discrete (integer) distance corresponding
to tile number. To interpret k as a wave number corresponding to
wavelength N on the lattice, it needs to be of the form k = N/2p;
however, for analytical purposes, it is helpful to consider it as a
continuous variable. Here, N is the shortest number of tiles needed
to see a pattern of that wave length, this is not the same as the N

defined in Section 3.1, but it is closely related and so we use the
same letter. Since the centre of a type-2-patch is halfway between



Fig. 3. Bifurcation diagrams as in Fig. 2 for N = 12 and 16 tiles. For improved visual

clarity we omit simulation results, but otherwise all details are as in Fig. 2. In view of

the large number of stable portions of solution branches, we do not show examples

here, but a representative pattern from each stable portion is plotted in the online

Supplementary material.
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two consecutive type-1-patches (see Fig. 1(a)) we need to evaluate
the linearisation on bad patches at j + 1/2, as it appears in (8).

The desired solutions exist if the constants xT ¼ ðu1; u2; v1; v2Þ
satisfy the linear system ðM�sIÞx ¼ 0, where
M ¼
�mu þ f 1u kumucosðp=NÞ f 1v 0
lmucosðp=NÞ �kulmu þ f 2u 0 f 2v
g1u 0 �mv þ g1v kvmvcosðp=NÞ
0 g2u lmvcosðp=NÞ �kvlmv þ g2v

0
BB@

1
CCA; (9)
and N = 2p/k is the wavelength as above. Partial derivatives of
the interaction terms are denoted by subscripts, for example

f 1u ¼
@f 1

@u
jðu�1; v�1Þ; g2u ¼

@g2

@v
jðu�2; v�2Þ; and the other terms analo-

gously. From the condition that the solution to this linear system
be non-trivial, we obtain the dispersion relation

Fðk; sÞ ¼ detðM�sIÞ ¼ 0: (10)

For spatial pattern formation we require the steady state to be (i)
stable to homogeneous perturbations (i.e. RðsÞ < 0 when k = 0),
and (ii) unstable to inhomogeneous perturbations (i.e. RðsÞ > 0 for
some k 6¼ 0). We illustrate and discuss the stability boundary of the
j-independent solution in several figures below. In each figure, we
indicate whether a perturbation of wavelength N can grow with a
positive real eigenvalue (s > 0, white region) or will decay with a
real negative eigenvalue (s < 0, black region) or non-real
eigenvalue with negative real part (RðsÞ < 0, grey region). We
expect patterns to form in the white region. To generate these
figures, we calculated the stable tile-independent steady state by
numerically solving Eqs. (2) on a single tile with periodic boundary
conditions. For each wavelength, we then found the characteristic
polynomial of M and evaluated its roots numerically (using the
root command in MATLAB). We focus our results on the effects of
movement-related parameters.

3.2.1. Relative dispersal ability

A key requirement for classical diffusion-driven pattern
formation is a difference in dispersal ability, to achieve short-
range activation and long-range inhibition (Murray, 2001). Since
the prey corresponds to the activator in our model and the
predator to the inhibitor, we expect that patterns form when the
relative dispersal ability mv=mu is large enough. Fig. 4(a) shows
essentially this behaviour, but the situation is slightly more
complex than in the case of a homogeneous landscape. In Fig. 4(a)
we fixed mu = 0.5 and varied mv. When mv ¼ mu, no patterns form.
As mv increases, patterns of wavelength 3 and 4 emerge, and the
range of unstable wavelengths increases as mv increases. Note that
the white region between N = 1 and N = 2 corresponds to non-
integer wavelengths and is not observable on our lattice. We note
that a different class of spatio- temporal dynamics arises when
predator dispersal is very small. The dispersion relation then
predicts periodic travelling waves, i.e. instabilities with non-real s
and Rs > 0. This scenario is present in panel (a) for values of mv

below 0.1004 (thin white strip at the bottom of the figure). The
dynamics on an isolated good patch are oscillatory, and prey
dispersal propagates these oscillations in space to generate
periodic travelling waves.

