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Abstract Many ecological systems exhibit multi-year cycles. In such systems, inva-
sions have a complicated spatiotemporal structure. In particular, it is common for
unstable steady states to exist as long-term transients behind the invasion front, a phe-
nomenon known as dynamical stabilisation. We combine absolute stability theory and
computation to predict how the width of the stabilised region depends on parameter
values. We develop our calculations in the context of a model for a cyclic predator-prey
system, in which the invasion front and spatiotemporal oscillations of predators and
prey are separated by a region in which the coexistence steady state is dynamically
stabilised.

Keywords Ecological invasion · Absolute stability · Vole · Population cycles

Mathematics Subject Classification (2000) 92D40 · 35C07 · 35K57

1 Introduction

Ecological invasion is a widespread phenomenon with important environmental and
economic impacts (Matsumura et al. 2004; Tokarska-Guzik et al. 2008). Moreover,
invasions are occurring with increasing frequency due to climate change, which can
enable previously non-invasive species to invade (Hellmann et al. 2008). This paper

A. S. Dagbovie (B) · J. A. Sherratt
Department of Mathematics and Maxwell Institute for Mathematical Sciences,
Heriot-Watt University, Edinburgh EH14 4AS, UK
e-mail: ad195@hw.ac.uk

J. A. Sherratt
e-mail: jas@ma.hw.ac.uk

123

Author's personal copy



1404 A. S. Dagbovie, J. A. Sherratt

concerns one particular class of invasions: the spread of a predator into a population
of its prey. This process has been explored in many mathematical modelling studies
using models formulated as partial differential equations (pdes), integrodifference
equations, cellular automata and others (Dunbar 1984; Sherratt et al. 2000; Owen and
Lewis 2001; Sherratt et al. 1997; Sherratt 2001). In simple cases, invasion takes the
form of a transition wavefront, with a prey-only equilibrium ahead of the front and
constant coexistence of predator and prey behind it. In such cases, the main question
of interest is the dependence of the invasion speed on ecological parameters.

A characteristic feature of predator-prey interactions is their ability to generate pop-
ulation cycles. This feature of predator-prey models dates back to the original work of
Lokta and Volterra (Lotka 1925; May and Mclean 2007; Turchin 2003; Volterra 1926),
and empirical studies have confirmed predation as the cause of cycling in some prey
populations (Korpimäki et al. 2002). For cyclic interactions, invasion of prey by preda-
tors is inevitably more complicated: the constant coexistence of predators and prey is
unstable; therefore homogeneity cannot be expected as the only behaviour behind the
invasion front. Instead, a number of modelling studies have predicted spatiotemporal
oscillations organised into periodic travelling waves (Garvie 2007; Petrovskii et al.
2000; Sherratt 2001). Such waves have been found in spatiotemporal data sets on a
number of natural populations (Sherratt and Smith 2008), with invasion being among
the factors proposed for their generation.

The change from a simple invasive transition wave to a periodic wave behind the
invasion front as parameters are varied occurs because the coexistence equilibrium
becomes unstable. However, numerical simulations show that, in many cases, the
invasion front and the periodic travelling wave are separated by a region in which
the solution is approximately at the coexistence equilibrium. In the early stages of
an invasion, this region expands until it eventually reaches a maximum width which
then remains constant as the invasion proceeds (see Fig. 1 for a typical space-time
plot showing the dependence on time of the width). The existence of a region in
which the solution is approximately at the unstable coexistence steady state is known
as “dynamical stabilisation” (Malchow and Petrovskii 2002; Malchow et al. 2008;
Petrovskii and Malchow 1998; Petrovskii et al. 2001) and it is a major feature of
predator-prey invasions for a wide range of parameter values.

Although the analysis in this paper is quite general, all of our numerical examples
are for the Rosenzweig-MacArthur (1963) model which assumes logistic growth for
the prey population and a Holling type 2 response to predation:

ut = Duuxx + f (u, v) (1a)

vt = Dvvxx + g(u, v) (1b)

with f (u, v) = u(1 − u) − kuv

1 + ku
(1c)

g(u, v) = 1

b

(
kuv

1 + ku

)
− v

ab
. (1d)

Here the variables u and v are prey and predator densities at time t and spatial location
x in a one dimensional domain. We will focus on two different values of b; firstly
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Absolute stability and dynamical stabilisation 1405

