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Pattern selection and hysteresis in the
Rietkerk model for banded vegetation
in semi-arid environments

Ayawoa S. Dagbovie and Jonathan A. Sherratt

Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University,
Edinburgh EH14 4AS, UK

Banded vegetation is a characteristic feature of semi-arid environments.

It occurs on gentle slopes, with alternating stripes of vegetation and bare

ground running parallel to the contours. A number of mathematical

models have been proposed to investigate the mechanisms underlying

these patterns, and how they might be affected by changes in environmental

conditions. One of the most widely used models is due to Rietkerk and

co-workers, and is based on a water redistribution hypothesis, with the

key feedback being that the rate of rainwater infiltration into the soil is an

increasing function of plant biomass. Here, for the first time, we present a

detailed study of the existence and stability of pattern solutions of the

Rietkerk model on slopes, using the software package WAVETRAIN (www.

ma.hw.ac.uk/wavetrain). Specifically, we calculate the region of the

rainfall–migration speed parameter plane in which patterns exist, and the

sub-region in which these patterns are stable as solutions of the model par-

tial differential equations. We then perform a detailed simulation-based

study of the way in which patterns evolve when the rainfall parameter is

slowly varied. This reveals complex behaviour, with sudden jumps in pat-

tern wavelength, and hysteresis; we show that these jumps occur when

the contours of constant pattern wavelength leave the parameter region

giving stable patterns. Finally, we extend our results to the case in which

a diffusion term for surface water is added to the model equations.

The parameter regions for pattern existence and stability are relatively

insensitive to small or moderate levels of surface water diffusion, but

larger diffusion coefficients significantly change the subdivision into stable

and unstable patterns.
1. Introduction
In 1950, the geologist William MacFadyen published aerial photographs

taken over British Somaliland (now northern Somalia) which provided

the first documented evidence of striped patterns of vegetation alternating

with bare ground [1]. It is now known that self-organized vegetation

patterns are a characteristic feature of semi-arid regions in many parts of

the world, particularly Africa [2,3], Australia [4,5] and North America

[2,6,7]. On slopes, these patterns consist of stripes running parallel to the

contours [8–11]. Many different plant types can be involved in this

‘banded vegetation’, and trees often interact with grasses within the

bands [12]. Wavelengths are typically in the range 50–300 m (see table 2

of [8]).

There are no laboratory replicates of banded vegetation, and fieldwork

is difficult because of the remoteness and physical harshness of potential

study sites. Therefore, most empirical work has been restricted to remote

sensing, most recently using satellite images. This has provided much valu-

able information; however, it has clear limitations, for instance being unable

to make predictions about how patterns might change in response to
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Table 1. A list of the ecological interpretations of the various parameters in the Rietkerk model (1.1). We also list the units of the parameters and the values
used in this paper; apart from R (which we vary), these are the values given in Rietkerk et al. [37]. Note that there is a typo in the units for gmax in [37]; the
correct units are given in table 1 of [36].

parameter value units interpretation

C 10 g mm21 m22 conversion of water uptake into new biomass

gmax 0.05 mm g21 m22 d21 maximum water uptake per unit of biomass

k1 5 mm half-saturation constant for water uptake

Dp 0.1 m2 d21 plant dispersal coefficient

a 0.2 d21 maximum infiltration rate

k2 5 g m21 saturation constant for water infiltration

W0 0.2 no units water infiltration rate without plants

rw 0.2 d21 specific rate of evaporation and drainage

Dw 0.1 m2 d21 diffusion coefficient of soil water

D 0.25 d21 per capita death rate of plants

n 10 m d21 advection coefficient for downslope water flow

R varied mm d21 mean rainfall
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environmental variations. In view of this, and also as a

result of the long space and time scales involved in veg-

etation pattern formation, mathematical models have

emerged as a key research tool. Early models involved

either cellular automata [13,14] or large systems of

coupled ordinary differential equations [15]. However, par-

tial differential equations are now established as the

dominant modelling framework. An early model of this

type that has been very influential was due to Klausmeier

[16] and is based on the empirical observation that in

semi-arid regions, the infiltration of rain water into the

soil is positively correlated with vegetation biomass

[8,17–19]. This results in greater water availability per

unit of biomass, and thus increased plant growth, at

higher vegetation densities—a positive feedback that has

the potential to generate spatial patterns [20]. Klausmeier’s

model [16] explores this potential in a mathematical fra-

mework consisting of coupled reaction–diffusion–

advection equations for plant biomass and water density.