In Fig. 4(b) we instead fixed mv ¼ 5 and varied mu. When mu � 1,
no patterns form. As mu decreases, patterns with small wave-
lengths (3 � N � 6) emerge as expected from the previous scenario.
The choice of mv seems to constrain the range of unstable
wavelengths that can be obtained by varying mu, but not vice versa
(compare panel (a)). Rietkerk and van de Koppel (2008) also
observed the key role of long distance negative feedback in
determining the existence and regularity of patterns. As mu

decreases even further, the homogeneous state becomes stable
again, even though the ratio mv=mu is large. In this case, the range
of activation becomes too small to spread across the neighbouring
bad patch since the residency time in the good patch (1/mu) is high.
For the chosen parameter values, the dynamics on an isolated good
patch are oscillatory (as discussed in Section 2), but the relatively
large predator movement stabilises the dynamics. The analysis
suggests mobile predators and prey are both needed to observe
patterns, however a low predator residency time in good patches
appears to be an important ingredient for determining the
wavelength of resulting patterns.

3.2.2. Movement bias ku and kv

The dispersion relation predicts that no patterns form when
prey movement is heavily biased towards good patches (e.g.
ku > 1.4 in Fig. 4(c)). As ku decreases, perturbations of relatively
small wavelengths (2 � N � 6 for the chosen parameters) become
unstable and patterns arise. Even though the movement rates are
constant in this figure, the emergence and disappearance of
patterns can be explained in terms of the relative scales of
activation and inhibition as follows. By decreasing ku, the residence
time in bad patches (1/(muku)) is increased, which effectively



Fig. 4. Stability boundaries illustrating the outcome of the linear stability analysis of the patch-independent (period 1) solution on an infinite, one-dimensional spatial

domain. The white regions indicate values of the parameter (y-axis) for which we expect to obtain a pattern of wavelength N (x-axis). In the white region the patch-

independent solution is stable to spatially homogeneous perturbations, and unstable to spatially varying perturbations of wavelength N. In the black and grey regions the

period 1 solution is stable to spatially varying perturbations of wavelength N. In the black regions, the dominant eigenvalue associated with spatially varying perturbations of

wavelength N is real, in the grey regions, it is not. We illustrate in (a) the effect of predator migration rate, (b) the effect of prey migration rate, (c) the effect of prey patch

preference, and (d) the effect of relative patch size, on pattern formation. In both (a) and (d) periodic travelling wave solutions are predicted; this occurs in the small white

region at the bottom of figure (a) (mv � 0:1004) and in the top region of figure (d) (l � 2.0276).
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increases travel time between two consecutive good patches.
Thereby the activation range decreases. Vice versa, increasing ku

decreases the residence time in bad patches. Effectively, prey move
faster through the landscape, thereby increasing the activation
range and destroying any potential patterns.

With movement bias of the predator, the same mechanisms are
in effect. Since long-range inhibition aides pattern formation, these
mechanisms produce contrasting results (not shown). As kv

increases, predators bias their movement towards good patches
by decreasing their residence time in the bad patches. This
behaviour effectively increases their overall movement rate, and
with increased inhibition range, patterns may form.

3.2.3. Patch size

Pattern formation can occur for intermediate size of good
patches relative to bad patches. Fig. 4(d) shows the case of fixed L2

and varying L1, but the reverse case is qualitatively the same. When
the ratio l = L1/L2 is small, prey growth on good patches cannot
compensate for prey death in bad patches to produce enough
activation for patterns to form. At intermediate ranges, good
patches are large enough to enhance prey growth and bad patches
are large enough to stabilise the oscillatory dynamics on good
patches. When l is large, then the oscillatory dynamics on a good
patch cannot be stabilised by the (relatively) small bad patches,
and the dynamics on each tile are oscillatory. Due to movement,
these local oscillations then form periodic travelling waves. Webb
and Owen (2004b) also found periodic travelling waves in their
lattice model of intracellular signalling. As the focus of the current
work is the study of stable patterns we leave the study of the
periodic travelling waves for future work.
3.2.4. Homogeneous versus heterogeneous landscapes

To complete this section, we ask what effect the bad patches
have on the occurrence of patterns compared to a homogeneous
landscape. When all patches are good patches (i.e. f1 = f2, g1 = g2),
then we have a homogeneous landscape, consequently there is no
patch preference (i.e. ku;v ¼ 1). In this case, the four-dimensional
system (9) reduces to two equations, and the dispersion relation
can be written explicitly as