Fig. 1 Space-time plot showing how the edges of the stabilised region vary with time for b = 3.0 and
k = 8.2. All other parameters are as in (1e). The space variable x varies between 0 and 4,000, with t between
0 and 5,660. As t increases from zero, the stabilised region expands until t � 2745, after which the width
remains constant. We have solved (1) numerically using a semi-implicit finite difference method with a
grid spacing of 0.5 and time step of 10−2. Our initial condition is given by the prey-only state u(x, 0) = 1
and v(x, 0) = 0 with a slight perturbation near x = 0; we assume that there is no flux on both ends of the
domain giving the boundary conditions ux = vx = 0 at x = 0 and x = 4000. Note that the scale bar has
been deliberately made discrete, in order to achieve better clarity

b = 3.0 and later b = 1.2. In both cases, we vary k with the other parameter values
fixed as follows:

a = 1.3, Du = 1 and Dv = 2. (1e)

The model (1a–d) has a unique coexistence steady state (u∗, v∗) with u∗ = 1/(ak −k)

and v∗ = (1−u∗)(1+ku∗)/k. Standard linear stability analysis indicates that (u∗, v∗)
is unstable for k ≥ (a + 1)/(a − 1) = kmin and stable to homogeneous perturbations
for k < kmin .

Figure 2 shows numerical simulations of invasions using (1), for four different
values of k, with the other parameters fixed (as in (1e), with b = 3.0). In (a),
k < kmin = 7.67 and the system settles to the stable coexistence steady state (u∗, v∗)
behind the invasion front. In (b) and (c) there is a clear “stabilised region” in which the
solution is very close to (u∗, v∗), before the onset of spatiotemporal oscillations. Note
that the stabilised region is wider for (b) which has the smaller of the two k values.
In (d), there is no dynamical stabilisation, and spatiotemporal oscillations develop
immediately behind the invasion front.

The phenomenon of dynamical stabilisation has been studied in detail by Petrovskii
et al. (2000, 2001); Malchow and Petrovskii (2002). Their numerical simulations were
run for relatively short times, and as a result they only observed the initial phase of
the solution, in which the width of the stabilised region grows at a constant rate.
Petrovskii et al. (2001); Malchow and Petrovskii (2002) calculated the growth rate by
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Fig. 2 Numerical simulations of invasion in (1) for four different values of k. Here b = 3.0 and the other
parameters are given in (1e). At time t = 0, the unstable steady state (1, 0) is slightly perturbed near
x = 0. a Illustrates the structure of a stable solution: it simply consists of an invasion front followed by
the coexistence steady state. b–c Show a prey-only region followed by an invasion front, itself followed
by a stabilised region which then gives way to oscillations. These plots also suggest that the width of the
stabilised region decreases as k increases. For bigger values of k, that region is absent as we can observe in
(d). In each case, x ∈ (0, 4000) and the details of the numerical method were as in Fig. 1

applying linear spreading speed theory (van Saarloos 2003) to the interface between the
coexistence steady state and spatiotemporal oscillations. The condition for dynamical
stabilisation to occur at all is that this interface moves more slowly than the invasion
front. Similar calculations were done by Nozaki and Bekki (1983) in their study of
periodic wave generation in the complex Ginzburg-Landau equation.

The objective of this paper is an improved mathematical understanding of dynamical
stabilisation. In contrast to Petrovskii et al. (2001); Malchow and Petrovskii (2002),
our focus is on the width of the stabilised region once it has become constant, after the
initial growth phase. In particular, we present a method that enables calculation of the
dependence on parameter values of the width of the stabilised region. Our approach is
based on the theory of absolute stability. In Sect. 2, we discuss the notions of absolute
and convective stability for spatiotemporal systems, which will be our key tools for
determining the extent of dynamical stabilisation in Sects. 3 and 4.

2 Convective and absolute stability

The phenomenon of “dynamical stabilisation” illustrated in Fig. 2b, c is an intuitively
surprising one: the coexistence steady state is unstable even to spatially homogeneous
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Absolute stability and dynamical stabilisation 1407

perturbations and yet it appears as a long term feature of the solution. An understanding
of this behaviour requires the theory of convective and absolute stability, which we now
summarise. In temporal systems, if a solution is locally stable any small perturbation
decays over time. However, in a spatiotemporal context one must consider also the
propagation of growing perturbations. A solution is “convectively unstable” if all
unstable linear modes propagate as they grow. By contrast, “absolutely unstable”
solutions have stationary unstable linear modes. A more detailed discussion of these
concepts is given in Sandstede and Scheel (2000).