This model and small extensions of it have been explored

in very great detail in both simulation-based research

[21–24] and analytical studies [25–32].

Although the Klausmeier model is a valuable tool, it is by

construction very simplistic. Perhaps its most pronounced

simplification is the use of a single water variable. In reality,

water dynamics in semi-arid regions are complex. Rainfall

contributes directly to surface water, which must then infil-

trate into the soil before becoming accessible to plants; and

water uptake within the soil is complicated by spatio-

temporal variability in rooting depth [33–35]. Most models

building on the Klausmeier equations take some account of

this complexity by including separate variables for soil and

surface water. An important example of this is the Rietkerk

model [36,37], which has been used as the basis for many

modelling studies of banded vegetation. The model involves

three variables: plant biomass P (gm22), soil water W (mm)

and surface water O (mm), which are functions of space x
(m) and time t (days). Note that although the model in
[36,37] is formulated in two space dimensions, our work is

restricted to one dimension. The equations have the form

biomass
plant @P

@t
¼ DP@

2P
@x2

zfflfflffl}|fflfflffl{dispersal
plant

þ Cgmax
W

W þ k1
P

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{growth
plant

� dP
z}|{loss
plant

, (1:1a)

water
soil @W

@t
¼DW@

2W
@x2

zfflfflfflfflffl}|fflfflfflfflffl{flow
soil water

þaO
Pþk2W0

Pþk2

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{of surface water
infiltration

�gmax
W

Wþk1
P

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{by plants
water uptake

� rwW
zffl}|ffl{drainage

and
evaporation

(1:1b)

and water
surface @O

@t
¼ n @O

@x|ffl{zffl}
downhill

flow

�aO
Pþ k2W0

Pþ k2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
of surface water

infiltration

þ R|{z}
rainfall

: (1:1c)

Table 1 lists the interpretation of the various parameters.

Infiltration of surface water into the soil is taken to be an

increasing function of plant biomass. As mentioned above,

this variation is observed empirically; it results from higher

levels of organic matter in the soil, and the alteration in soil

structure caused by the increasing density of roots. The uptake

of soil water by plants is assumed to have a Michaelis–

Menten-type dependence on soil water, and the plant

growth rate is assumed to be proportional to this uptake—

this is reasonable for a semi-arid environment where water

is the limiting resource. Soil water loss will occur due to

both evaporation and drainage (leakage), and for simplicity

these processes are assumed to be linear functions of water

availability and are combined into a single term. Rainfall is

assumed to be constant, but note that Guttal & Jayaprakash

[38] have performed a detailed modelling studying on an

adapted version of (1.1) that includes seasonal variation in

rainfall. The use of linear diffusion to model soil water flow

is deliberately simple; more detailed representations of

ground water flow are used in the models of von Hardenberg

et al. [39] and Meron et al. [40] for vegetation patterning.

For plant dispersal, diffusion is again used for reasons of

http://rsif.royalsocietypublishing.org/
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Figure 1. Plots against x of pattern solutions of (1.1) for R ¼ 1.05, 1.10
and 1.25 mm d21, showing plant density (red), soil water (green) and
surface water (blue). These solutions correspond to banded vegetation pat-
terns. As R increases from 1.05 to 1.25 mm d21, the width of the
vegetation bands grows larger and the bare interbands become narrower.
Our starting solutions were set at the vegetated steady state (1.2), perturbed
randomly by +5%. The model (1.1) was solved numerically on the domain
0 , x , 500 up to t ¼ 200 000 days for R ¼ 1.05 mm d21 and t ¼ 800
000 days for R ¼ 1.1 and 1.25 mm d21. These long solution times allow
transients to fully dissipate. In each case, the patterns move in the uphill
( positive x) direction, and we estimated the migration speed to be
(a) 0.053 m d21, (b) 0.052 m d21 and (c) 0.039 m d21. We used a
semi-implicit finite difference method with periodic boundary conditions at
both ends; we chose a grid spacing of dx ¼ 0.5 and a time step
of dt ¼ 0.025 so that the CFL (Courant – Friedrichs – Lewy) number
ndt/dx ¼ 0.5. The standard criterion for numerical convergence in simple
reaction – advection equations is that the CFL number is less than 1.
(Online version in colour.)
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simplicity; a more realistic non-local dispersal term is used in

