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Abstract. The Fisher-KIT equation u, = u, + u( 1 - u) has a travelling wave solution 
for all speeds > 2. Initial data that decrease monotonically from 1 to 0 on - co < x < a, 
with u (x, 0) = 0, (e- 5x) as x + a, are known to evolve to a travelling wave, whose speed 
depends on 5. Here, it is shown that the relationship between wave speed and 5 can be 
recovered by linearizing the Fisher-KIT equation about u = 0 and explicitly solving the 
linear equation. Moreover, the calculation predicts that in the case 5 > 1, the solution for 
u, fu itself evolves to a transition wave, moving ahead of the (minimum speed) u wave 
at the greater speed of 25. Behind this transition, u,/u = - x/(2t), while ahead of it, 
u,lu = - 5. The paper goes on to discuss the potential applications of the method to 
systems of coupled reaction-diffusion equations. 

1 Introduction 

Travelling wave fronts are an important and much studied solution form for 
reaction-diffusion equations, with important applications to chemistry, biology and 
medicine (see Needham et al. (1994), Okubo et al. (1989) and Orme & Chaplain 
(1996) for examples and Murray (1989) for a review). Such solutions were first 
studied in the 1930s by Fisher (1937) and Kolmogoroff et al. (1937), for the scalar 
equation 

au a% 
z=g+u(l -u) (1) 

which is now known as the Fisher-KPP equation. This is important both as a 
generic example of a wide class of reaction-diffusion equations, and as a simple 
model for a range of biological phenomena. The original application of (1) by 
Fisher (1937) was to population genetics, with u denoting the density of an 
advantageous gene, and the travelling wave solutions representing the spread of 
this gene through space. Subsequent applications have been very varied, including 
ecology, modelling waves of an invading population (Holmes et al., 1994) and 
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wound healing, with solutions representing healing waves of cells in the skin 
(Sherratt & Murray, 1990). 

Analysis of travelling wave solutions of (1) dates back to Kolmogoroff et al. 
(1937), who showed that travelling wave solutions, i.e. solutions that are functions 
of x - at, exist for all values of the wave speed a > 2; these waves are monotonically 
decreasing in x, approaching 1 as x -+ - cc and 0 as x + + cc. There are correspond- 
ing monotonically increasing waves with negative speeds. In a ground-breaking 
piece of analysis, Kolmogoroff et al. (1937) also showed that the travelling wave 
with minimum speed 2 is the long time limit for any initial conditions satisfying 
u - 1 for sufficiently large negative x, and u I 0 for sufficiently large positive x. 

In the 197Os, a number of authors studied types of initial data that can evolve 
to waves travelling faster than the minimum speed. Independent use of the theory 
of branching processes for Brownian motion and traditional differential equation 
methods showed that initial conditions satisfying u + 1 as x + - cc and u = Os(ee5T 
as x + + cc evolve to the travelling wave of speed 

(2) 

(Larson, 1978; McKean, 1975; Rothe, 1978). Recently, this result has been 
extended by Booty et al. (1993), to show that when the exponential decay rate 5 
varies slowly in space, the wave speed adjusts to accommodate this variation. 

In this paper, the insight that can be gained about this wave speed selection by 
linearizing (1) about u = 0 and solving using Laplace transforms will be considered. 
The method of Laplace transforms has been used previously by Sleeman and Tuma 
(1984) to solve a piecewise linear version of the Fisher-KPP equation. They derive 
exact solutions, which converge to travelling wave fronts, enabling the derivation 
of a relation between wave speed and the form of initial data. In the present paper, 
only large time behaviour is focused on, and only the equation given by linearizing 
about u = 0 is solved. It is shown that this approach recovers (2), and moreover 
suggests that when r > 1, there is a transition wave in u,Iu, moving ahead of the u 
wave front at a faster speed. 