Our investigation of dynamical stabilisation is based on the absolute stability of the
coexistence steady state in a frame of reference moving with an arbitrary velocity V .
Therefore we rewrite (1) as

ut = Duuzz + V uz + f (u, v) (2a)

vt = Dvvzz + V vz + g(u, v) (2b)

where z = x − V t.
We now summarise a numerical method for calculating whether the coexistence

equilibrium (u∗, v∗) of (2) is absolutely stable; the method is discussed at greater
length by Rademacher et al. (2007). The first step is to compute the equations satisfied
by small perturbations to the steady state (u∗, v∗). We obtain these by linearising (2)
about (u∗, v∗). We look for solutions of the form

(u, v) = (u∗, v∗) + (ū, v̄)eλt+νz (3)

where λ is the temporal eigenvalue and ν is the corresponding spatial eigenvalue
(λ, ν ∈ C); ū and v̄ are complex valued constants. Substituting (3) into (2) and
neglecting terms that are nonlinear in ū and v̄ gives

A(λ, ν)y = 0 (4)

where

A(λ, ν) =
⎛
⎝Duν2 + V ν + ∂ f

∂u

∣∣∣
(u∗,v∗)

− λ
∂ f
∂v

∣∣∣
(u∗,v∗)

∂g
∂u

∣∣∣
(u∗,v∗)

Dvν
2 + V ν + ∂g

∂v

∣∣∣
(u∗,v∗)

− λ

⎞
⎠

and y =
(

ū
v̄

)

The dispersion relation D(λ, ν) = det[A(λ, ν)] must be zero for non-trivial solutions.
For fixed λ, D is a fourth order polynomial in ν and we denote its four roots by ν1(λ),
ν2(λ), ν3(λ) and ν4(λ), repeated with multiplicity and indexed such that

Re(ν1) ≥ Re(ν2) ≥ Re(ν3) ≥ Re(ν4).
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Then the “absolute spectrum” of (u∗, v∗) is �abs = {λ∣∣Re[ν2(λ)] = Re[ν3(λ)]}, and
(u∗, v∗) is absolutely stable if and only if �abs only contains eigenvalues with negative
real part (Sandstede and Scheel 2000).

The larger set {λ|Re[νi (λ)] = Re[ν j (λ)], for some i �= j} is known as the “gene-
ralised absolute spectrum” (Rademacher et al. 2007). We calculate the absolute spec-
trum using the method of Rademacher et al. (2007) which involves first calculating
the entire generalised absolute spectrum and then determining which parts of it form
the absolute spectrum.

Calculation of the Generalised Absolute Spectrum To calculate the generalised
absolute spectrum, we first compute the pairs (λ∗, ν∗) that solve

D(λ, ν) = 0 (5a)

∂νD(λ, ν) = 0; (5b)

these are known as branch points. Note that ν∗ is a repeated root of D(λ∗, ν) = 0 and
therefore any branch point is in the generalised absolute spectrum. The approach
in Rademacher et al. (2007) is to calculate the generalised absolute spectrum by
continuing it numerically using the branch points as starting points. General theory
(Rademacher et al. 2007) implies that the generalised absolute spectrum is a union
of connected components, each of which emanates from a branch point. Therefore
this numerical continuation procedure calculates the whole generalised absolute spec-
trum, and the part of this that is absolute spectrum can be determined by monitoring all
four roots for ν at each point. Full details of this numerical approach and its practical
implementation are given in Rademacher et al. (2007), Smith et al. (2009).

Figure 3 shows two examples of generalised absolute spectra, calculated in this way.
A key feature of these plots is that the most unstable points of the absolute spectrum
are branch points. This property has been proved for some simpler equations (Smith et
al. 2009), although it does not hold in general: there are some equations for which the
absolute spectrum extends to the right of the most unstable branch point (Rademacher
et al. 2007). Our study of dynamical stabilisation will depend fundamentally on the
most unstable point in the absolute spectrum. Therefore we calculated the absolute
spectrum of (2) for a range of values of k and V . In every case, the most unstable points
in the absolute spectrum were branch points, and in our subsequent calculations we will
assume that this property holds. Calculations of the most unstable points in the absolute
spectrum then reduces to a straightforward solution of polynomials. Elimination of λ