the model of Pueyo et al. [41]. The one-dimensional spatial

coordinate x runs in the uphill direction, so that the advection

term in (1.1c) represents the downhill flow of surface water.

Again some subsequent models have used more detailed

terms; in particular, in footnote 18 of [42], Gilad et al.
derive a representation of surface water flow using shallow

water theory.

Most previous studies using the Rietkerk model (1.1) have

considered pattern formation on flat ground, but in this paper

we will focus on banded vegetation patterns on slopes. We

will vary the rainfall parameter R, and we fix all other par-

ameters at the values given in Rietkerk et al. [37], which are

listed in table 1. The parameter d merits specific mention

because Rietkerk et al. [37] give a range of values: between

0 and 0.5 d21. This is because the plant loss term includes

any herbivory, the extent of which will vary greatly between

sites. We fix d in the middle of this range. For the rainfall

parameter R, Rietkerk et al. [37] again give a range of

values: between 0 and 3 mm d21.

The model (1.1) has two spatially uniform steady states: a

‘desert’ state

(P, W , O) ¼ 0,
R
rw

,
R

(aW0)

� �

and a ‘vegetated’ state (Ps, Ws, Os), where

Ws ¼
dk1

Cgmax � d
, Ps ¼

R� rwWs

gmaxWs
(Ws þ k1)

and Os ¼
R
a

Ps þ k2

Ps þ k2W0
: (1:2)

For the parameter values given in table 1, these two steady

states meet in a transcritical bifurcation at R ¼ 1 mm d21.

For R . 1, the vegetated steady state is stable to homo-

geneous perturbations, whereas the desert steady state is

unstable. For R , 1, the desert steady state is stable, whereas

the vegetated steady state is unstable; also Ps , 0 for R , 1 so

that this state is not ecologically relevant.

Patterned solutions of (1.1) arise for R . 1 mm d21

when the vegetated steady state is unstable to spatially

inhomogeneous perturbations. This is illustrated in figure 1,

which shows large time solutions for R ¼ 1.05, 1.1 and

1.25 mm d21 on a domain of length 500 m with periodic

boundary conditions and with initial conditions consisting of

small inhomogeneous perturbations applied to (Ps, Ws, Os).

In each case, a periodic spatial pattern develops. The patterns

are not stationary: rather they move at a constant speed in the

uphill direction. Mathematically, this movement is a conse-

quence of the advection term in (1.1c). In the field, such

movement is indeed observed in many cases (see [2] and

table 5 of [8]) and is due to moisture levels being higher on

the uphill edge of vegetation bands than on their downhill

edge; this is reflected in lower levels of plant death and

higher seedling densities [43,44]. However, some field studies

also report stationary banded patterns [2,45,46]. This

has been attributed to complicating factors including inhi-

bition of seed germination by long-term changes in soil

structure in non-vegetated regions [45], and preferential dis-

persal of seeds in the downslope direction, due to transport

in run-off [47,48].

