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Spatial pattern formation is one of the key issues in developmental biology. Some
patterns arising in early development have a very small spatial scale and a natural
explanation is that they arise by direct cell-cell signalling in epithelia. This ne-
cessitates the use of a spatially discrete model, in contrast to the continuum-based
approach of the widely studied Turing and mechanochemical models. In this work,
we consider the pattern-forming potential of a model for juxtacrine communication,
in which signalling molecules anchored in the cell membrane bind to and activate
receptors on the surface of immediately neighbouring cells. The key assumption
is that ligand and receptor production are both up-regulated by binding. By linear
analysis, we show that conditions for pattern formation are dependent on the feed-
back functions of the model. We investigate the form of the pattern: specifically, we
look at how the range of unstable wavenumbers varies with the parameter regime
and find an estimate for the wavenumber associated with the fastest growing mode.
A previous juxtacrine model for Delta—Notch signalling studiedCwpllier et al.

(1996 J. Theor. Biol. 183 429-446) only gives rise to patterning with a length
scale of one or two cells, consistent with the fine-grained patterns seen in a number
of developmental processes. However, there is evidence of longer range patterns in
early development of the fruit fliprosophila The analysis we carry out predicts

that patterns longer than one or two cell lengths are possible with our positive feed-
back mechanism, and numerical simulations confirm this. Our work shows that
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juxtacrine signalling provides a novel and robust mechanism for the generation of
spatial patterns.

© 2000 Society for Mathematical Biology

1. INTRODUCTION

Nearly all of the existing mathematical models for spatial pattern formation in
developmental biology are based on continuum processes. However, the cellular
diversity exhibited in early development does not appear on such a macroscopic
scale. Indeed, why individual cells acquire specific fates is most likely to be a con-
sequence of cellular interactions. Nearest-neighbour communication or juxtacrine
signalling is one important way in which this is thought to occur. In this paper we
develop a model that provides a novel and robust mechanism for patterning arising
from nearest-neighbour interactions.

1.1. Continuum models for pattern formation.Reaction—diffusion systems have
been a major focus of interest sindaring (1953 proposed the chemical pre-
pattern approach in his seminal paper of 1952. He showed that, under certain
conditions, chemicals can react and diffuse in such a way as to produce hetero-
geneous spatial patterns of chemical concentration. Once established, the pre-
pattern is interpreted by the cells which then differentiate accordingly. Thus, once
the initial pattern has been laid down, cellular development is independent of the
pattern-generating mechanism. Turing systems have been applied to a large num-
ber of biological situations. For exampléauffmanet al. (1979 presented one

of the first practical applications to early segmentation of the embryo of the fruit
fly Drosophila while Murray (1993 applied reaction—diffusion systems to animal
coat patterns at the beginning of the 1980s. Recent workagaet al. (1997

has looked at the applications to skin patterns of some marine fish, considering a
confined Turing system on a growing domain.

Most applications of the Turing theory have one common feature: they are con-
sidered in the context of a homogeneous environment where the model parameters
are constant across the domain. However, as experimental evidence suggests, some
embryological systems may exhibit environmental inhomogeneities. The form of
Turing patterns in such cases was analyseBégsonet al. (1993. They con-
sidered a two-species reaction—diffusion system where the dispersal rate of one
species varied in a simple step-wise manner, and discussed its application to the
development of cartilage pattern in embryonic chick limb. More recevilsoney
et al. (1999 have investigated the interaction between oscillatory dynamics and
Turing pattern formation in a heterogeneous environment. The importance of such
work has been highlighted since the identification of Turing patterns in chemi-
cal systems, by astetset al. (1990. Such chemical reactions have provided ex-
perimental observations that illustrate the interaction of Turing (spatial) and Hopf
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(temporal) instabilities@ulos et al., 1996. A detailed review of the application
of reaction—diffusion theory to chemical systems and its biological implications is
given byMaini et al. (1997.