from (5a) and (5b) gives a sixth order polynomial in ν. For each of the six roots, we
calculate the corresponding λ. We then substitute this λ value back into D(λ, ν) = 0,
giving a quartic polynomial for ν. Two of the roots of this quartic will be the repeated
root for ν that has already been calculated; a comparison of the real parts of this
repeated root and the real parts of the other two roots enables us to determine whether
or not the repeated roots are ν2 and ν3, which is the condition for the branch point to
be in the absolute spectrum.
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Fig. 3 Plots of the generalised absolute spectrum for b = 3, k = 9 and two different values of the velocity
V . The green solid line is the absolute spectrum and small green disks represent its branch points. The
absolute spectrum contains all temporal eigenvalues such that the corresponding spatial eigenvalues satisfy
Re[ν2] = Re[ν3]. We show as a red dashed line those λ’s characterised by Re[ν1(λ)] = Re[ν2(λ)]; branch
points of this set are shown as red filled squares. In both cases, the right-most points in the absolute spectrum
are branch points. The blue solid line and blue disks are the remainder of the generalised absolute spectrum
and its branch points, for which Re[ν3(λ)] = Re[ν4(λ)]. The top panel corresponds to V = 0.01 and the
bottom one corresponds to V = 2. Note that for V = 0.01, four of the six branch points belong to the
absolute spectrum, and the most unstable of these (a complex conjugate pair) are in the right half plane: the
steady state is absolutely unstable. In the V = 2 case however, only two of the branch points belong to the
absolute spectrum and they are in the left half plane: the solution is absolutely stable. The inserts show details
of behaviour near branch points for V = 0.01; the range on the vertical axis is −0.035 < I m(λ) < 0.035
for the top insert and −1 < I m(λ) < 1 for the bottom insert (colour figure online)

3 Calculating the extent of dynamical stabilisation

We denote by λmax the most unstable point in the absolute spectrum of (u∗, v∗).
Figure 4 illustrates Re[λmax ] as a function of the reference frame velocity V for
one value of k; the qualitative form remains the same as k is varied. In particular,
Re[λmax ] > 0 on an interval of V values, say −V ∗ < V < V ∗, with Re[λmax ] < 0
otherwise. Note that Re[λmax ] is symmetric about V = 0: this is due to the directional
symmetry of (1). The plot of Re[λmax ] against V provides the basis for our calculation
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Fig. 4 Plot of Re[λmax (V )], the maximum growth rate of perturbations to the steady state in a frame of
reference moving with velocity V , for b = 3.0, k = 8.0. Here cinv > V ∗ which means that the invasion
front is moving faster than all growing linear modes so that dynamical stabilisation will occur for these
parameter values

of the width of the stabilised region. Our arguments follow directly those used to
calculate the width of wavetrain bands in Sherratt et al. (2009), Smith and Sherratt
(2009), and the description below is deliberately brief. The coexistence steady state that
develops immediately behind the invasion front will be perturbed by the front. We make
the reasonable assumption that this perturbation contains all unstable linear modes.
To understand the subsequent behaviour of these perturbations, we will visualise the
dynamics in the space-time plane (Fig. 5). We denote by (x∗, t∗) a point on the invasion
front. When t increases above t∗, the perturbations applied to the steady state (u∗, v∗)
by the invasion front spread out in time and space, growing along all rays x = x∗ +
(t − t∗)V with V between −V ∗ and V ∗. In order to calculate precisely the width of
the stabilised region, we must give a precise definition of its ends. The right-hand end
is simply the invasion front, and we define the left-hand end to be the point at which
perturbations applied to the steady state (u∗, v∗) by the invasion front first become
amplified by a factor F . This occurs at time tcri t (V ) = t∗ + log(F)/Re[λmax (V )],
with the corresponding location being xcrit (V ) = x∗ +V log(F)/Re[λmax (V )]. Note
that F > 0 can be chosen arbitrarily, but we will show that the parameter dependence
of the width of the stabilised region is independent of the choice of F . Figure 5 shows
an example of the curve (xcrit (V ), tcri t (V )), (−V ∗ < V < V ∗). The left-hand edge
of the stabilised region occurs at the point on this curve that is closest to the invasion
front x = x∗ + (t − t∗)cinv , where cinv is the invasion speed.

A straightforward calculation shows that this closest approach occurs when V
satisfies

(V − cinv)Re[νmax (V )] = Re[λmax (V )], −V ∗ < V < V ∗. (6)
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Fig. 5 An illustration of the argument on which our calculation of the width of the stabilised region is
based. The thick blue curve is a plot of calculated values, not a sketch, and the parameters are given by (1e)
with b = 1.2, k = 9.0 and F = 2; this value of F is very much smaller than any suitable real value, but is
useful for illustration purposes. Then, if we view the point (x∗, t∗) = (1, 2) in a frame of reference moving
at a velocity V , with −V ∗ < V < V ∗, perturbations grow and spread out in time and space, reaching
the point (xcri t , tcri t ) (blue curve) when their amplitude has doubled. Perturbations moving at the velocity
Vstab reach the edge of stabilised region closest to the invasion front (colour figure online)