http://rsif.royalsocietypublishing.org/
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Figure 2. Plots of the region in the R – c plane in which pattern solutions exist. (a) The full region, which is bounded by a locus of Hopf bifurcations of the
vegetated steady state ( plotted in orange) and a locus of homoclinic solutions ( plotted in red). (b) A close-up for small c. This shows that there is a small
region to the right of the Hopf bifurcation locus in which patterns exist. This region is bounded by a locus of folds ( plotted in blue) and is too small to be
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Figure 3. An illustration of the part of the R – c parameter plane giving
stable patterns, which is shaded. The locus of Hopf bifurcations is plotted
in orange, the stability boundary in green, a homoclinic locus in pink and
the locus of folds in blue. The homoclinic locus is actually an approximation,
given by the locus of periodic travelling waves of fixed period 1000 m. We
also plot in grey the locus of waves of fixed periods 100, 250 and 500 m. To
improve clarity, we omit from this plot a small closed loop of fold loci, which
is shown in figure 6. The units of rainfall are millimetres per day, and speed
is measured in metres per day. (Online version in colour.)
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2. Existence and stability of pattern solutions
The uphill migration of pattern solutions means that they are

periodic travelling waves, with the form P(x, t) ¼ ~P(z),

W(x, t) ¼ ~W(z) and O(x, t) ¼ ~O(z), where z ¼ x 2 ct and c is

the migration speed. Substituting these solution forms into

(1.1) gives a fifth-order system of travelling wave ordinary

differential equations. Pattern solutions of (1.1) correspond

to limit cycle (periodic) solutions of these equations. Note

that our restriction to one space dimension means that the

patterns we consider would correspond to stripes running

parallel to the contours in a two-dimensional setting. The

specification in table 1 fixes all of the parameters in the travel-

ling wave equations except two: the rainfall R and the

migration speed c. Our initial objective is to determine the

region of the R–c parameter plane in which patterns exist.

General theory implies that this region will be bounded by

segments of three types of loci: Hopf bifurcations, homoclinic

(infinite period) solutions and folds in a limit cycle solution

branch. We calculated these loci using WAVETRAIN (www.ma.

hw.ac.uk/wavetrain) [49], which is a software package

based on numerical continuation [50] that is specifically

designed for the study of periodic travelling wave solutions

of partial differential equations.

Figure 2 illustrates the region of the R–c plane in which

patterns exist, determined using WAVETRAIN. It extends to

values of the migration speed c that are much too large for

ecological realism (up to 14 m d21) and are also very much

larger than those observed in simulations such as figure 1,

for which we measured speeds less than 0.1 m d21 for each

of the three values of R. This led us to consider the stability

of patterns as solutions of (1.1), which can also be studied

using WAVETRAIN. Rademacher et al. [51] proposed a method

for determining the stability of periodic travelling waves

by numerical continuation of the spectrum, and this is

implemented in WAVETRAIN [52]. Using this approach, we

found that patterns are unstable in almost all of the region

illustrated in figure 2, with stable patterns only occurring

for c less than about 0.2 m d21. Therefore, we focused atten-

tion on that part of the parameter region. We found that there

were stable patterns for R between about 0.4 and 1.4 mm d21,

and c between about 0.02 and 0.2 m d21. At the lower
boundary of this region of stable patterns, there is a stability

change of Eckhaus (sideband) type, meaning that there is a

change in the sign of the curvature of the spectrum at the

origin. This stability boundary is a locus of Eckhaus points,

which can again be traced using WAVETRAIN [52]. The R–c par-

ameter region giving stable patterns is illustrated in figure 3,

in which we also plot several contours of fixed pattern wave-

length. This division of the parameter plane into regions

giving stable and unstable patterns is of key importance in

applications, because only stable patterns will be observed

http://www.ma.hw.ac.uk/wavetrain
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as spatially extensive model solutions, although ‘convectively

unstable’ patterns can arise as long-term spatio-temporal

transients (see §5).

To consider the parameter region illustrated in figure 3 in

more detail, it is helpful to consider the solutions as R varies,

with the migration speed c fixed. For values of c above

about 0.037 m d21, and also below about 0.015 m d21,

the pattern solution branch connects the Hopf bifurcation at

R � 1.25 mm d21 to the homoclinic (infinite period) solution

at the left-hand edge of the parameter region giving patterns.

For smaller values of c, the Hopf bifurcation is subcritical,

meaning that the solution branch initially proceeds in the

direction of increasing R and then folds. The locus of these

folds forms the boundary of the parameter region in which

patterns exist: to the right of this locus there are no patterns.