Mechanochemical theory has a much shorter history. Developed by Oster, Mur-
ray and colleagues in the early 1980s, mechanochemical models reflect the laws of
mechanics as applied to tissue cells and their environment; an issue which is not
addressed by pre-pattern models. All parameters involved are in principle mea-
surable, since the models are based on specific biological and biochemical mecha-
nisms. In contrast to Turing systems, there is no separation between the pattern for-
mation and morphogenetic processes in mechanochemical mechanisms, enabling
them to adjust to external disturbances. Mechanochemical models have been ap-
plied to a variety of patterning problems, such as feather germ primdvtlierdy
et al, 1983 and cartilage formation in the vertebrate linthsteret al., 1985. Re-
cent work on wound-healing in mammalian skin is an important example of how
the models can be adapted to obtain an understanding of morphogenesis in living
tissue Murray et al., 1988 Olsenet al., 1995.

Both the Turing and mechanochemical approaches are based on continuum mod-
els and this is not always biologically appropriate. In particular, some patterns
arising in early development have a very small spatial scale; examples include
mesoderm induction iXenopugReilly and Melton, 199Band the patterning in
Drosophilaimaginal discs $errano and O’Farrell, 1997 A natural explanation
for such patterns is that they arise by direct cell—-cell signalling in epithelia, a mi-
croscopic process, which necessitates the use of a spatially discrete model.

1.2. Juxtacrine signalling. Cellular communication has traditionally been di-
vided into autocrine, paracrine and endocrine molecular activity. These mean re-
spectively that the molecule acts only on the cell which secreted it, on neighbouring
cells via extracellular diffusion, and on all cells within a tissue. However, within the
close-packed cellular structure of epithelia another form of communication is pos-
sible: ‘juxtacrine signalling'—as it was termed bjassagé (1990Q. In this pro-
cess the signalling molecules anchored in the cell membrane bind to and activate
receptors on the surface of immediately neighbouring cells. There are two main
types of juxtacrine signalling molecules: (i) those that only exist in membrane-
bound forms, for example thBrosophila proteins Boss and Delta which bind
respectively to the receptors Sevenless and Ndtelwis, 199§; (ii) those that
are membrane-bound precursors of soluble paracrine ligands, such as epidermal
growth factor EGF) and the closely related transforming growth facioft Gro)
(Massageé, 1993. In the latter case, the relative rates of cleavage and decay of
the membrane-bound form determine the relative importance of paracrine and jux-
tacrine signalling modes.

Collier et al. (1996 were the first to consider explicit mathematical modelling of
juxtacrine communication when they investigated the pattern-forming potential of
Delta—Notch signalling durin®rosophiladevelopment. Their model incorporates
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lateral inhibition; a type of cell-cell interaction whereby a cell fated in a particular
way inhibits its neighbours from developing similarly. This is controlled by a neg-
ative feedback loop: the more inhibition a cell delivers to its neighbours, the less
it receives back from them, and the more it is consequently able to deliver. The
work by Collieret al. showed that, provided the feedback was sufficiently strong,
such a nearest-neighbour lateral inhibition mechanism is capable of generating by
itself the fine-grained patterns observed in early development. However, many
membrane-bound growth factors act in a quite different way, by up-regulating their
own production. Models that incorporate such positive feedback have been pro-
posed in three recent papers studying juxtacrine signal rakigeik (1999 has
adapted the Collieet al. model to study transforming growth fact8r{TGFg)
juxtacrine signalling, with particular application Xenopusmesoderm induction;
wherea®©Dwen and Sherratt (1998ndOwenet al. (1999 have investigated signal
range in a more generic model for juxtacrine communication. In this work, we con-
sider the pattern-forming potential of the model develope®iasen and Sherratt
(1998, in which the key nonlinearity is a positive feedback loop.