Numerical calculations indicate that (6) has a unique solution for V , which we denote
by Vstab. Figure 8 shows a plot of Vstab and V ∗ as functions of k. The steady state
(u∗, v∗) changes stability at kmin � 7.67 and below this value, V ∗ and Vstab are not
defined. As k increases from 7.67, V ∗ and Vstab both increase from zero. Initially V ∗ >

Vstab > 0 and at kmax = 9.027, V ∗ = Vstab = cinv . For k > 9.027, perturbations
are able to outrun the invasion front, and there is no stabilised region. Note that the
condition V ∗ > Vstab for dynamical stabilisation to occur matches the condition of
Petrovskii et al. (2001), which is based on linear spreading speeds, because of the
known relationship between spreading speeds and absolute stability (van Saarloos
2003). For 7.67 < k < 9.027, perturbations travel more slowly than the invasion and
dynamical stabilisation occurs (Fig. 6).

The width of the stabilised region is the spatial distance between the invasion front
and (xcrit (Vstab), tcri t (Vstab)), which can be simplified to

L(k) = −1

Re[νmax (Vstab)] log(F) (7)

(see Sherratt et al. 2009 for more details). Of course, this width depends on the arbitrary
factor F , but crucially all of the parameter dependence decouples from F and appears
only in the coefficient

W(k) = −1

Re[νmax (Vstab)] . (8)
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Fig. 6 Plots of V ∗, Vstab and cinv against k for b = 3.0; a, Du , Dv are given by (1e). At k = kmin , the
coexistence steady state becomes unstable. This value of k is also characterised by V ∗ = Vstab = 0. V ∗
and Vstab increase with k until k = kmax . For k ∈ (kmin , kmax ), we have Vstab < V ∗ < cinv , so that the
unstable steady state is dynamically stabilised for these k values. The Vstab curve folds at k = kmax while
intersecting both the V ∗ and cinv curves. For k > kmax , the velocity Vstab does not exist as Eq. (6) has no
solution. Meanwhile V ∗ has now become bigger than cinv : there are unstable linear modes that overtake
the invasion and dynamical stabilisation will no longer occur

As a test of our theory, we estimated the width L(k) of the stabilised region for
a number of different values of k in numerical simulations of invasion in (1), and
compared these with the calculated values of W(k). To estimate L(k) in simulations,
we need to determine the left- and right-hand edges of the stabilised region. Keeping
in mind that the left-hand end is the first point behind the stabilised region, we define
it as the point x1 at which A = √

(u − u∗)2 + (v − v∗)2 equals a small value, taken
as 0.005. We choose the right-hand edge to be the point x2 on the invasion front that
is halfway between the coexistence steady state and the prey only steady state; that
is the point at which A = 1

2

√
(1 − u∗)2 + v∗2. We estimate both x1 and x2 by linear

interpolation between numerical grid points; of course they are both time-dependent.
Now recall that the width of the stabilised region is a function of time and has a growing
and then a constant phase. We calculated the average value of x2 − x1 over the time
interval of (8000, 11000), which is during the constant phase for all the parameter sets
we considered. Numerical details are the same as in Fig. 1 except that we now take a
larger domain (0, 8000) and that the time variable varies between 0 and 11000.

Figure 7a plots the value of L(k), estimated in this way, against calculated values for
W(k). Our theory predicts that these should be linearly related, and this is confirmed
by the figure. The slope of the best fit line provides an estimate for log(F). Note
that the best fit line has a small but non-zero (positive) intercept: this corresponds
to the edges of the numerically estimated stabilised region being excluded from the
theoretical calculations. Combining the best fit line with our formula (8) for W(k),
we can predict actual widths of the stabilised region. Figure 7b demonstrates the very
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Fig. 7 a Plots the numerically calculated width of the stabilised region L(k) against W(k) (red dots); the
straight line is the best fit line, given by linear regression. In b we plot our measured width against the
parameter k ∈ [kmin , 8.8]. The blue curve shows the calculated width versus k; we obtained the calculated
width as a function of W(k) using the best fit line in (a) (colour figure online)

good comparison between these predictions and the stabilised width measured from
simulations, across a wide range of values of k.