Figure 4 shows detail near the fold for c ¼ 0.04 m d21

and includes plots of the spectra for the two different patterns

that coexist at a single value of R. The solutions with larger/

smaller period are unstable/stable, respectively. Thus as one

moves along the solution branch, there is a change in stability

at the fold.
For c between about 0.015 and 0.037 m d21, the structure

is more complicated. There is then a solution branch con-

necting two homoclinic loci, which folds just beyond the

right-most homoclinic locus: the fold and homoclinic loci

are very close and cannot be resolved in figure 3. There is

also a separate solution branch that emanates from the

Hopf bifurcation at R � 1.25 mm d21. This branch has a snak-

ing form, with a tortuous variation in the period (figure 5).

Snaking solution branches have been studied in great detail

for localized patterns in the Swift–Hohenberg equation

[53,54]; in that context, additional peaks are added to the pat-

tern pulse as one moves up the twists of the snaking branch. By

contrast, the snaking branch shown in figure 5 consists entirely

of periodic (i.e. non-localized) solutions. The part of the R–c
plane in which this snaking behaviour occurs is clarified by

plotting the loci of the initial folds along the branch, which

form a closed loop in the R–c plane (figure 6). The snaking

behaviour occurs for values of c within this loop. Calculation

of the spectra suggests that all of the many solutions along

these snaking branches are unstable as solutions of (1.1)

(figure 7). From these investigations, we conclude that the

http://rsif.royalsocietypublishing.org/
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snaking branches do not have ecological relevance, and those

patterns that are stable for c in this range (0.015–0.037 m d21)

lie on the solution branch connecting the two homoclinic loci.

Finally, we comment that for all values of c, there is also a

second solution branch that emanates from the part of the Hopf

bifurcation locus running through the middle of the pattern

region (at R � 1 mm d21). This branch is very tightly localized

in R and involves only patterns with extremely large periods

(see figure 5); it is therefore of no practical relevance.

The basic conclusion of this section is that there is a single

stable pattern solution in the shaded region of the parameter

plane in figure 3. There are additional patterns in some other

parts of this region, but they are all unstable. This information

is of considerable value in understanding and interpreting

the results of model simulations. To illustrate this, we will

consider in §3 the way in which the vegetation patterns pre-

dicted by (1.1) change as the rainfall parameter is gradually

varied. We will show that there are abrupt changes in pattern

wavelength which can be explained by the results in figure 3.
3. Pattern evolution for variable rainfall
The model idealization of constant parameter values is of course

a simplification. In reality, vegetation dynamics are strongly

affected by environmental changes, and as a case study we con-

sider the response to variations in rainfall. We performed a

series of long numerical simulations on a domain with periodic

boundary conditions. We chose a wavelength compatible with

these boundary conditions, i.e. (domain length)/N for some

integer N. As an initial condition, we used a pattern of this

wavelength (a mode N pattern). To reduce computation time,

we chose an initial value of R such that the pattern is relatively

close to the stability boundary, on the stable side; our results are

not sensitive to the initial choice of R. We calculated the initial

pattern using WAVETRAIN. We solved for 20 000 days, which is

about 55 years. We then made a small change in R and solved

for another 20 000 days. We repeated this process, recording
the pattern speed and wavelength immediately before each

change in R. We varied the increments in R slightly in order

to improve the clarity of the results. Note that we do not add

noise or any other external perturbation when we change the

value of R. Typical results are shown in figure 8, for two differ-

ent initial values of R. As R varies, the pattern remains on the

period contour until this crosses the stability boundary, when

it jumps to a new value. Further changes in R cause the pattern

to remain on the new period contour, even when the variation in

R is reversed. Simulations starting with patterns of other mode

numbers N give similar results.