In Section2, we introduce the model equations and detail the main assumptions.
Using linear analysis in Secti@) we derive conditions for pattern formation which
are dependent on the feedback functions of the model. We then investigate the form
of the pattern: in particular, we look at how the range of unstable wavenumbers
varies with the parameter regime and find an estimate for the wavenumber associ-
ated with the fastest growing mode. In Sectignwe solve the model equations
numerically to confirm and extend our results. The implications of this work and
possible extensions are discussed in Sedion

2. MATHEMATICAL MODEL

The mathematical model consists of a series of three coupled ordinary differen-
tial equations representing ligand—receptor binding, with one set of equations for
each cell. We consider a two-dimensional epithelial sheet which is represented as a
regular array of identical, square cells. For simplicity, we look at behaviour which
is one-dimensional, with ligand and receptor levels varying only in one direction
across this array of cells. The kinetic scheme we use is as generic as possible:
we assume that a single ligand molecule binds reversibly to a receptor on the cell
surface, giving an occupied receptor which is internalized within the cell. In prac-
tice, new ligand and new receptors will be produced at the cell surface through a
combination of recycling, release from intracellular stores,@ddovagproduction
within the cell. This complex series of processes has been modelled explicitly in
a few specific caseZ{gmondet al., 1982 Martiel and Goldbeter, 1987but the
simplifying assumption here is that production of both ligand and receptor occurs
at a rate that increases with the current level of occupied receptors. Such positive
feedback is a central assumption in the model; it is well-documented for a number



Modelling Juxtacrine Patterning 297

of ligand—receptor interactions, including the bindingrefree andeGFto theeGF
receptor EGFR) in keratinocytesClark et al., 1985 Coffeyet al.,, 1987.

Thus, the variables are the number of ligand molecajés, free receptors; (t)
and bound receptots; (t) on the surface of cells in row (an integer) at time.
This gives the equations:

binding dissociation decay production
da; —_— —— — ——
afj
= Th@)fi o+ kabj — dif; +  Pi(bp (1b)
internalization
3bj A~
S = +ka(aj) f; — kabj — kibj (1c)

HereP, andP; represent the synthesis of new ligand and receptor molecules by ep-
ithelial cells. These are increasing functionspfthe number of bound receptors;
the exact form of these functions will be discussed later. The notétioeflects

the juxtacrine communication, indicating an average over neighbouring cells. In
the context of our assumption of a regular grid of square cells, this is defined by

aj_1+2a; +ajq1
4 )

(aj) = etc 2

These terms represent the total number of ligand molecules, free and bound recep-
tors available on the surface of the cells adjacent to those inj rolihe term 2;

enters because two of the four neighbours of any cell are in the same row, and are
thus identical under our assumption of one-dimensional behaviour.

3. LINEAR ANALYSIS OF PATTERN FORMATION

We begin our study of the pattern-forming ability of the juxtacrine system by
analysing the stability of a homogeneous steady state, denoting the equilibrium
levels of ligand molecules and free and bound receptorgabyfe, be). It is
straightforward to show that there is always at least one such steady state. The
trivial state, witha = b = 0, corresponding to the absence of any ligand binding
at the cell surface, is not relevant to pattern formation, since oscillations about
it are not possible. In this section we wish to investigate the temporal stabil-
ity of the homogeneous equilibrium to spatially varying perturbations. We begin
by linearizing the model (1a)—(c) about the homogeneous steady state, setting
aj =a.+4a;, f; = fo+ fj, b; = be + bj, to give:

03,

= —Ka fellj — Kade(T}) + kg (Dj) — dadj + AD; (3a)
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3 f; - - e

—o = —ka(@y) fo — kage f} + kabj — di fj + 7By (3b)
ab; < - L -
Wz'i‘ka(aj)fe'i‘kaaefj — kabj —kib; (3¢)

where(-) is defined by 2). Here A = P/(be) and F = P;(be) are the slopes
of the feedback functions at the steady state; we will show that these are the key
parameters in the conditions for pattern formation. We look for solutions of the
forma; = ae’'tiMl etc., wherd is an arbitrary constant, is the temporal growth
rate and\ is the wavenumber. Each of the averaged terms for the contribution of
neighbouring cells is then of the form