4 Point-to-limit cycle invasions

For smaller values of b, the behaviour described in Sect. 3 is augmented by an additional
complicating factor. To describe this, we consider in detail the case of b = 1.2, with
k varying and the other parameters given by (1e). Calculations as in Sect. 3 show that
kmax = 14.56 (Fig. 8). However, in numerical simulations, dynamical stabilisation is
only observed for k between kmin = 7.67 and about 10.5; above this, spatiotemporal
oscillations occur immediately behind the invasion front (illustrated in Fig. 9d). Insight
into this is given by comparing space-time plots for values of k above the upper limit
for dynamical stabilisation, for b = 3.0 and b = 1.2 (Fig. 10). In both cases there are
spatiotemporal oscillations immediately behind the invasion front. For b = 3.0 these
are somewhat disordered, and move in the opposite direction to the invasion. However,
for b = 1.2, they have the form of periodic travelling waves moving with the invasion
front; further back, there is a transition to more disordered oscillations moving in the
opposite direction. Thus for b = 1.2, the invasion itself consists of a point-to-periodic
orbit connection in the travelling wave ODEs, rather than the heteroclinic connection
seen for b = 3.0. When the invasion is of the former type, the solution does not
approach the coexistence steady state, and thus dynamical stabilisation of this steady
state cannot occur.

General theory (Kopell and Howard 1973) implies that in the travelling wave ODEs
corresponding to (1a–d), for k > kmin , the coexistence steady state undergoes a Hopf
bifurcation as the wave speed c > 0 is increased, at c = cH B say. Calculations of the
eigenvalues at this steady state show that they all have negative real parts for c > cH B ,
implying that there cannot be an invasion front of heteroclinic connection type, and
numerical simulations indicate that there is instead a point-to-limit cycle invasion
front. Note that the existence of this type of front solution of (1a–d) has been proved
in Dunbar (1986) for Du = 0 and in Fraile and Sabina (1989) for Du > 0 sufficiently
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this Hopf bifurcation occurs, as a function of k. Note that the intersection between the cH B and cinv curves
occurs at a value kH B � 11.1, which is less than kmax
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Fig. 9 Numerical simulations of invasion in (1) for b = 1.2 and four different values of k. The other
parameters are given by (1e). d Corresponds to k = 11.5; even though this value is less than kmax , there
is no dynamical stabilisation. Initial conditions, boundary conditions and the numerical method were as in
Fig. 2
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Fig. 10 Plots of prey densities for t ∈ [0, 1070] with x ∈ [0, 4000]. The left panel corresponds to b = 3.0,
k = 9.5 and shows that the waves behind the invasion front are moving in a direction opposite to that of the
front. However in the right panel (b = 1.2, k = 15) we see the waves initially moving in the same direction
as the front; further back there is a transition to waves moving in the opposite direction. Numerical details
are the same for Fig. 1, and the other parameter values are given by (1e)
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Fig. 11 a The variation in the width L(k) in numerical simulations of (1) with the width coefficient W(k)

(red dots); the straight line is the best fit line, given by linear regression. In b we plot our measured band
width against the parameter k ∈ [kmin , 10.5]. The blue curve shows the calculated bandwidth versus k blue
(colour figure online)

small. For the case b = 3.0 considered in Sect. 3, cH B is significantly greater than cinv

for all values of k ∈ [kmin, kmax ], so that this change in the form of the invasion front
does not have any effect on dynamical stabilisation. However for b = 1.2, cH B < cinv

for k > 11.1 (see Fig. 8), implying that dynamical stabilisation will only occur for
kmin < k < kH B = 11.1. Here we define by kH B the value of k at which cH B = cinv .
In fact, as mentioned earlier, we observe stabilisation only up to about k = 10.5.
A close look at numerical solutions for k ∈ (10.5, 11.1) reveals that the solution
behind the invasion front decays relatively slowly and does not get sufficiently close
to the coexistence steady state before giving way to the spatiotemporal oscillations.
For values of k in the range kmin < k < 10.5, there is a very close agreement between
the predicted width of the stabilised region, calculated as described in Sect. 3, and the
width measured in numerical simulations (Fig. 11).
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5 Extension to other parameter values