K2ðmumvÞð1 þ lÞ2 þ K½sðmu þ mvÞð1 þ lÞ�a11mvð1 þ lÞ
�a22muð1 þ lÞ� þ ½s2�sða11 þ a22Þ
þ a11a22�a12a21� ¼ 0; (11)

where K = sin 2(k/4) and aij are the entries in the community
matrix J given in Eq. (6), i.e. a11 = f1u, a22 ¼ g1v and so on. The
conditions for diffusion-driven instabilities in this dispersion
relation are

a11 þ a22 < 0; a11a22�a12a21 > 0; a11mv þ a22mu > 0;

4ða11a22�a12a21Þmumv < a11mv þ a22mu:

These conditions are the familiar ones for reaction–diffusion
equations with movement rates mu;v replacing diffusion constants
(cf. Murray, 2001). This similarity is understandable since in a
homogeneous landscape, our model is essentially a midpoint
discretisation of a continuous-space model. Note that relative
patch size l = L1/L2 drops out from the relation, as it should in a
homogeneous landscape.



Fig. 5. Comparison of stability conditions, according to the dispersion relation, between the homogeneous (panel a) and heterogeneous (panel b) landscape. The homogeneous

landscape consists of only good patches, whereas the heterogeneous landscape has good and bad patches alternating. White, black and dark grey colours indicate Turing

instability and stability, respectively, as in previous figures. The light grey shaded region in (a) indicates that the patch-independent (period 1) solution is unstable to spatially

homogeneous perturbations giving rise to population cycles and preventing Turing pattern formation. We use the baseline parameters with the exception of mv ¼ 10.
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The two plots in Fig. 5 illustrate the difference in the stability
behaviour of the tile-independent solution for a homogeneous
(two good patches per tile, left plot) and heterogeneous (a good
and a bad patch per tile, right plot) landscape. (We use two good
patches per tile so that we can compare the length scales of the
emergent patterns between the two types of landscapes.) In the
homogeneous landscape, only a very narrow range of q leads to
pattern formation for a limited range of wavelengths N (white
region). There is a large region of oscillatory solutions when q < 4
(see Section 2), but the entire region q > 5 has a stable
homogeneous solution. In the heterogeneous landscape, the region
of pattern formation is much larger (white region, right plot). The
presence of bad patches stabilises all the oscillations for q < 4 so
that spatial patterns can emerge there. In addition, patterns can
arise for values of q up to at least 7; much larger than in the
homogeneous case. We hypothesise that the small-scale variation
in the steady-state densities that is generated by the presence of
bad patches can act as a catalyst that favours pattern formation.

3.3. Comparison of the different approaches

The numerical continuation method in Section 3.1 revealed a
great number of coexistent spatial patterns, but was limited to a
single bifurcation parameter and required intensive computations.
The analytical dispersion-relation method in Section 3.2 captures
the stability behaviour of the tile-independent state in an infinite
landscape relatively easily, but cannot detect other patterns and is
based only on linear stability. We compare the two methods in
Fig. 6. For each wavelength (N), the hashed bars in (a) indicate the
range of q for which the tile- independent solution is unstable
according to the numerical method applied to the nonlinear model.
The white bars in (a) indicate the values of q for which (locally
stable) non-trivial spatial patterns exist. The white region in (b)
corresponds to linear instability of the tile-independent state
according to the dispersion relation.

We see that the instability region for finitely many tiles (hashed
bars, panel (a)) correspond reasonably well to the instability region
on the infinite landscape (white region, panel (b)), but that the
pattern formation region (white bars, panel (a)) is much larger than
the instability region of the tile-independent solution. Specifically,
we saw in Fig. 2 that all primary bifurcations from the period-1
pattern are sub-critical. Despite this, the linear analysis still
predicts the patterns for small wavelengths with reasonable
success. For example, in the case N = 4, a period-4 pattern branches
sub-critically from the period-1 pattern, and only becomes stable
once it folds back. Secondary bifurcations lead to additional
patterns that are stable and fold back to the period-1 pattern long
after this period-1 pattern is stable again. As the propensity for
secondary bifurcations increases, the ability of the linear analysis
to predict patterns decreases. Diffusion-driven instabilities arising
in reaction–diffusion models typically result from supercritical
solutions so that the linear stability analysis predicts patterns well,
at least close to the bifurcation point. In discrete-space systems,
however, sub-critical bifurcations are common (O’Dea and King,
2013). And even continuous-space systems can exhibit numerous
sub-critical bifurcations in the presence of an advection term
(Sherratt, 2013; van der Stelt et al., 2013; Siteur et al., 2014). Hence,
the linear stability analysis can serve as an entry point into
studying pattern formation, but to obtain the full picture, one has
to consider the nonlinear model entirely.