These results imply that the pattern wavelength depends not

only on environmental parameters, but also on their values at

previous times. Hysteresis between patterned vegetation and

bare ground has been noted in a number of previous modelling

papers [9,39,40]. Our results show a different type of hysteresis,

between patterns of different wavelength. This type of history-

dependence has been noted previously in simulations of the

Klausmeier model for banded vegetation [21,55]. Its occurrence

in the more realistic Rietkerk model argues strongly that it

should also be expected in real ecosystems with banded veg-

etation if the patterns arise because of water redistribution,

because this mechanism is the common assumption underlying

both the Klausmeier and Rietkerk models. However, it should

be noted that our results are all for finite domains with periodic

boundary conditions, and their robustness to changes in bound-

ary conditions have not been investigated. There are very few

data against which the prediction of hysteresis can be tested,

because it would require measurements of wavelength at a

series of time points spanning several decades for a single

study site. There are a number of examples of such data for

two different time points, which have been collected to assess

the extent of uphill migration. Older studies of this type measure

pattern location relative to ground benchmarks [56,57] while

most recent research is based on satellite images [2,11]. The

only dataset that we are aware of involving multiple wavelength

estimates over several decades is in [58]. This paper studied

banded vegetation at several sites in Niger on six occasions

between 1950 and 1995. Rainfall varied significantly over this

period, and this was reflected in variations in the band : inter-

band width ratio, but the wavelength of the patterns remained

constant. This is consistent with our simulation results and

suggests that larger variations in rainfall would be needed to

induce shifts in pattern wavelength. Climate change means

that such large fluctuations in rainfall and other environmental

parameters are increasingly likely, and the high volume and

easy availability of satellite images will make any resulting

pattern change easy to detect over the coming years.

Our work shows that plots of parameter regions giving

patterns are very helpful for understanding results from

model simulations, with the boundary between stable and

unstable patterns being particularly significant. We do not

know how to predict the new wavelength that develops

when the current period contour crosses the stability bound-

ary. However, we have found that the new value depends

on the increments made in the rainfall parameter R. As an

example, the contour of period 50 m crosses the stability

boundary at R ¼ 0.705 mm d21. We started with a (stable) pat-

tern of wavelength 50 m (mode 10) with R ¼ 0.73 mm d21,

again on a domain of length 500 m with periodic boundary

conditions. Decreasing R to 0.61 mm d21 leads to a change

in wavelength, with a mode 3 pattern (wavelength 166.7 m)

developing between 5000 and 10 000 time units (days) after
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the change in R. If instead R is reduced to only 0.64 mm d21,

then the solution still resembles a mode 10 pattern after 20 000

time units (days). This is probably due to the very slow growth

of the unstable linear modes; a further decrease in R quickly

induces a shift to a mode 3 pattern. Conversely, when a

larger change in R is applied, to 0.57 mm d21, vegetation dis-

appears entirely to give the desert steady state, which is stable

for R , 1 mm d21. This is a significant result for real veg-

etation patterns, suggesting that sufficiently large changes in

the environment can eradicate vegetation even at rainfall

levels that are high enough to support it.
4. Model extension: lateral spread of
surface water

In (1.1), the flow of surface water is assumed to be due

entirely to the slope. The surface water variable O is

simply the height (mm) above ground of the surface water
layer, and if this varies in space then there will be flow

even on flat ground, due to pressure differences. In their

original model (which assumed flat ground), HilleRisLam-

bers et al. [36] included a diffusion term for O as a simple

representation of this process. When Rietkerk et al. [37]

applied the model to vegetation dynamics on a slope, they

removed the diffusion term and replaced it with the advec-

tion term that is in (1.1c), on the basis that downhill flow

will be dominant. We now consider the effect of including

the diffusion term, as well as the advection term, in the

equation for surface water. Thus, we add the term

DO@
2O/@x2 to the right-hand side of (1.1c). Again we restrict

attention to one space dimension.

With the other parameters fixed at the values given in

table 1, we investigated the existence and stability of pattern

solutions in the R–c plane as DO is varied (figure 9). Note

that the units of DO are m2 d21. For DO ¼ 1, there is no visible

difference from the DO ¼ 0 case (compare figure 9a with

figure 3). Increasing DO to 25 has little effect: just a slight
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shift in the stability boundary. However, for DO above about

35, there is a significant difference. The region in which per-

iodic travelling waves exist is little changed (at least within

the part of the R–c plane we are considering) but the stability

boundary changes shape completely. Note in particular that

the minimum speed for stable patterns decreases signifi-

cantly. At large DO, the advection term in the O equation is

dominated by lateral diffusion, so that our finding of stable

patterns that move very slowly is consistent with Rietkerk

et al.’s [37] original observation of stationary patterns on

flat ground.

