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Abstract. Many systems in biology and chemistry have been sucgessfully modelled by
oscillatory reaction-diffusion equations. In such equations, periodic waves are a
fundamental solution type, and have been extensively studied. In this paper, the author
discusses ways in which periodic waves can arise naturally from simple initial
conditions. The mechanisms by which a particular wave is selected by the details of the
initial data are explained, and formation of periodic waves behind invasive transition
fronts is discussed. In some cases, the selection mechanism can cause an unstable wave
to form, in which case it degenerates into spatiotemporal irregularities. This process is
described and numerical evidence is given which suggests that these irregularities are
genuinely chaotic. The various results have applications to a number of real oscillatory
systems, and applications to intracellular calcium signalling and predator-prey invasion
are discussed in detail.

1. Oscillatory Systems

Many systems in biology and chemistry are intrinsically oscillatory. In such cases,
the stable state in the absence of spatial variation is not a stationary equilibrium, but rather
consists of temporal oscillations in the interacting chemical or biological species.
Examples include intracellular calcium signalling, the Belousov-Zhabotinskii reaction
and some predator-prey interactions. These systems also exhibit spatial interactions,
which are often modelled by diffusion. This combination of local oscillations and spatial
diffusion produces a very wide range of spatiotemporal behaviours, including spiral
waves, target patterns and spatiotemporal chaos (reviewed by MURRAY, 1989, Chapter
12). In one spatial dimension, the equivalent of both spiral waves and target patterns are
periodic travelling waves, which are periodic functions of space and time, moving with
constant shape and speed. This paper is concerned with these periodic wave solutions. In
this first section, I review old results on the form, possible speeds, and stability of periodic

61



62 J. Al SHERRAﬁ

waves. In Section 2, I discuss the way in which periodic waves can be induced by a wide
range of initial conditions; this has specific applications to intracellular calcium signal-
ling. In Section 3, I show that periodic waves also arise naturally behind invasive
transition fronts, and I discuss the application to predator-prey interactions in ecology.
Finally, in Section 4, I consider the way in which, in both these applications, the
generation of unstable periodic waves can act as a natural route to spatiotemporal chaos.

Periodic travelling waves occur in any reaction-diffusion system with oscillatory
kinetics, by which I mean that the kinetic ODEs contain a stable limit cycle. Throughout
this paper I will restrict attention to systems of two coupled reaction-diffusion equations,
with the form

oul &t = D,0*ul ox* + f,(u,v) (1a)

ovi =D,/ &+ f(wy). . (1b)

Here u(x,f) and v(x,f) denote the concentrations or densities of the interacting species; x
and ¢ denote space and time, respectively, and D, and D, are positive constants. For this
system, travelling waves are solutions with the form u(x,?) = U(z) and v(x,f) = ¥(z), where
z=x —at is the travelling wave coordinate and a is the wave speed. Such solutions satisfy

DU" +aU'+£,(U,V)=0 (2a)

DV"+aV'+£,(UV)=0, (2b)

where prime denotes d/dz. A periodic wave corresponds to a limit cycle solution of these
travelling wave ODEs. KOPELL and HOWARD (1973) showed that whenever the kinetics
Ju» v are oscillatory, (2) has a one-parameter family of such limit cycle solutions, arising
from a Hopfbifurcation. A quite different issue, however, is whether these periodic waves
are stable as reaction-diffusion solutions. If they are unstable, they will of course never
be seen in areal system. This stability question has been addressed by a number of authors
(KoPELL and HOWARD, 1973; OTHMER, 1977; COPE, 1980; MAGINU, 1979, 1981) but all
that is known for general kinetics is that sufficiently close to the Hopf bifurcation in (2),
the periodic waves are unstable, while for |c| sufficiently large, the waves are stable. Thus
slow, low amplitude waves are unstable, while sufficiently fast waves are stable. The
stability change between these two extremes can in some cases be quite complex, with
alternating regions of stability and instability. The observation that very fast waves are
stable is expected intuitively since as the wave speed increases towards infinity, the spatial
wavelength does also, and the periodic wave approaches the (spatially homogeneous)
limit cycle solution of the kinetics.