(@j-1+ ij +aj+1) _ PYPISEEY (e* + 2;1+ e ')

with a corresponding reduction forand f. For notational simplicity, we define

(€ +e'+2) cosar)+1

K®) = 2 >

4)
Substituting into the linearized model, dividing throughoutey'* and collect-
ing the terms in matrix form gives:

Ka fe + O + KaacK —kgK — A a
ka feK KaBe +dt +a  —kg—F f]=0. (5)
—Ka feK —kKa@e ke +ki + o b

For nontrivial solutions we require the determinant of this matrix to be zero. Ex-
panding the determinant gives a cubic characteristic equation, denotededy
whose roots determine the stability of the steady std¢x) = o + aja? +
a(K)a + az(K), where

a1 =Kade + Kafe + da +df + kg + ki (6a)
ap(K) = —K?ks fe(Kae + ki) — Kka fe.d 4 dads + (da + d1) (ky + ki)
+Ka fe(kade + df + kg + ki) + Kade(da + ki — F) (6b)
ag(K) = —K?ka felkade(ki — F) + kyd] — Kka fed A
+[Ka fe + dallkade(ki — F) + d (kg + ki)]. (6¢)

For spatial pattern formation we require the steady state to be:

e stable to homogeneous perturbations
e and unstable to inhomogeneous perturbations;

we consider these conditions separately.
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3.1. Stability to homogeneous perturbationsWe first consider conditions for

the stability of the steady state to homogeneous perturbations, which correspond
to imposings = 0 (i.e.,K = 1). This analysis was previously presente®wven

and Sherratt (1998and is repeated here for completeness. For a stable steady
state, we require all the roots &f(«) to have a negative real part. This holds if

a; > 0,a3(1) > 0anda;ax(1)—az(1) > 0. The coefficiens; is strictly positive, so

it remains to investigate the other two conditions. Algebraic simplification shows
that these define two lines itd( F) space which delimit the relevant regions. The
conditionag(1) = 0 yields

di(ka + ki) | difeki difed

Li:F=k + , 7

! Ka2e dade  Cade @
and likewisea;a,(1) — ag(1) = 0 gives
ds f d.d d,+d k;
£23f=ki+da+ fe+ af+(a+ f)(kd+|)
Ka@e
+d§(df + Ky + ki) + daka(ds fe + dade) + kaki fe(az — dy)
Kade(as — da)

fe(ag —df) A

—_ 8
ae(a; — dy) ®)

The homogeneous steady state is stablE lies below the two lines. These lines
both have negative slope and are positive wiea= 0. Their relative gradients
depend on the relationship betwegnandds, independent of the other kinetic
parameters: fod, < ds, the line£; has a more negative gradient than the lihe

ford, > ds, the opposite is true. Furthermore, thr< ds the two lines intersect at

a positive value ofF, whereas fod, > d; the intersection is for positivd. There

are thus four possible geometries for this region, according to the relative slopes
of the lines and the location of their point of intersection; these are illustrated in
Fig. 1.

3.2. Instability to inhomogeneous perturbationsWithin the region of stability

in the A—F plane, we now consider where the steady state is unstable for some
A # 0. Recall thak is a cosine function of the wavenumbeand its range is the
interval[0, 1]. For instability, we require that at least one rootRytr) is positive.
Sinceg is strictly positive, then the conditions for this are either{K) < [0, 1]

such thatyyax(K) — ag(K) < 0, or (2)3IK € [0, 1] such thatag(K) < 0. We
consider these separately:

(1) We defineA(K) = agax(K) — ag(K). We know thatA(1) > 0 in the re-
gion stable to homogeneous perturbations. The coefficiekifoh A(K) is
negative, so that the slope afmust always be decreasing. Direct differenti-
ation shows that the gradient afat K = 0 is always negative. Thus(K)
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Figure 1. Schematic illustration of the possible configurations of the ihe&olid) and

Lo (dashed). The region under both lines is such that the steady state is stable to homo-
geneous perturbations. Graphs (a) and (b) are the two possibilitidg ford ¢, since this
implies that line£, has a more negative slope than lifig, and that the lines must intersect

at a positive value of-. Similarly, cases (c) and (d) corresponditp> ds.

must be a decreasing function @b 1] and since it is positive ak = 1,
it must be positivevK € [0, 1]. This means that\(K) < 0 is not a pos-
sible mechanism for the homogeneous steady state to become unstable to
inhomogeneous perturbations.

(2) ag(K) is also a quadratic function and as in (1) we know that) > O.
However, in this case the sign of the coefficientkot depends orF. Thus
there are two sub-cases to consider: (a) when the coefficiéit isfnegative
and (b) when the coefficient is positive. In the following analysis we will use
the fact that the critical point a3(K) is at:

9)

(a) First we consider the case when the coefficienkéfin ag is negative,

i.e., whenF < ki + %. Thenaz(K) is a decreasing function on
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[0, 1] and by the same argument as in (&3(K) is strictly positive
VK € [0, 1]. Thus for these values oF the steady state is stable to
inhomogeneous perturbations.

(b) We now assume that the coefficienttof is positive; we consider those
values of F > k + %. ThereforeK i is positive and corresponds
to a minimum. This case then subdivides into whetheK(} > 1 or
(i) Kerit € [0, 1]; these are separated in tHe-F plane by the line

kads¢ d¢
T F=k +——
L3:F=k + Koo + Pt

(10)

(i) ConsiderKgi > 1. Since the slope af3(K) is always increasing
and is zero aKit > 1, az(K) must have negative slope over the
interval [0, 1]. Butag(l) > 0, soaz(K) must be positiverK e
[0, 1]. ThereforeKqir > 1 does not give conditions for pattern
formation.

(i) Now considerKqi € [0, 1]. This holds if F lies above the line
L3. In order forag(K) to be negative for somK its minimum
value,az(Kit), must be less than zero. We therefore look for the
bifurcation whenaz(Ki) is equal to zero. This occurs on the
following curve

. L df(2kg + ki) ds 2 kafe-/42
C:F=k+ S i2kaae/ki Cford (11)

The minimum value is less than zero whgties outside the inter-
val between the two values defined iil). However, we have al-
ready assumed th#tlies above the lin&€3 given in (L0). Straight-
forward algebra shows that intersects the curvé at.A = 0 and
at its point of intersection withC;. This means that only those
F greater than the largest of the two values definedLit) are
relevant for pattern formation.

In summary, we have three conditions that delimit the regigndinF) space where
patterns may form:

di (kg + ki) n di feki  df feA

= Kade dade  Oade (122)
d¢ f d.d da+d i
.7:<ki+da+ fe+ af+(ak‘:aef)(kd+k|)

d2(ds + Kg + ki) + daka(ds fe + dade) + Kaki fe(ay — dy)
+
Kade(ay — da)
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Figure 2. Qualitative illustration of the parameter space in4hér plane where pattern
formation is possible. Below the lineg% andL,, the homogeneous equilibrium is stable

to homogeneous perturbations; this is configuration (a) of EigAbove the curveC,

the steady state is also unstable to inhomogeneous perturbations. The region for pattern
formation is therefore defined by tt#-axis, the linesC; and L5, and the curve. For
mathematical convenience, we divide this region into two parts by thellinelefined in
equation 14).

fe(a-l - df)A
e — 12b
ae(al - da) ( )

A (2kg + ki) ds o Kafed?
Fokit =gt g [k had (12¢)

A qualitative illustration of these conditions is given in F&). In particular, it is
clear that patterns are possible for zero ligand feedback=( 0), but not zero
receptor feedback. As we discuss below, the region of pattern formation divides
naturally into two parts.