Fig. 6. Stability boundary plots comparing the results from the full non-linear bifurcation analysis (a) to the results of the linear stability analysis of the patch-independent

(period 1) solutions on an infinite one dimensional spatial domain (b). In (a) the hashed bars indicate the range of q which give unstable patch-independent (period 1)

solutions found from the numerical bifurcation analysis of the full non-linear model. The white bars indicate the full range of q where patterns arise in the full non-linear

model. The white region in (b) indicates values of the parameter q for which we expect to obtain a pattern of wavelength N. In the white region the patch-independent (period

1) solution is stable to spatially homogeneous perturbations, but is unstable to spatially varying perturbations of wavelength N. In the black and grey regions the period 1

solution is stable to spatially varying perturbations of wavelength N and patterns are not possible according to the linear analysis. The difference between the black and grey

regions is that dominant eigenvalues are real and complex, respectively.
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4. Discussion

One of the great challenges in ecology is to explain the
mechanisms behind the observed spatio-temporal variation in
species densities. Such spatial variation could be (i) externally

imposed in a heterogeneous landscape by variations in habitat
quality, or (ii) arise on homogeneous landscapes from species
interaction and dispersal through diffusion-driven instabilities or
other feedback mechanisms that lead to self-organised population
patterns. The former view is reflected in habitat suitability models
where population abundance is correlated with local habitat
features and resource availability (Ergon et al., 2001). Document-
ing the latter has been a highly active area of ecological research in
recent years (Rietkerk et al., 2004). Examples can be found in arid
ecosystems (Rietkerk and van de Koppel, 2008), marine systems
(Wang et al., 2010a), and also in other areas of the biophysical
sciences such as developmental biology and coupled chemical
reactors (Gilbert, 1994; Horsthemke and Moore, 2004). In reality,
both aspects are likely to interact (Schmitz, 2010). The strength of
this interaction and the expected resulting patterns depend on the
relative length scales of the different mechanisms (Sheffer et al.,
2013; Benson et al., 1993b). If the spatial extent of landscape
features is much larger than the length scale on which biological
feedbacks (through dispersal and species dynamics) operate, then
any patterns in species abundance are likely to be self-organised. If
the two scales are comparable then we expect the two mechanisms
to interact such that spatial patterns are more difficult to predict.
Sheffer et al. (2013) propose a conceptual framework and empirical
setting to explore this influence of spatial scales.

We developed a theoretical framework to understand the
spatial patterns that arise in a predator–prey system where
external factors and self-organisation interact. We represented the
heterogeneous landscape generated by abiotic factors as a series of
periodically alternating patches, and the population dynamics on
each patch as a system of differential equations. While pattern
formation has been studied in other contexts on homogeneous
lattices and networks of patches (Wearing et al., 2000; Lubensky
et al., 2011; Formosa-Jordan et al., 2012), to the best of our
knowledge, our model is the first application of these ideas to
spatial ecology and the first attempt to deal with strong
heterogeneity (but see Webb and Owen, 2004a for a related idea).
Due to the spatial heterogeneity, this system does not have a
spatially constant steady state on the level of patches. Instead,
there is a steady state that is spatially constant on the level of tiles.
Within each tile, species densities vary between the good and bad
patch, reflecting the populations tracking externally imposed
landscape heterogeneity. We employed linear dispersion relation
and numerical bifurcation analysis to study the stability of this



C.A. Cobbold et al. / Ecological Complexity 24 (2015) 69–8178
steady state to spatially non-uniform perturbations as well as the
occurrence of stable, spatially non-uniform (on the level of tiles)
states.

We found that (i) the homogeneous (tile-level) state can be
destabilised by non-constant spatial perturbations (e.g. Fig. 1); that
(ii) there are potentially many stable, coexisting, spatially-
structured states with reasonably large basins of attraction (e.g.
Fig. 2). Similar results are known on homogeneous networks
(Wolfrum, 2012). In addition, we find that (iii) externally imposed
spatial heterogeneity seems to have the potential to promote self-
organised spatial patterns (e.g. Fig. 5). Sheffer et al. (2013) had
reached a similar conclusion from their conceptual model of
vegetation patterning. The patterns we find can be explained with
the classical mechanisms (Segel and Jackson, 1972; Gierer and
Meinhardt, 1972) of long-range inhibition (predator) and short-
range activation (prey), when properly taking into account how
dispersal rates, patch residence times and landscape configuration
interact to create the length scale of biological feedbacks. The
difference in predator–prey dispersal ability required for long-
range inhibition and short range activation is often observed in
marine systems. Marine piscivores regularly migrate across spatial
scales much larger than the habitat occupied by their prey (Spencer
and Collie, 1995), and so marine environment may provide a good
setting for potential applications of our findings.