The main results of this paper are the determination of the parameter region in which
dynamical stabilisation occurs, and of the parameter dependence of the width of the
stabilised region. For k < kmin the invasion consists of a simple transition wave. When
kmax < kH B , dynamical stabilisation occurs for k ∈ (kmin, kmax ); for k just above
kmax there are spatiotemporal oscillations immediately behind the invasion front, in
the opposite direction. When kmax > kH B , dynamical stabilisation occurs for most
of the interval kmin < k < kH B ; it is lost for k just below kH B because of the slow
decay behind the invasion front, as discussed in Sect. 4. For k just above kH B there are
spatiotemporal oscillations immediately behind the invasion that move with the same
speed and direction as the invasion. Our results indicate that there is a critical value of
b ∈ (1.2, 3.0) at which there is switch between these behaviours. We calculated this
critical value by first computing kH B and cH B(kH B) = cinv(kH B) for a range of b
values; this can be done by numerical continuation of the travelling wave equations.
For this grid of b values, we then calculated V ∗(kH B) using the methods described
in Sect. 3; recall that (−V ∗, V ∗) is the range of velocities for which the coexistence
steady state has growing linear modes. Now kmax is defined by V ∗ = cinv . Therefore
kmax > kH B ⇔ V ∗(kH B) < cH B(kH B). Figure 12a shows a plot of V ∗(kH B)

and cH B(kH B) against b; in Fig. 12b, we see how the upper limit of the extent of
dynamical stabilisation varies with b by plotting kH B and kmax as functions of b. The
curves cH B(kH B) and V ∗(kH B) in Fig. 12a, and kH B and kmax in Fig. 12b, intersect
at the critical value of b = 1.758.

Other values of b do not give any behaviour that differs qualitatively from that
described for b = 1.2 and b = 3.0, and the methods that we have presented can be
used to determine the occurrence and extent of dynamical stabilisation. As an example,
Fig. 13 illustrates the variation in the width coefficient W , which is proportional to
the width of the stabilised region, for 1.2 < b < 2.1 and 7.8 < k < 8.7. Dynamical
stabilisation occurs throughout this parameter region, with no point-to-periodic waves,
and the width of the stabilised region is a decreasing function of both b and k.
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Fig. 12 a Shows plots of cH B (kH B ) (dotted red) and V ∗(kH B ) (solid green) against b. The two curves
intersect at 1.758 as do the curves kH B (dotted red) and kmax (solid green) shown on (b). For values of
b below this, kH B < kmax implying a point-to-periodic cycle invasion front. However, kH B > kmax for
b > 1.758, meaning that there is a heteroclinic connection behind the invasion front (colour figure online)
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Fig. 13 On panel (a), we show a three-dimensional plot of the width coefficient W as a function of b and
k. Featured on panel (b) are contour plots of W at levels 20, 30, 50, 70 and 100 in the k, b plane. The
plots are based on calculations of W , using the method described in the main text, for 1.2 < b < 2.1 and
7.8 < k < 8.7

6 Application to Vole–Weasel interactions

As an example application of our approach to a specific ecological system, we consider
the invasion of Microtus voles by their specialist predator the least weasel (Mustela
nivalis). Multi-year cycles in the abundence of these voles is a classic and much-studied
aspect of the ecology of northern Fennoscandia. The cause of these cycles has been the
subject of extensive debate, but a significant volume of data from predator exclusion
experiments now points to predation as a leading cause of vole cycling (Korpimäki and
Norrdahl 1998; Korpimäki et al. 2002). However it should be noted that vole cycles
in other locations, such as Northern UK, appear to result from different mechanisms
(Graham and Lambin 2002; Oli 2003; Reynolds et al. 2012).

Parameterisation of the equations (1a–d) for the case of the vole-weasel interaction
in Northern Fennoscandia is made possible by the large volume of relevant field and
laboratory data. The reproductive rate of Microtus voles is relatively uniform across
different locations in Northern Europe. We take the maximum per capita birth rate to
be 3.3 year−1, following Sherratt et al. (2002). This is based on an average litter size
of 5, with six litters per season in optimal conditions, and with early-born females
breeding themselves in the same season (Dyczkowski and Yalden 1998; Norrdahl and
Korpimäki 2002). However it should be noted that other authors have proposed higher
estimates (Turchin and Hanski 1997).