3.3. Range of unstable wavenumbersWhen A and F lie in the region de-
fined by (L2g—(c), the range of unstable wavenumberssatisfies the inequality
a3(K (1)) < 0. To admit the possibility of a pattern-generating mechanism, the
coefficient of the quadratic term e must be positive. Thus, the range of unstable
A are those lying between the two rootsaf= 0. Solving this equation foK
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gives the following expression for the rootsaaf

\/ (A2 (kade)?(113, ) (F—ki— et ) (F—ki - 23

2kaae<~7:—ki —%>

Ki: Kcrit +

(13)

whereK is defined above in equatiof)(

To further investigate those wavenumbers that we would expect to see in the
solution of the full set of nonlinear equations, we wish to findkheorresponding
to the fastest growing mode; this is the pattern that we expect to dominate. Firstly,
we look in more detail at the form of the dispersion relat®g@) = o2 + a;a® +
a,(K)a + ag(K) = 0 to show that there is only one possible positive real root and
estimate the which gives the largest value of this root; recall thds the growth
rate of perturbations with wavenumiyer

For the parameter regime where patterns may develop, we already know that
a; > 0 andag(K) < 0. It remains to consider the form of the coefficientagf
ax(K), for K € [0, 1]; ax(K) is defined in €b). The coefficient oK ? is negative,
so that the slope af;(K) is always decreasing, with the maximum valuagfK )
atK = —A/2(kaae + kg) < 0. Moreovera;ax(1) > az(1) > 0, wherea; > 0,
so thatay(1) > 0. Thereforeax(K) > 0 for all K € [0, 1]. Thus, the coefficients
of «? and« are both positive for the whole range Kf, and soP(«) is strictly
increasing for > 0. SinceP(0) = ag(K) < 0, P(«) must have a unique positive
real root,o* say, which increases as the magnitudeggK) increases. The exact
way in which this occurs also dependsaiK): if we considerP («) for smalla
and neglect the nonlinear ternag, ~ —az(K)/ax(K). However, it is reasonable to
suggest that a good approximation of Kieorresponding to the largest possible
is given byKit, sinceKit maximizes—az(K) VK € [0, 1]. Moreover, we expect
Kit to be an underestimate, rather than an overestimate, for the vafuatafhich
the growth ratex* attains its maximum, sinca,(K) is a decreasing function on
the interval[0, 1] and so forK < K, —az(K)/ax(K) < —az(Keit) /a2 (Kerit).
Numerical simulation of the dispersion relation in Fajllustrates this and shows
that the value oK giving the maximunw* is just aboveK ;.

We will now look at howK i and the range of unstable vary in different areas
of the parameter region. For convenience we divide the region into two parts using

the line
df (kg + ki)
Lo F=k+—— 14

4 o (14)
which intersects the curvé at A = 0 and the linel; at A = k. We refer to
the region of thed—F plane above this line as region I, with region Il below the
line, as illustrated in Fig2. The motivation for this division is that along the line
L4, the smallest root ofz(K), K_ defined in (3), is zero. IfK_ < 0, as is the
case for values aof aboveL,, then the minimum unstable is always zero, since



304 H. J. Wearinget al

0.0002

—0.0002

Figure 3. Dispersion relation plotting*, the largest root oP («) = 0, for the whole range

of K. Those values oK for whicha™ > 0 and perturbations grow satisfy the inequality
az(K) < 0. The dotted vertical line denotég;j;, which is just below the value df that
corresponds to the maximum value @f, the fastest growing mode. This suggests that
Kerit gives a good indication of the pattern mode that we expect to dominate. The values
of the free parameters in the feedback functionsg@re= 8000,m = 1,n = 3. The other
parameters arky = 0.0003 molecule! min=1, kg = 0.12 min1, k = 0.019 mirr 1,

da = 0.006 min 2, ds = 0.03 min~1, fe = 3000,be = 3000,rg = 3000,rm = 25500.