Much of the progress on periodic travelling waves has been obtained using the “A-
®” class of reaction-diffusion systems. These are systems of the form (1), specifically
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Fig. 1. Anillustration of the phase plane for the kinetics of a A-wsystem in which A(.) is monotonically decreasing
with A(rg) = 0, and w(.) in either monotonically increasing or decreasirggi There is a stable circular limit
cycle of radius ro. The particular phase plane illustrated is for A(r) = —# and o(r) = 3 — 12, so that
rp= 1.

Bul 6t =0%ul & + A(rju—o(ryv (3a)

ovidt=3%/ ot +o(ru+A(r); (3b)

here r = (u2 + v?)12. For simplicity, I consider the case in which A(.) is monotonically
decreasing with a simple zero at r = rg, and (.) is either monotonically increasing or
decreasing. Then the kinetic ODEs have a stable circular limit cycle of radius ro (Fig. 1).
The beauty of - systems is that the family of periodic waves has a very simple analytical
form, namely

u=r cos[co(?)t +A(F)" x] (4a)

v= ?sin[w(f')til(f')mx] (4b)

(KOPELL and HOWARD, 1973; ERMENTROUT, 1980). Here 7 € (0,7,) parameterises the
wave family. Moreover, an exact condition for the stability of (4) as a PDE solution was
determined by KOPELL and HOWARD (1973), namely that

44(7) 1+(“"(?T +#1'(7)<0 (5)
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must hold for linear stability. More recently, KAPITULA (1991) has investigated nonlinear
stability.

2. Periodic Wave Evolution

Despite this considerable knowledge of the existence and properties of periodic
waves, there was until very recently no work on the way in which periodic waves might
arise in oscillatory systems. I will show that in both A-® and more general systems, a wide
range of initial conditions do evolve quite naturally to periodic travelling waves. I will
start by discussing the A-@ case; more details on the calculations I discuss are given
elsewhere (SHERRATT, 1993, 1994a). I consider the semi-infinite domain 0 < x < oo with
boundary conditions &u/éx = ov/ox =0 at x =0 and u, v — 0 as x — co. In an attempt to
generate periodic waves, I consider initial data that decays exponentially in space:

u(x,0)=v(x,0)= 4e™>. ° (6)

For a very wide range of functional forms for A(.) and a)(.s, these initial conditions give
rise to one particular member of the periodic wave family, occupying an expanding region
of the spatial domain (Fig. 2). Thus the form of the solution is of a wave front moving
across the domain, with periodic waves behind this front. The speed of the periodic waves
is different from that of the advancing wave front, and in some cases they move in the
opposite direction.

Numerical experimentation shows clearly that the speeds of both the advancing front
and the periodic waves depend on the decay rate & of the initial data, but are independent
of other details, such as the parameter 4 and the boundary conditions at x = 0. This de-
pendence is most easily studied by working not in terms of the variables u and v, but rather
in terms of polar coordinates  and 0 in the u-v plane. Thus r = (42 + v?)12 as above, and
6= tan~!(v/u). Use of these variables is standard procedure when studying A-w systems,
and the transformed partial differential equation is

r,=rA(r)+r, —r6? (7a)
0,=w(r)+0, +2r6, /r. f (7b)

When the numerical solutions described above are plotted in terms of » and 6, they have
a rather simple form, namely simple transition wave fronts in » and 66/Jx (Fig. 2). Ahead
of the transition front, » and 86/Jx tend to zero, corresponding to # = v = 0, while behind
the front, » and 56/ approach constant, non-zero values. From (4) itis clear that constant
r and 96/Jx corresponds to periodic waves in » and v.

Based on these numerical observations, I look for a solution of (7) of the form r=
F (x —st), w= 0, = y (x — st), where s is the speed of the transition front. This implies that
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O(x,t)= W (x - st) +f{£), where ¥ (.) is an indefinite integral of ¥ (.), and f{.) is an arbitrary
function. As x = o, 7 = 0 and ¢ — 0, and thus substituting this solution form into (7b)
and letting x — o implies that (f) = @(0). Therefore I have the travelling front solution

r="r(x—-st)

0 =¥(x - st)+ o(0)t + 6,

where 6 is an arbitrary constant.
Substituting this solution form into (7) gives a third order system of ordinary
differential equations:

;n +SF’ +;A‘(F)_ FWZ = 0 ' (83)
"’,'."-.
' +(s+2F IF)§ + o(F) - 0(0) = 0 (85)

where prime denotes d/dz. The steady states r = ry, ¥ = y; of (8) must satisfy sy; =
(0) — aXrs) and r[A(rs) — 2] = 0, so that either r,= y; =0 or

[0(0)-o(s)] =s%A(r) 9)

The first of these is the steady state ahead of the r-y transition front, and the second is an
equation for the amplitude 7 of the periodic plane waves behind this front. My mono-
tonicity assumptions for A(.) and &(.) ensure that this equation will have a unique solution
for any given value of s.