2 Solution by Laplace transforms 

Equation (1) is considered with initial data satisfying u = OS(e -5”> as x + co. It is 
assumed that the solution evolves towards a travelling wave, whose speed a remains 
to be determined: the calculation will confirm that a is indeed given by the 
expression c(t) in (2). For convenience, work will be carried out in terms of t and 
the travelling wave coordinate z = x - at, rather than in terms of t and x, so that 
the linearized equation is 

u, = u,, + au, + u (3) 

Here, the subscripts t and z denote 
on 0 < z < cc, with end conditions 

partial derivatives. This equation is considered 

u,+&4=0 at z=O (44 

u=O,(e-‘e) as z+co @b) 

u=e-t2 at t=O (4c) 
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Conditions (4b) and (4~) reflect the initial conditions, while (4a) reflects the fact 
that all travelling wave solutions of the Fisher equation decay to u = 0 exponentially. 
In fact, standard analysis of the travelling wave ordinary diierential equations 
(ODES) for (1) (Grindrod, 1991; Kolmogoroff er al., 1937) implies that the decay 
rate To is related to the supposed wave speed a by 

Equation (3) is solved subject to (4) and (5) using the method of Laplace tram- 
forms. This is made easier by writing w = u.exp[az/2 + (a’/4 - l)r], dl= &-a/2 
and fl= 5 -a/2, giving 

w,=w,, subjectto w,+w=Oatz=O (W 

w=O,[exp-pi)] asz-+m (6b) 

w=exp-pz)atr=o (6~) 

Taking the Laplace transform with respect to time t gives a simple ODE, with the 
following unique solution satisfying the boundary and initial conditions: 

Here a capital letter is used to denote the Iaplace transform and s is the transform 
variable. This can be inverted using standard transforms, to give 

where T(y) = exp(y’) erfc(y). 
The value of a is determined by the behaviour of u(z = 0, r) that is implied by 

(7). Substituting z = 0 into (7) gives 

-I Mm + PII =P(8”w [P < 01, ifa<Oand/?#O 

lI(BJ;;) + 2 exP($t)s w < 01, ifu=Oand~#O 

- 1 i(aJ;;), ifa<Oandp=O 

1, ifm=Oandfl=O 

Here, standard asymptotic expansions are used for the complimentary error 
function, which imply that 

F(Y) - 1 KY45 + 2 =P(Yw [Y < 01 (8) 
as y-m, where 9 denotes the indicator function defined by 9 [TRUE] = 1, 
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9 [FALSE] = 0. Note that (5) implies that a d 0. In the case a = /I = 0, (7) is not 
valid, but the solution of (6) is trivially eu = 1 in this case. 

Under the assumption that the initial conditions (4~) evolve to travelling wave 
solutions in u, the value of u(z = 0, t) must approach a non-zero constant in the 
limit as t+ 00. Since 

u(z = 0, t) = e(’ - a2’4)rw(z = 0, f) = e - a2cw(z = 0, t) 

this is possible only if a = fl< 0, i.e. to = Lj < a/2. Together with (5), this implies 
a = 5: + 1 /r and 5 < 1, which is part of formula (2). 

When 5: > 1, there is no wave speed a for which lim,,,u(z= 0, t) is finite and 
non-zero. The relevant case then is in fact a = 0, /I > 0, i.e. co = a/2, 5 > a/2; using 
(5), this implies in turn that a = 2. These calculations then give ~(2 = 0, t) - 
1 l(fl&) as t+ 00. Although this does tend to zero as t+ GO, this approach is only 
algebraic and can be corrected. Specifically, consider the behaviour of the solution 
(7) at z = - 3 log t rather than z = 0; even though (3) has been solved on (0, cc ), 
the solution is well defined for negative values of z. This has no effect on the large 
time form for eo, i.e. ~(2 = - jlog t, t) - w(z = 0, t) as t+ cc. However, conversion 
to u has the effect of multiplying the large time behaviour at z = 0 by t1’2; thus 
u(z= -3logt,t) -P2U(Z=0,t) - l/[/3&] as t+co, a non-zero constant as 
required. 