Our results have particular implications for the management of
biological systems, for example the alteration of existing habitats
and the design of reserves. For example, optimal design and
spacing of systems of marine reserves is usually based on
maximising the likelihood of population persistence, but once
persistence is guaranteed, interaction with other populations is
often not considered (but see Gouhier et al., 2010). Between two
consecutive marine reserves (good patches) lies a region of
unprotected habitat (bad patch) where prey death is high due to
harvesting. Our results show that long-range spatial patterns may
arise in such a situation. Fig. 1(b), for example, shows a period-4
pattern on a system of eight tiles where the prey density in the
good patches on tiles 1, 4, 5, and 8 is low, even lower than the prey
density in the bad patches in tiles 2 and 6. It might be tempting to
conclude that the good patches in tiles 1, 4, 5, and 8 are not
successful reserves that could be removed. We simulated the
system with those four patches converted to bad patches
(Fig. 1(c)), and we found that this local change caused by patch
conversion has a global effect, elevating the prey density on all of
the remaining good patches. The original pattern wavelength is
typically preserved and the predator densities (not shown) are also
globally affected, often showing a decrease in density. These
observations apply equally well to naturally heterogeneous
habitats. When patterns arise in heterogeneous landscapes, the
steady-state population density need not be uniformly high on
good patches; it may, in fact, be lower on some good patches than
on some bad patches (Fig. 1). Hence, neither are low population
densities in good patches a sign of impending collapse, nor is low
population density a sign for low habitat quality. Both can merely
be a consequence of species interaction and spatial coupling.

There are many examples of spatially periodic habitats of the
type considered in our model. One particularly rich example is
semi-arid vegetation, which tends to self-organise into patterns
because of the positive feedback between vegetation density and
water infiltration (Rietkerk et al., 2004; Meron, 2012; Sherratt,
2015). Bonachela et al. (2015) have shown that the spatial
heterogeneity created by periodic patterns of termite mounds
plays an important regulatory role for the vegetation patterns that
develop in this heterogeneous landscape. Most notably, they
predicted that the heterogeneity increases resilience to reductions
in rainfall, a result in keeping with the work of Yizhaq et al. (2014)
on spatial heterogeneity in soil water diffusion. Moreover the
vegetation itself provides a spatially patterned habitat for other
fauna, although this is an aspect of semi-arid ecosystems that has
received little attention in the literature. Other examples of spatial
patterns at the whole ecosystem scale include mussel beds (Wang
et al., 2010a), intertidal mudflats (Weerman et al., 2012), ribbon
forests (Bekker et al., 2009) and peat bogs (Eppinga et al., 2009). In
each case these systems provide patterned habitats for other
components of the ecosystem, although again this has been little
studied, with the research focus being on the landscape patterning
itself.

We have demonstrated that unless the number of tiles is small,
there can be a large number of coexisting stable spatial patterns,
many of which have an appreciable basin of attraction. Many of
these solutions are very similar to one another, implying that
populations can be in any of a range of stable patterns, which differ
only slightly. For example, a variety of different patterns could
become established on similar landscapes, depending on initial
conditions or environmental perturbations. Empirical evidence for
this statement comes from Sheffer et al. (2013). In the same vein,
landscape alterations may have a number of unexpected con-
sequences for population densities. Species abundances could
change far beyond the range of the actual alteration if the system is
moved between basins of attraction for two distinct patterns.
Based on our observation that landscape heterogeneity can
promote spatial patterns, landscape alterations that increase
heterogeneity could lead to emergent patterns where there were
none to begin with. The mechanisms that we uncovered
complement those found by Page et al. (2003) in a developmental
context. In Page et al.’s work, a spatial discontinuity in the
population dynamic parameters drove the pattern formation, and
the resulting patterns were centred around this discontinuity. In
our case, the patterns are not originating from such parameter
discontinuities, instead they occur across the entire domain driven
by spatial coupling as well as the short-range destabilising effect of
the prey and the long-range stabilising effect of the predators.