The value of s remains to be determined, however. In scalar reaction-diffusion
equations such as the Fisher equation (FISHER, 1937; KOLMOGOROV et al., 1937; ROTHE,
1978), it is known that the speed of a wave front is determined by the linearisation of the
PDE ahead of the front. With this in mind, I linearise (7) about » = 0, giving

or/ ot= 0% 1x* + A(0)r.
This is identical to the linearisation of the Fisher equation
Byl ot=23%1x* + A(0)y(1-y) (10)

about y=0, suggesting that the dependence of wave speed on initial data might be the same
in the two cases. For (10), it was shown by ROTHE (1978) that if y(x,0) is monotonically
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Fig. 2. Examples of the solution of (3) subject to (6) for monotonic A(.) and a(.). I plot r and 6, as functions
of x at equally spaced times, and u as a function of x at successive times ¢, with the vertical spacing of
solutions proportional to the time interval. In all cases, the solution evolves to transition fronts in r and
6,, moving with constant shape and speed; the steady state behind the front corresponds to periodic plane
waves. The sign of 6, behind the front is positive or negative according to whether «(.) is decreasing or
increasing, respectively, and the direction of motion of the periodic plane waves is in the positive or
negative direction according to whether @(0)/@(7 ) — 1 is positive or negative, respectively. The func-
tional forms for A(.) and a(.) are: (a) A(r) =2 — €%, a(r) = &', with £E=4; (b) A(r) =2 - P, o(r)=4-1,
with & = 3; (c) Ar) = (4 — r%*)/log(3 + 1), o(r) = 1 — ri", with £ = 2; (d) A(r) = 1 — 2tanhr, o(r) =
log(2 + r), with & = 4. The time intervals between successive solutions for r and 0, solutions are ap-
proximately (a) 44; (b) 8.9; (c) 6.4; (d) 47, and the range of times in the plots of u(x,?) are (a) 187 <
1<220;(b)35.6<t<44.5;(c) 6.4 <t<32;(d) 188 <r<235. The value of 4 was 0.1, but in fact the solutions
are essentially independent of 4. Here and in numerical solutions of the reaction-diffusion equations
presented in other figures, the equations were solved using the method of lines and Gear’s method.
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Fig. 2. (continued).

decreasing, with y(x,0) - 1 as x — —oo and y(x,0) = O,(e %) as x — +oo, then the solution
evolves to travelling wave fronts with speed

{5+Ao/§, 0<Esq3g
§= (11)
2[4, £24[2,.

This formula compares extremely well with the speeds of the » — 060/0x transition front in
numerical solutions of A-w systems. Thus the periodic wave generated by the initial data
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(6) is related to the decay rate & by the combination of formulae (9) and (11).

In exactly the same way, exponentially decaying initial conditions generate periodic
waves ina wide range of oscillatory reaction-diffusion systems (SHERRATT, 1994b). Here,
the decay is of course to the steady state from which the kinetics limit cycle has bifurcated;
typically this is a non-trivial steady state. The great advantage of the 1-w case is the ability
to study this generation analytically as just described; more generally I have been unable
to make any analytic progress, and have to rely on numerical solutions alone. However,
for a wide range of systems, these numerical results indicate a strong analogy with the A-
o case, with the particular periodic wave that is selected being related to the initial decay
rate via the transition front speed.