It is well known that the wave speed for the Fisher equation does indeed have a 
correction proportional to - log t/t for rapidly decaying initial data; this was first 
established by Bramson (1978, 1983). In fact, the nonlinear terms also make a 
contribution to this correction, and the actual wave speed is 2 - 3 log tl(2t) + . . . , 
rather than the 2 - log tl(2t) + . . . predicted by the linear analysis (Bramson, 1978, 
1983); this difference is discussed in a more general setting by van Saarloos (1989). 
The slow convergence of the wave speed reflects a fundamentally different type of 
convergence to travelling wave solutions in the cases r < 1 and r > 1. In the former 
case, the solution approaches the travelling wave uniformly in x. However, when 
< > 1 the convergence is much weaker, with uniform convergence only in the shape 
of the solution. This distinction was first recognized by Stokes (1976). 

3 A transition in u,/u 

The wave speed formula (2) has been known for many years. However, the 
derivation presented here, via explicit solution of the linearized equation in a 
moving frame, is new, and provides novel insights into the mechanism of wave 
speed selection. In particular, the solution enables detailed determination of the 
behaviour of u,Iu, and this application of (7) is now discussed. The ratio u,Iu is of 
interest because it is clear that when 5 > 1, there must be a transition in u,Iu ahead 
of the u wave, since u,Iu + - 5 as x + cc, while u,Iu = - 1 in the tail of the u wave 
of minimum speed. To investigate this, the behaviour of u,Iu is considered as t+ 00 
with z - 2yt; here y is an arbitrary, strictly positive constant. When a = /? < 0 
(corresponding to < < l), it is straightforward to show that u,Iu + - 5 for all y, as 
expected. However, for a = 0, /? > 0 (corresponding to < > l), the situation is more 
complicated. In this case 

The ratio u,Iu is related to w by 
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u u w a x=2 1 aw =e--=-- a -- 
u u 

w 2 2tW ar rconstant 2 

and using the relation T’(y) = 2~9 (y) - 2/h, this implies 
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Using the asymptotic behaviour for 9 given in (8) shows that as t+ 00 

WV + Y>Jt> - l/U + Y>&l 

and 

F((p-y)& l/[&y)&1 +2expt(8-r>2tI~CBQ1 

Thus, as t+co with z-2yt 

i 

- (3 ifY>P 
uJl.4 - 

-t+ WB + Y> 
w-r> + w+r> 

= -a/2-y= -x/2t, ify<p 

Thus the solution for u,Iu evolves to a transition wave, moving with absolute speed 
2/3 + a = 25; here the term ‘absolute’ means that this is the speed with respect to 
the spatial coordinate x (rather than z). Note that this speed is greater than that of 
the u wave, since r > 1 and a = 2. Ahead of this transition, u,Iu w - 5, which is the 
decay rate imposed by the initial conditions, while behind it, u,Iu N - x/2t, which 
is the form corresponding to the fundamental solution of the diffusion equation, 
and arises from the diffusion of the initial data. Note that this latter expression 
implies that u,Iu w - 1 in a frame moving with the wave speed a = 2, as expected. 

The identification of this transition in decay rates is, to the best of the author’s 
knowledge, a new result. The transition is of course not a constant shape wave, 
since the limiting form behind the wave is a function of t; an example is illustrated 
in Fig. 1, showing u,!u in a frame moving with speed 2< at three successive times. 
In applications to biology and chemistry, reaction-diffusion models such as the 
Fisher-KPP equation are sometimes criticized on the basis that the diffusion term 
implies infinite speeds of propagation. The demonstration of a transition in decay 
rates shows that in the case of rapidly decaying initial data, the diffusion of this 
initial condition actually results in propagation at a finite speed, namely twice the 
initial decay rate. 