As DO is increased from 50 to 100, the stability change on

one part of the stability boundary changes from Eckhaus to

Hopf type, meaning that it is associated with eigenvalues

away from the origin (see figure 10). This change has major

implications for the way in which patterns respond to chan-

ges in rainfall. In §3, we showed that as rainfall varies with

DO ¼ 0, patterns remain of constant wavelength until the

wavelength contour crosses a stability boundary (of Eckhaus

type), when there is an abrupt transition to a new wavelength.

Corresponding simulations for DO ¼ 100 show that there is no

such abrupt transition when the wavelength contour crosses

the stability boundary of Hopf type (figure 11). Instead, the

pattern remains approximately periodic with the same spatial

wavelength, but becomes oscillatory in time. Of course, the

pattern is intrinsically oscillatory in time, being a periodic tra-

velling wave, but there are now additional oscillations of

higher frequency. Figure 12a,b shows plots of plant density
against space and time when R ¼ 1.15 during the simulation

used for figure 11. The time course clearly involves a superpo-

sition of different oscillations, and this is clarified by

calculation of the power spectrum (figure 12c). The dominant

temporal period is that associated with the underlying peri-

odic travelling wave, which is equal to the wavelength

divided by the wave speed. The power series also shows a

second significant period, which corresponds approximately

to the most unstable part of the spectrum for the underlying

periodic travelling wave.
5. Discussion
Among the various mathematical models that have been pro-

posed for vegetation patterning in semi-arid environments,

the Rietkerk model [36,37] is probably the most widely

used, both as a research tool for ecologists and as the basis

for model extensions. Despite this very widespread usage,

all work on this model has to our knowledge been

simulation-based, except for the numerical bifurcation

diagrams presented in Rietkerk et al.’s [37] original paper.

Here, we have performed a systematic study of pattern exist-

ence and stability. We have also shown that these results

provide a straightforward explanation for the complex,

history-dependent changes in pattern that occur in response

to variations in rainfall. Finally, we considered the way in

which our results are affected by the inclusion of a diffusion

term in the equation for surface water. This showed that

abrupt changes in wavelength only occur when the wavelength

contour crosses stability boundaries of Eckhaus type. When the

surface water diffusion coefficient is sufficiently large, one of the

stability boundaries is of Hopf type, and a crossing of this

boundary results in a gradual change in pattern form and the

onset of more complicated temporal oscillations, rather than

an abrupt transition to a different pattern. All of our work is

in one space dimension, so that the patterns that we consider

correspond to stripes running parallel to the contours. Exten-

sion of our work to two space dimensions is an important

but challenging goal for future research.

A key aspect of our work is the classification of patterns

into those that are stable/unstable as solutions of (1.1). It is

important to emphasize that unstable patterns are not necess-

arily irrelevant for real instances of banded vegetation.

Unstable solutions of a partial differential equation subdivide

according to whether the instability is ‘convective’ or ‘absol-

ute’ [59–61]. In the former case, the solutions can occur as

persistent spatio-temporal transients [62,63]. Unfortunately,

the numerical procedures currently available to distinguish

convective and absolute instabilities apply only to very

special types of partial differential equation that do not

include (1.1). However, we can say definitely that both

types of instability do occur in the Rietkerk model. General

theory implies that patterns sufficiently close to the stability

boundary (and on the unstable side) will be convectively

unstable [59]. Moreover, if the spectrum of the pattern con-

tains an isola to the right of its unbounded part and in the

right-hand half of the complex plane, then it is known that

the solution is absolutely unstable; this was proved by Rade-

macher [64] and his paper contains a precise statement of the

result. Thus, for example, ‘wave 1’ in figure 4 is absolutely

unstable, as are all six solutions on the snaking branch

shown in figure 7. Numerical methodology for determining
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absolute stability is an active research area, and if suitable