It is well known that standard Lotka–Volterra or Rosenzweig–
MacArthur predator–prey models do not support diffusion-driven
instabilities on homogeneous landscapes (Okubo and Levin, 2001),
while the model by Leslie and May that we considered does
(Mukhopadhyay and Bhattacharyya, 2006). Fasani and Rinaldi
(2011) showed that the Rosenzweig–MacArthur model can readily
show the required activator–inhibitor structure by including one
of at least nine potential demographic factors for the predator.
While not all factors enhanced the propensity for pattern
formation, their result suggests that the ideas presented here
may have wide applicability. Furthermore, since we observed
pattern formation in the heterogeneous landscape for a much
wider range of parameters than for a homogeneous landscape, and
especially for parameter values where the model on an isolated
good patch has oscillatory dynamics, we conjecture that most of
our results are fairly robust and apply to more general predator–
prey models. Some support for this conjecture comes from work by
Strohm and Tyson (2009) who compared the dynamics of several
predator–prey models on a simple fragmented landscape and
found that results were largely insensitive to model type. Future
work will have to explore how robust our results are with respect
to other modelling assumptions, for example, the arrangement and
sizes of patches.

Managed ecological settings are not the only context within
which our work is applicable. Heterogeneous environments are
also present in developmental biology. As an embryo grows,
patterns are laid down in a hierarchical fashion with new patterns
forming on top of earlier patterns. Spatially discrete models have
been used to describe developmental pattern formation before, but
not in the context of a heterogeneous domain. Instead, coupled
ODES have been used to describe juxtacrine signalling (a means of
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nearest neighbour communication that occurs in closely packed
cells), but the assumption has been one of a homogenous spatial
environment on which fine-grained patterns form in developing
tissue. Our approach offers a new way to study pattern formation
on a heterogenous domain. Previous studies of pattern formation
had largely been limited to simple cases of spatially-dependent
step-functions in diffusion or kinetic parameters (Benson et al.,
1993b; Page et al., 2003).
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Appendix A

In Section 3.1 we presented the results of a numerical bifurcation

analysis of our model equations. In this Appendix we discuss the

details of this method, highlighting the various technical difficulties

that we encountered and how we overcame them. Readers

considering reproducing the figures should be aware that they

require large amounts of computer time. Taken together, all of the

numerical continuations for N = 16 took about 2 weeks on a Linux PC

with a 2.83 GHz Intel Core 2 Quad Q9500 processor.

Our basic approach is to calculate numerically the patch-

independent solution for a relatively small value of q, and then

numerically continue the solution in q from this starting point,

detecting bifurcations and following bifurcating branches. We

performed our calculations using the software package AUTO97

(Doedel, 1981; Doedel et al., 1991, 2006). The values of key AUTO

parameters are: ips=1 (stationary solutions of ODEs); isp=1 (enable

detection of bifurcation points); isw=1 (enable branch switching);

iid=0 (minimal diagnostics; otherwise the file fort.9 becomes

extremely big). With these settings, AUTO attempts to calculate not

only the primary solution branch, but also the bifurcating branches

from the first jmxbfj bifurcation points. In principle therefore, AUTO

should automatically calculate the entire bifurcation diagram in a

single run. However a major difficulty arises in practice when solution

branches are loops. Then the numerical continuation will typically

trace round the loop several times before ending when the number of

continuation steps reaches its pre-assigned maximum nmx. Therefore

each bifurcation point on the loop is recorded several times, and each

occurrence acts as a starting point for a new branch calculation,

causing bifurcation points along the branch to be located several

times. These bifurcating branches may themselves be loops, in which

case there will be multiple recording of bifurcation points for each

replicate of the branch. Repetition of this process gives the potential

for an exponential increase in the number of times a solution branch

is calculated as a function of the number of bifurcations separating it

from the primary solution branch. It turns out that looped solution

branches are quite common for our equations. Moreover, the same

problem can occur when the numerical continuation turns around at

the end of a solution branch and recomputes it in the opposite
direction; in theory this should be prevented by setting mxbf < 0, but

in practice it sometimes happens anyway.