One particular situation in which this generation of periodic waves has specific
application is intracellular calcium signalling. Calcium is an important intracellular
second messager, and exhibits a wide range of spatial and temporal oscillations in
response to different extracellular signals (BERRIDGE, 1990; TSIEN and TSIEN, 1990;
SANDERSON et al., 1990). A number of mathematical models have been proposed for
calcium oscillations and waves in a variety of different cell types (GOLDBETER et al., 1990;
STUCKI and SOMOGY]1, 1994; SNEYD et al., 1995), and here'l will discuss only the model
of ATRI et al. (1993), which applies to the Xenopus oocyte. This model is based on the
release of calcium from intracellular stores through channels that are sensitive to the
regulatory molecule IP;. External stimuli produce increased concentrations of IP3, which
causes the release of calcium from these internal stores. This cytosolic calcium then
regulates further calcium release, with high calcium concentrations tending to inactivate
the IP; receptors. Cytosolic calcium can itself be resequestered into the internal pool. The
model of ATRI et al. (1993) models this process by two differential equations, with
variables c(x,t) and n(x,f), denoting respectively the local calcium concentration and the
fraction of receptors that have not been inactivated by calcium. The receptors are assumed
to be stationary in space, so that the spatial variation is due entirely to the diffusion of
calcium. The model equations are

Calcium flux through Calcium—regulated pumping of
Diffusion IP; sensitive channels calcium out of cytosol
WS 7 N g \
Oc/0t = D.0°c/0x* + kguxpn|b+ (1 — b)/(k1 + ¢)] — ve/(ky + ¢) (12a)
 12/(R2 42 _
ThOn/0t = k3/(k3 + ¢*) 2 I (12b)
Receptor

Net production

of new receptors turnover

Here the parameter u is related to the IP3 concentration. Depending on the value of this
parameter, the model can be either excitable or oscillatory. In the oscillatory regime, with
realistic values of the other parameters (ATRI et al., 1993; SNEYD and SHERRATT, 1995),
the calcium signalling waves have a form that is qualitatively very similar to Fig. 2(b).
There is a leading wave front, moving with a speed of about 2 um s~!, and leaving periodic
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waves in it wake. These periodic waves move in the opposite direction to the front, with
a speed of about 30 um s\

One of a number of controversies on the propagation of calcium waves is whether the
system is excitable or oscillatory in different situations; a detailed understanding of wave
propagation in the oscillatory regime is an important step in this understanding. In
practice, the waves travel through a medium that is not spatially uniform, due to unequal
spacing of receptors, and the effects of this on oscillatory wave propagation are discussed
elsewhere (SNEYD and SHERRATT, 1995).

3. Periodic Waves behind Invasion

Any oscillatory system will have an (unstable) steady state from which the kinetics
limit cycle, and the periodic travelling waves, have bifurcated. However, in many cases
there will also be other steady states, and this introduces a wide range of new wave
behaviour. To be specific, I will focus on the particular case of predator-prey interactions,
for which a number of different models have been proposed, with the form

“y

dp/ ot=D,0"p! ax* + f,(p,h) (13a)

oh/ &t = D,3*h1 ox* + f(p,h). (13b)

Here p(x,t) and k(x,t) are the population densities of predators and prey, respectively, with
diffusion coefficients D, and Dy representing the motility of the populations. Biologically
realistic models will have two non-trivial steady states, a “prey-only” state in which p =
0, & = hy, and a “coexistence state”, in which p = p;, h = h;, say. Intuitively one expects
the prey-only state to be unstable to the introduction of predators, and in some cases the
coexistence state is also unstable, with a stable limit cycle in the kinetics (Fig. 3). In such
cases, the stable state in the absence of spatial variation is periodic temporal oscillations
in prey and predator densities.

Systems of the form (13) have been used to study two main aspects of predator-prey
dynamics: the formation of stationary spatial patterns (SEGEL and JACKSON, 1972;
CONWAY, 1984; BENSON et al., 1993) and the invasion of prey by predators (MURRAY,
1975; DUNBAR, 1983; HOLMES et al., 1994). Here I am concerned with the latter appli-
cation. Consider first a system for which the coexistence steady state is stable. Then there
is a well-known travelling wave front solution of (13), which corresponds to invasion.
Ahead of the front the system is in the prey-only state, with the coexistence state behind
the front. This wave front is of course a heteroclinic connection between these two steady
states in the travelling wave ODEs