methods become available then a systematic subdivision of

the parameter region giving unstable waves would be a

valuable study.
Vegetation patterns in semi-arid environments have been

studied for more than 60 years. Within the last 10–15 years,

it has become clear that they are just one example of self-

organized patterns at the landscape scale. A comprehensive

survey of such patterns is given in Rietkerk & van de

Koppel [65], and we discuss here a few examples. Many

savannah ecosystems comprise localized patches of trees in

a grassy background [66]. These patterns arise primarily

from interactions between rainfall and fire; the former is

often erratic and its impact depends on both soil structure

and local topography [67], while the frequency of fires has

a strong negative correlation with tree cover [68]. The result

is a complex and dynamically evolving vegetation structure

[69]. In peatlands, one commonly observes patterns of

ridges and hollows, with the latter sometimes containing

water pools [70–72]. The ridges contain a layer of aerobic

peat (the ‘acrotelm’) that contains peat-forming plants and

mosses, and which is thin or absent in the hollows. There is

a positive feedback between acrotelm thickness and the rate

of peat formation [73], and the observed patterns are thought

to arise from the combination of this feedback, a scale-

dependent accumulation of nutrients in the ridges [74] and

water-ponding due to lower hydraulic conductivity in the

ridges compared with the hollows [75].

In subalpine forests, strong and consistent winds can cause

trees to self-organize into linear patterns [76]. The key mechan-

ism here is that one tree shelters another on its downwind side.

The resulting linear patterns can run either parallel or perpen-

dicular to the prevailing wind direction. The former pattern

type is known as ‘hedges’ and is widespread, having been

documented in North America, Japan and New Zealand

[77]. Lines of trees running perpendicular to the wind direc-

tion and separated by unforested gaps are known as ‘ribbon

forests’ [78]; they appear to be restricted to the Rocky

Mountains. Snow drifting along the lines of trees is thought

to be an important factor in the persistence of these patterns

[79,80]: the deep parts of snow drifts prevent seedling
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establishment, whereas shallower parts are beneficial since

they provide shelter during the winter. Geomorphology is

also thought to play an important role in the formation of

some ribbon forests, with trees lying along geological ridges

[81]. ‘Wave regenerated forests’ (a.k.a. ‘Shimagare’) are a

different type of linear tree pattern, also running perpendicular

to the prevailing wind direction [82,83]. Here, there are alter-

nating bands of live and dead trees; in the former, tree

height and age increases in the upwind direction up to an

abrupt interface, while extensive regeneration occurs among

the dead and dying trees. The bands gradually move in the

windward direction, on the timescale of the tree genera-

tion time. Patterns of this type occur in Japan, USA and

Argentina [76]. As a final example, we mention mussel beds

in the Wadden Sea, a large intertidal region bordering the

Netherlands, Germany and Denmark. These are self-organized

into stripes perpendicular to the tidal flow, with a wavelength

of 6–10 m [84]. Two different mechanisms have been pro-

posed for this type of pattern formation. Van de Koppel

et al. [85] argue that the binding of mussels to one another,

via byssal threads, could cause reduced losses from predation

and wave dislodgement at higher mussel densities. Their

model has been studied in great detail by Wang et al. [86].
Van Leeuwen et al. [84] suggest that the greater deposition of

sediment under large clumps of mussels could provide an

alternative explanation: the increased elevation gives mussels

greater access to algal food in higher water layers. Liu et al.
[87] present a detailed model demonstrating the feasibility of

this mechanism, and comparing its implications with the

reduced losses hypothesis.

Some of these landscape-scale patterns are more amen-

able to empirical study than banded vegetation in semi-arid

landscapes. For example, van de Koppel et al. [88] success-

fully achieved self-organized patterning of mussel beds in

laboratory tanks, although the patterns were labyrinthine

rather than banded. But in all cases, the predictive ability of

experiments is severely limited, and mathematical modelling

has a vital role to play in understanding how the patterns will

be affected by changing environmental conditions. Our work

suggests that detailed mathematical investigations of pattern

formation in such models will provide a key framework for

the understanding of simulation-based studies.
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