This multiple calculation of bifurcation points and solution

branches is a feature of all our computations. It means that however

large jmxbfj is, the calculation will always continue until this upper

limit on the number of solution branches is attained, and one can

never be certain whether or not the resulting bifurcation diagram is

complete. We took mxbf = S4000, which compares with the value

jmxbfj = 10 used in most examples in the AUTO manual. The vast

majority of the 4000 solution branches that are then calculated are

repeats: nevertheless there may be omissions. Therefore we

augmented the basic calculation with an additional step. For each

value of q in the set 1.0, 1.25, 1.5, 1.75,. . .we ran 1000 simulations of

the model equations with initial conditions in which each variable

was chosen randomly from a uniform distribution between 20% and

200% of its value in the patch-independent solution. Many of the

patterns generated by these simulations lie on solution branches that

have already been calculated, but typically some do not, due to the

incompleteness of the preliminary bifurcation diagram. In such cases,

we performed separate runs of AUTO starting from the pattern found

via simulation, with mxbf reset to 10; we deliberately set mxbf > 0 in

this case. During such a run, one wants to record uj
1 for all values of j

since these should all be plotted on the bifurcation diagram; however

AUTO only records up to 6 variable values (in the fort.7 output file),

which presents a problem for N > 6. One possible remedy

would be to edit the AUTO source code to output more variable

values. However we adopted the alternative strategy of doing N

separate runs of AUTO, starting from ðu j
1; u j

2 ; v j
1 ; v j

2Þ ¼
ð~u jþk ðmodNÞ

1 ; ~u jþk ðmodNÞ
2 ; ~v jþk ðmodNÞ

1 ; ~v jþk ðmodNÞ
2 Þ where ð~u j

1; ~u j
2; ~v

j
1 ; ~v

j
2Þ is

the pattern found via simulation, and k = 0, 1, . . ., N S 1.

It is important to note one consequence of our two-step method

for calculating the bifurcation diagrams, which is that we cannot

guarantee that we have calculated all of the solution branches.

Indeed, for the very complicated diagrams for N = 12 and N = 16, we

think that it is very likely that our results omit some unstable solution

branches, although given the dense network of such branches it would

probably be difficult to distinguish the results visually if some

additional branches were included. Because we use the results from

a large volume of simulations to give starting points for numerical

continuation, we think it likely that we have calculated the vast

majority of the branches with stable parts. However we cannot rule out

the possibility of additional stable portions of solution branches that

have either very small extent in q, or a very small basin of attraction.

We also mention two other more minor technical difficulties, for

the benefit of readers considering using our approach themselves.

Firstly, in some cases AUTO erroneously detects some Hopf bifurcation

points. These occur when two real eigenvalues change sign

simultaneously: numerical discretisation introduces very small

imaginary parts to these eigenvalues, causing AUTO to detect a Hopf

bifurcation. These do not cause any difficulties in practice, and so can

safely be ignored – in particular AUTO does not automatically attempt

to trace limit cycle branches emanating from Hopf bifurcation points.

Alternatively the ‘‘Hopf bifurcations’’ can be eliminated by reducing

the error tolerances and step sizes. We have not found any genuine

Hopf bifurcations in any of the bifurcation diagrams we calculated.

Secondly, the fact that most solution branches are calculated many

times causes very long rendering times for plots. To avoid this, we

processed the data files before plotting, removing repeated solution

branches. Specifically, we removed branches whose first 20 points
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were within a small tolerance of the first 20 points of a previous

branch.

We end this Appendix with a full listing of the various AUTO

parameters that we used in our calculations. NDIM=4N, IPS = 1, IRS =

0, ILP = 0, NICP = 1, ICP = 1, NTST = 50, NCOL = 4, IAD = 3, ISP = 1, ISW

= 1, IPLT = 0, NBC = 0, NINT = 0, NMX = 4000, RL0 = 0.6, RL1 = 15.0, A0 =

0, A1 = 100, NPR = 4000, MXBF = S4000, IID = 2, ITMX = 8, ITNW = 5,

NWTN = 3, JAC = 0, EPSL = 10S7, EPS = 10S7, EPSS = 10S5, DS = 0.0005,

DSMIN = 0.0001, DSMAX = 0.005, IADS = 1, NTHL = 1, I = 11, THL = 0,

NTHU = 0, NUZR = 0. The only variation in these values was to MXBF,

which was set to 10 or 1 in some runs, as discussed above.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in

the online version, at http://dx.doi.org/10.1016/j.ecocom.2015.10.001.
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