D,P"+aP'+f,(P,H)=0 (14a)
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Fig. 3. Typical phase portraits of the population kinetics for a predator-prey system. There is a prey-only
steady state (1,0) and also a coexistence steady state. In (a) the coexistence steady state in stable and the
system is not oscillatory, while in (b) the system is oscillatory and the long-term behaviour is periodic
oscillations in prey and predator densities, corresponding to the limit cycle in the phase plane. The actual
phase planes shown are for f,(p,h) = By(1 — p/h), fu(p.h) = k(1 — h) — Ahp/(h + C) which is a standard
predator-prey model (MURRAY, 1989). The parameter values are: (a) A =3, B=0.3and C=0.2; (b) 4 =
3,B=02and C=0.1. ’

D,H" +aH' +f,(P,H) =0. (14b)
Here p(x,f) = P(z) and h(x,t) = H(z) are travelling wave solutions; z - x—atis the travelling

wave coordinate and prime denotes d/dz. The parameter a is the speed of invasion;
standard linear analysis about the leading edge of the wave shows that the speed of
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invasion must be greater than or equal to Z[D %, /5p)| p=0,h= hﬂ] v and numerical
evidence suggests that for initial conditions corresponding to a spatially localised
introduction of predators, the resultant invasive waves always travel at this minimum
speed. In a four-dimensional system such as (14) it is notoriously difficult to prove the
existence of a heteroclinic connection, but DUNBAR (1984) has actually done this for
certain predator-prey models of the form (13).

When p = ps, h = h; is unstable, so that the stable state in the kinetics is a limit cycle,
the analogue of these invasive waves had not been considered until very recently. Figures
4(a) and (b) illustrate the numerical simulation of invasion in two such cases; the specific
kinetic terms f; and £, are taken from a standard predator-prey model and are detailed in
the figure legend. The initial conditions for these simulations are that the system is in the
prey-only steady state everywhere except in a small localised region of space, in which
predators are introduced. As in the non-oscillatory case, an invasive front moves out from
the site of the initial perturbation; however the behaviour behind the front is quite new,
consisting of spatiotemporal oscillations in both predator and prey densities. These
oscillations appear to have the form of periodic travelling waves, and this is confirmed by
detailed numerical tests (SHERRATT et al., 1995a). For some parameter values, the pe-
riodic waves move in the same direction as the invading front, but with a faster speed (Fig.
4(a)), while for other parameters they move away from the invasive front (Fig. 4(b)).

This observation of periodic waves behind invasion was initially rather surprising,
but in fact there is a simple explanation in the light of the dlscussmn in Section 2. I have
shown that initial conditions which decay exponentially to a limit cycle-related steady
state evolve to periodic travelling waves, whose speed depends on the initial decay rate.
In Section 2 I had in mind imposing these decaying initial conditions externally, but in the
case of predator-prey invasion, an exponential decay arises quite naturally.

To see this, consider a particular model of form (13), and a parameter set for which
the coexistence steady state is stable. Then the travelling wave ODEs (14) have a
heteroclinic connection between the coexistence and prey-only steady states, which
corresponds to the invasive wave solution of (13). Suppose now that a parameter in the
kinetics is gradually altered, such that at some point the coexistence steady state
undergoes a Hopfbifurcation, and the system becomes oscillatory. Despite this bifurcation,
there is no change in the signs or characters of the eigenvalues at the coexistence steady
state in the travelling front equations (14), and numerical continuation studies suggest that
the heteroclinic connection continues to exist. Thus, even though the reaction-diffusion

system (13) has become oscillatory, there continues to be an invasive travelling wave front
solution, moving with the invasion speed a. However, the Hopf bifurcation in the kinetics
does have a profound effect, causing this invasive wave front to become unstable as a PDE
solution. This is clearly the case, since the coexistence state behind the invasive front is
no longer stable. '

The heteroclinic connection corresponding to the travelling front approaches the
coexistence steady state along an eigenvector of the ODE system (14). This approach will
thus be exponential in the travelling wave coordinate z. This implies that the invasive
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Fig. 4. An illustration of oscillatory wakes behind invasion in reaction-diffusion models of predator-prey
interactions. The solutions I plot are for the system (13) with kinetics as in Fig. 3. The parameter values
are: () 4=3,B=0.1,C=0.1;(b) 4 =3,B=0.1, C=0.2. I plot prey density as a function of space at
successive times, with the vertical separation of solutions proportional to the time interval. The form of
the corresponding solutions for predator density is qualitatively very similar.