For weasels, the corresponding numbers are a mean litter size of 6, with two lit-
ters per season when prey is abundent, and with the females from the first litter
breeding themselves in the same season (King 1989; McDonald and Harris 2002).
This implies a maximum annual productivity of 30 per adult female weasel, and
hence a maximum per capita productivity of 15 year−1. The corresponding per
capita birth rate is loge 15 = 2.7 year−1. Annual mortality for weasels is 77.5 %
(King 1989), implying a mean annual death rate of − loge 0.225 = 1.5 year−1.
Using standard nondimensionalisation rescalings for the Rosenzweig-MacArthur
model (e.g.Sherratt et al. 2002), these estimates imply a = 1.8 and b = 1.2.
Given these values, the dimensionless parameter k can be estimated based on
the amplitude of the vole population cycles. For a = 1.8 and b = 1.2, the
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Fig. 14 Panel (a) plots (in red dots) the width L (in km) of the stabilised region against the dispersal ratio
δ with the other ecological parameters fixed as stated in Sect. 6. For each δ in the range (2, 8), we calculated
L in numerical simulations of 1 by averaging the widths measured on PDE simulations on the domain (0,
8000) at times between 1000 and 3000 as described in Sect. 3; according to Sherratt et al. (2002), this time
range corresponds to a period of 303–909 years after the beginning of invasion. The dimensionless width
obtained is then converted into kilometers through multiplication by a factor of 0.246 (see Sherratt et al.
2002). We also calculated the coefficient W as function of δ then fitting the converted width L with W
through linear regression, we plotted the obtained expression of the width in terms of W as a function
of δ (blue curve). Panel (b) shows cH B and V ∗ as functions of δ. This indicates that for δ in the range
considered, when k rises above kH B (δ), point-to-periodic invasions occur and there is no stabilised region;
for all δ ∈ (2, 8), kH B (δ) is bigger than 4.5, our chosen k value for vole-weasel simulations (colour figure
online)

kinetics of (1a–d) have a Hopf bifurcation at k = 3.5, and the cycle ampli-
tude increases monotonically with k above this value. Field data shows that vole
cycle amplitude varies significantly between locations in Northern Fennoscandia
(Turchin 2003, §12.2), and we take k = 4.5; this implies a ratio of maxi-
mum to minimum vole densities of about 21, which is a reasonable representative
value.

In comparison with the large volume of data on demographic parameters, there
is very limited information on vole dispersal. The mark-capture data of Sherratt
et al. (2002) suggests 0.2 km2 year−1 as a reasonable estimate of the vole diffu-
sion coefficient. For weasels we are not aware of any relevant data, although the
diffusion coefficient will certainly be larger than that for voles. Therefore we var-
ied the dispersal ratio δ (>1) with a = 1.8, b = 1.2 and k = 4.5 fixed. Fig-
ure 14a shows that the width of the stabilised region is an increasing function of
δ, and that even for the relatively modest estimate δ = 2, the width is signifi-
cant in comparison to the length scale of typical vole habitats in Northern Europe
(10’s of km). This implies that the dynamical stabilisation phenomenon would be of
major significance in the aftermath of an invasion of Microtus voles by least weasels.
Figure 15a–c show simulations of invasions for δ = 2, 5 and 8, which confirm these
trends.

Dynamical stabilisation occurs for all of the values of δ considered in Figs. 14a
and 15a–c; in particular there are no point-to-periodic waves. This is confirmed in
Fig. 14b, which shows that cH B is greater than V ∗ throughout this parameter region.
However, this result depends on the value of k, which is expected to vary between
geographical locations in view of the observed variations in cycle amplitude. To illus-
trate this, we show in Fig. 15d a simulated invasion for k = 5, with other parameters
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(c) δ=8.0, k=4.5
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Fig. 15 PDE simulations for various values of δ. For panels (a)–(c), the parameter k is fixed at 4.5 while
δ is respectively 2, 5 and 8. These pictures show that the width of the stabilised region grows with the
dispersal ratio δ, as predicted by Fig. 14a. Panel (d) corresponds to a simulation for δ = 8 with k = 5
which is slightly above the upper limit of the extent of stabilisation (kH B = 4.945); the slow decay seen on
panel (c) behind the invasion front has now given way to oscillations of relatively bigger amplitude. Initial
conditions, boundary conditions and the numerical method are the same as in Fig. 2

as in Fig. 15c. In this case there is a point-to-periodic invasion, and thus no dynamical
stabilisation.

7 Future mathematical challenges

We have focussed on the existence and extent of the coexistence steady state as a spa-
tiotemporal transient. The invasion of a prey population by predators can also involve
other spatiotemporal transients. In many cases, periodic travelling waves develop,
moving in the opposite direction to the invasion, and in some cases these appear in a
moving band (Fig. 2c, d). Additionally the periodic travelling waves moving with the
invasion for k > kH B typically occur in a spatiotemporally transient band (Figs. 9d,
15d). We expect that both of these phenomena could be investigated using the same
methodology as in this paper. However, there is one very fundamental practical diffi-
culty: there is currently no systematic algorithm for computing the absolute spectrum
for a non-constant solution of a partial differential equation. There is no particular dif-
ficulty in performing a numerical continuation of the absolute spectrum; the problem
lies in the identification of appropriate starting parts (Rademacher et al. 2007). Our
work highlights the importance of research on the calculation of the absolute spectrum
for non-constant solutions.
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