4 Application to reaction-diffusion systems 

In principle, the method presented here, namely linearization of the partial differ- 
ential equation, solution via Laplace transforms and determination of large-time 
behaviour, could be applied to systems of several coupled reaction-diffusion 
equations. Numerical evidence indicates that in a number of such systems that are 
used in applications, the wave speed depends on initial data in a manner analogous 
to the Fisher-KPP equation (Dale et al., 1997; Manoranjan & Mitchell, 1983; 
Sherratt, 1994); however, analytical analogues of the speed formula (2) exist only 
for a few special cases (Billingham & Needham, 1992; Champneys et al., 1995; 
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Fig. 1. An illustration of the large time form of u,Iu ahead of the u wave in the Fisher-KIT equation 
(1) when 5 d 1. The value of u,Iu, calculated from (9), is plotted as a function of the moving coordinate 
x - 2<t, at three successive times, for c = 2; recall that 25 is the speed of the transition in u,Iu. The 
dotted line is - x/2t, which is the form of u,Iu behind the transition, and the dashed line denotes the 

value of - 5, which is the value of u,Iu ahead of the transition. 

Freidlin, 1985, 199 1). The transition from one to several equations would increase 
the algebraic complexity of the solution considerably, but poses no fundamental 
difficulties. The main problem is in fact that the equivalent of (5), which gives the 
relationship between the speed of a travelling wave solution and the decay rate of 
its tail, is not known for most reaction-diffusion systems. This is simply an 
ODE problem, but requires determination of the detailed form of a heteroclinic 
connection in the phase-space of the travelling wave ODES, which is notoriously 
difficult in more than two dimensions. 

A rare example in which the equivalent to (5) is known is the predator-prey 
model: 

h,=h(l -h-p) (104 

it = P, + k,p(h - k,) (lob) 

Here h(x, t) and p(x, t) denote prey and predator densities, with x a one-dimensional 
spatial coordinate and t denoting time; k, and k2 < 1 are positive constants (see 
May (1981) for a review of this and other related predator-prey models). Dunbar 
proved that for both (10) (Dunbar, 1983) and the corresponding model with non- 
zero prey diffusion (Dunbar, 1994), there is a travelling wave solution for all wave 
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speeds greater than a critical minimum value; these waves represent the invasion 
of prey by predators, and have h = 1, p = 0 ahead of them, and h, p # 0 behind 
them. In the case of (lo), Dunbar’s proof (Dunbar, 1983) implies that the critical 
minimum wave speed is 2 (Fz,( 1 - k,)) 1’2, and that the waves decay to h = 1, p = 0 

with an exponential decay rate 4 [a - (a2 - 4ii,( 1 - k2)} 1’2]. Knowledge of this 
relationship between speed and decay rate enables the approach used in the present 
paper to be applied to (10). In fact, this is essentially trivial, since (lob) decouples 
from (1 Oa) when one linearizes about h = 1, p = 0, so that the calculation is the 
same as that presented here. This suggests that the wave speed is given in terms of 
the initial decay rate r by [t + k1 (1 - k2) /r] if 5 < dm, with the minimum 
speed selected for larger values of 5: this is the direct analogue of (2), and there is 
also a transition in pJp and h,lh, analogous to that illustrated in Fig. 1, moving 
ahead of the predator-prey wave front at a greater speed. 

More generally, as new results on the detailed form of travelling wave solutions 
become available, the approach described here will enable prediction of the initial 
conditions that will generate these waves, and the corresponding dynamics of decay 
rates ahead of the wave fronts. This information is crucial for a wide range of 
applications, since the dependence of wave speeds on model parameters is often 
the most important prediction of reaction-diffusion systems. For example, a 
number of reaction-diffusion models have been proposed for the study of intra- 
cellular calcium signalling (Goldbeter et al., 1990; Sneyd et al., 1995); calcium is 
a central regulator of cell behaviour, and plays a key role in physiology and 
developmental biology. Detailed experimental data are available on the speed of 
calcium signalling waves in a range of conditions, and the comparison of this data 
with theoretical predictions is vital in the estimation of model parameters. Another 
prototype application is wound healing in the cornea1 epithelium (Dale et al., 
1994). Here, detailed parameter estimation is possible using in vitro experimental 
data, so that an analytical prediction of wave speeds can be used to assess the 
ability of potential clinical therapies to increase the rate of repair. In both of these 
applications, approximate expressions for wave speeds are currently in use, and the 
derivation of ’ exact wave speed formulae would be a very significant advance. 
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