travelling wave front decays exponentially to the coexistence steady state behind the front .
In the light of the discussion in Section 2, it seems possible that it is this exponential decay
that induces the periodic waves seen in Fig. 4. | have used a simple numerical procedure
to test this hypothesis. The first step in this is to calculate the eigenvalues and eigenvectors
at the coexistence steady state in (14), from which the form of the approach to the steady
state can be determined. In all cases I have considered, there are two complex conjugate
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Fig. 5. The evolution of the solution of (13) following a small, exponentially decaying perturbation to the
(unstable) coexistence steady state (p;,h;). The form of the perturbation has exactly the form of the tail
of the invasive wave, so that the initial conditions are (p(x,0),h(x,0)) = (ps,h;) + &' Re[(p,,h.) exp(—Ax)],
where £ << 1, A is the unstable eigenvalue of (14) at (p,,h,), which is unique up to complex conjugacy,
and (p.,h,) is the corresponding normalised eigenvector. The prey density in the reaction-diffusion
solution evolving from this initial condition is shown at three different times (—), and compares
extremely well with the oscillations observed behind the invasive wave, for the same parameters (- - -).
In the latter solution, an appropriate spatial translation is applied at one time point in order to give
correspondence between the two sets of solutions. A similarly good comparison is observed for the
predator density and for other sets of parameter values. In the case illustrated, the kmetlcs are as in Fig.
3, withD,=Dy=1,4=3,B=C=0.1, £=0.005.

pairs of eigenvalues, with positive and negative real parts. Thus the wave oscillates in
space with an exponentially decaying amplitude as it approaches the steady state; in fact
these oscillations play no significant role and it is the exponential decay rate that counts.
Having calculated the form of this approach, I use it as the initial condition for a numerical
solution of the PDEs (13). This numerical solution does not simulate invasion, it is simply
a “numerical experiment”, to test the behaviour that results from these decaying initial
conditions. The simulation is exactly of the type discussed in Section 2, €éxcept that there
are spatial oscillations in the initial data, as well as exponential decay. As expected, these
decaying initial conditions evolve to periodic travelling waves. But crucially, the
particular periodic wave selected is exactly that seen in the wave of invasion, for the same
parameters; the comparison is illustrated for one case in Fig. 5, and is equally good for a
wide range of other parameters and kinetic terms (SHERRATT, 1994b; SHERRATT et al.,
1995a).

From an ecological perspective, the model predicts that spatiotemporal oscillations
arise quite naturally behind invasion. However, reaction-diffusion models alone provide
a rather weak base of evidence for making such a sweeping statement, in view of the
important role played by spatial and temporal discretisation in many ecological systems.
In fact, my collaborators and I (SHERRATT et al., 1995b) have recently shown that the same
phenomenon of regular oscillations behind invasion arises in a number of spatially and/
or temporally discrete models, as well as in the reaction-diffusion model discussed here,
suggesting that this phenomenon may well occur in real predator-prey systems.
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4. A Route to Chaos

In the previous two sections, I have discussed mechanisms in which periodic
travelling waves are generated naturally. In both cases, the particular periodic wave
observed is selected from the continuum of possible waves by a definite, albeit slightly
complex, mechanism. However, in Section 1, I mentioned the question of periodic wave
stability: amongst the continuum of possible periodic waves, only some are stable as
reaction-diffusion solutions. This leads to a natural question: is it possible that the wave
selection rules described in Sections 2 and 3 can lead to the selection of an unstable wave?
The answer to this question is a definite “yes”, and in this section I will discuss the nature
of the solutions that arise in such cases. :

To begin my discussion of this stability issue, I return to the A-o systems (3). In this
case, | have derived a formula (9) for the periodic wave amplitude 7 that evolves from
exponentially decaying initial conditions; in this formula, s is related to the initial decay
rate £by (11). This means that the stability of the resulting waves can be determined very
easily, using KOPELL and HOWARD’s (1973) stability condition (5). To be specific, 1
consider the particular case A(r) =1—7?, &(r) = b(wo— *), where p is a positive parameter.
Then (9) implies that

1.41

1.2] ‘ i

UNSTABLE

w 0.8
0.61

0.41

STABLE

0.2 o

05 10 15 2.0
P .
Fig. 6. An illustration of the condition (16) for the stability of periodic waves generated by initial conditions

(6) for the A-w system (3), with A(r) =1 — r* and @(r) = wg — r*. Thus in terms of the notation in the main
text, the case illustrated is for b = 1.
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and using (11), the stability condition (5) becomes

> [p2 +4(1 +b2)p]_l[2b(l +b2)—\f4b"’(1+b2)2 41 +b2)p—p2] (16a)
and

p<2(1 m)(ﬁ —1) (16b)

t=110[,
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Fig. 7. A space-time plot of the numerical solution for u(x,?) of (3) with A(r) = 1 — r? and &(r) = 3(1 - #2).
The equation is solved on a large domain 0 < x < x,, subject to u = v =0 at x = x, and with the symmetry
condition uy = vy =0 atx = 0. The boundary condition at x = 0 essentially plays no role and simply enables
the use of a semi-“infinite” rather than “infinite” domain, thus reducing the computer time required for
solution. The domain length x, is taken to be sufficiently large that further increase has a negligible effect
on the solution over the time interval concerned. The numerical method is described in Fig. 2, and a space
mesh of 1001 equally spaced points was used, with x,, = 250. At =0, u and v were set to 0.1 at the first
mesh point (on the x = 0 boundary), with ¥ = v = 0 at the other mesh points; however, the solution is
essentially the same for any initial perturbation that is localised in space (i.e. “£ = ©”), as discussed in
the main text. The solution is plotted as a function of x at successive times in the range 75 < ¢ < 110, with
the vertical separation of solutions proportional to the time interval between them. The solution for v is
qualitatively similar to that for u.
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Fig. 8. The spatial and temporal variations in prey densities behind a wave of invasion by predators, for
parameters on the borderline between regular and irregular oscillations. The qualitative form of the
predator distributions behind the invading front are very similar. Immediately behind the invading front,
there are regular spatiotemporal oscillations, corresponding to periodic plane waves (PPWs). However,
these periodic plane waves are just unstable, and further back from the front, instabilities have had time
to grow, giving rise to irregular behaviour. The kinetics are f,(p,h) = By(4 -1~ Ae™C), fi(p,h) = h(1 -
k) - p(1 — e M), which is a standard predator-prey model (MAY; $981), and the parameters are Dp =
Dp=1,4=15,B=0.22,C=5.

for stability. This condition is illustrated in Fig. 6.

When p and £ are in the unstable regime, numerical solutions of the reaction-
diffusion equations (3) subject (6) again consist of a wave front moving across the domain.
Immediately behind the front is a band of periodic travelling waves, of amplitude given
by (15); however these waves are unstable and behind the leading band of periodic waves
the solution consists of irregular oscillations, arising from this instability. A typical
solution is illustrated in Fig. 7.

For reaction-diffusion systems not of A-w form, there is no analytical analogue of the
stability formula (16): to derive such an analogue would require a formula for the
predicted periodic wave and a formula for periodic wave stability, both of which are
lacking. However, numerical solutions have the same qualitative form as in the A-o case
for a wide range of systems, including in particular the calcium signalling model (12)
discussed in Section 2.

In the case of periodic waves behind invasion, I have again to rely on numerical
observation, but the form of the solutions is qualitatively very similar. A typical case for
a predator-prey model is illustrated in Fig. 8. Behind the invasive wave front there is a
band of periodic waves, and further back these degenerate into irregular oscillations. In
many cases, there is in fact no visible band of periodic waves, with irregular oscillations
immediately behind the invasive front. I hypothesise that this is because although periodic
waves do form, they destabilise so fast that they are never actually seen; however, itis very
difficult to verify this using numerical tests.

The major outstanding issue concerns the nature of the irregular oscillations. Is this
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Fig. 9. The evolution of a small perturbation applied to the irregular wake region in the solution illustrated
in Fig. 7. The solution was solvedup toa time ¢ =75 exactly as described in the legend to Fig. 7, obtaining
the solution at the first time illustrated there. 1 then continued the solution for two sets of initial conditions,
one without any perturbation (simply the continuation of the numerical solution), and the other with a
small perturbation applied to the middle of the irregular region: specificaily 0.01 was added uniformly
to u and v at all space points in the region 49 < x < 51. The figure illustrates the development of this
perturbation, calculated as the difference between the two solutions. The perturbation both grows and
expands spatially as time increases. I plot only the difference in the u solutions; however the difference
in the v solutions develops in a qualitatively similar way.

an example of spatiotemporal chaos, or is there some underlying order? I have used two
essentially unrelated approaches to investigate this, both numerical. The first approach is
very simple: I apply a small, spatially localised perturbation to a region of irregular
oscillations, and follow its evolution in space and time. In a wide range of cases, the results
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are the same; the perturbation grows and expands in both directions away from its original
location (Fig. 9). This implies a sensitivity to perturbations that is characteristic of chaotic
behaviour; when corresponding perturbations are applied to stable periodic waves, they
decay very rapidly.

My second approach to studying the nature of the irregular oscillations is an attempt
to find bifurcation sequences that are recognisable as traditional routes to chaos. To do this
I have focussed on A-w systems, and considered numerical solutions on a relatively small
finite domain. On such a domain, periodic travelling waves will only occur for slightly

unusual boundary conditions, and I impose r,=0and 6, = , f A(r') . Here r and @are polar

coordinates in the u-v plane, as explained in Section 2, and 7* is a positive constant. These
boundary conditions mean that the periodic wave of amplitude r* is a solution for any
domain length. I then considered varying r*, for a fixed domain length and a particular A(.)
and o(.), and studying the corresponding variation in the long-term numerical solution of
(3). This is a very expensive numerical procedure and I have only considered one A-o
system in detail, namely A(r) = 1 — r2, o(r) = 3 — r2. The full results of this study are
presented elsewhere (SHERRATT et al., 1995b; SHERRATT,1995), and  will only summarise
them here. When r* is close to one, the periodic wave of amplitude 7* is stable. However,
as r* decreases, the wave becomes unstable, and the long-term behaviour changes from
constant r and 6, to periodic temporal oscillations at all space points. As r* is decreased
further these periodic oscillations in r and 6, themselves lose stability, and double in
period. This is the onset of a period doubling cascade leading to temporally irregular
oscillations. For even smaller values of r* there is a window of regular behaviour followed
by a series of bifurcations to tori, which again lead to irregular behaviour.

These observations have intrinsic interest from a dynamical systems viewpoint, but
in the context of the present paper, the key result is simply the observation of a period
doubling cascade and bifurcations to tori. These are well-known routes to chaos in
ordinary differential equations, and provide strong evidence that the irregular oscillations
observed in these finite domain computations are temporally chaotic. In the case of
irregularities in the wave of evolving periodic waves, whether from exponentially
decaying initial data or behind invasive wave fronts, the situation is of course slightly
more complex, because the spatial domain occupied by the irregular oscillations is
continually growing. Thus the spatiotemporal irregularities in these cases are in fact
perpetual transients in a progression towards chaos.

5. Conclusions

Periodic travelling waves are a fundamental solution form of oscillatory reaction-
diffusion equations in one space dimension. I have discussed ways in which these waves
arise naturally in oscillatory systems, and have explained the rather complex mode
selection procedure by which a particular wave is selected from the continuum of possible
waves. [ have also described the way in which the selection of an unstable wave can result
in the natural generation of spatiotemporal irregularities from quite regular initial
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conditions, and have presented evidence that these irregularities are in fact an example of
spatiotemporal chaos. These results have two basic types of application. The first of these
are mathematical applications, providing important insight into the dynamical structure
of oscillatory reaction-diffusion equations, with particular implications for the study of
two-dimensional solution forms such as spiral waves and target patterns. The second area
of application is oscillatory biological and ecological systems. In particular, the results
make specific predictions for intracellular calcium signalling and predator-prey invasion,
which I have discussed. Many other biological and chemical systems are also oscillatory,
and the behaviour I have discussed may also be important in a number of these other
systems.

This work was supported in part by grants from the Nuffield Foundation and the Royal
Society of London. lam grateful to James Sneyd (Christchurch), Mark Lewis (Utah), Barry Eagan
(Utah), Andrew Fowler (Oxford), Hans Othmer (Utah) and Todd Kapitula (Utah) for helpful
discussions concerning various aspects of this work.
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