K € [0, 1]. Consequently, in region | the range of unstakilés [0, K. ], whereas
in region Il the range i$K_, K,].

Before considering each region in turn, we need to discuss the relationship be-
tween the functiorK and the wavelength (in terms of the number of cells)

2 2

T T cosi2K — 1)

(15)
Since our system is spatially discrete, we are only concerned with integer values of
the wavelengtlw that correspond to a periodic pattern of ligand molecules and free
and bound receptors on the cell surface; i.e., thosédth integer parts> 2. Thus,
we need only consider € [0, ], and therefore for all unstable < [0, 1] there
exists a unique wavelengtly, > 2. Figure4 illustrates the relationship between
andK for A € [0, ].

For ease of notation in the following discussion, we need to define those wave-
lengths which correspond to the lower and upper limits of the unstébdmd to
Keit (an approximation of the fastest growing mode). Recall Khatare the roots
of az(K) defined in equationl3), and so the lower limit of the unstabl¢ is de-
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Figure 4. Graphs illustrating: (& as a function o for A € [0, 7]; and (b) the relation-
ship between the wavelengéhand K, wherew is defined in equationl§). This shows

that for all unstableK e [0, 1] there is a unique value @f > 2, which are the values of
interest for fine-grained cellular patterns.

fined as mag0, K_), while the upper limit is given b¥X, . We therefore denote_

as 1 plus the integer part of the minimum unstable wavelength, i.e., the wavelength
corresponding to the minimum unstatde Similarly, », denotes the integer part

of the maximum unstable wavelength. Finally, we defigg to be the nearest inte-

ger to the wavelength whef = Ki;. We note that the term ‘single-mode pattern’
will be used to describe a pattern where only a single wavelength is unstable.

3.3.1. Region I. We first consider possible patterning modes in region I, de-
fined as the area below the linég and £, and bounded by th&-axis and the line
L4, see Fig2. The key properties are as follows:

o A wavelength of two cells is always unstable. The range of unstidbig
between 0 anK,, sinceK_ is strictly negative forF above the linel,.
This means that a pattern with wavelength two is possible fo(.4llF)
in this region. Consequently, single-mode patterns with wavelength greater
than two are not predicted in region I.

e There is no upper bound on the unstable wavelengths. Fiyah®ws the
range of possible wavelengths in different parts of region | for specified pa-
rameter values. The region is divided according to the value,dfor each
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(A, F). The range of unstable is extended as botid and F increase; in
particular, those values where only a wavelength of 2 is predicted are close
to. A = 0 and the lineC4. As (A, F) approaches the lingq, it appears from
numerical calculations that, is unbounded. Indeed, if we substitute the
equation forL4, (7), into the equation foK,, (13), algebraic manipulation
givesK, = 1; equivalent tav, — oo. Thus, close to the lin€4, w, is
unbounded, which implies that there are parameter sets in region | where a
pattern of any wavelength is possible. However, if we now consider how
Kt varies, these patterns of arbitrarily long wavelength are not those we
would expect to see.

The wavelength of the fastest growing mode is bounded. Along thelline

Kerit = % whereA € [0, ki]. Above this line, 0< Kgit < Z—“I‘(‘i. Therefore,

in region |, Krit € [0, %) i.e., werit € [2,4). This bound onwgt in region

| means that we would expect wavelengths of 2 or 3 cells to dominate the
pattern form.

3.3.2. Region Il. Region Il is the region of parameter space between the line
L4 and the curve€, bounded by, (in the casal, < df). We analyse the unstable
pattern modes below:

e Single-mode patterns with a wavelength greater than 2 are possible close to

the curveC. The range of unstablé is now betweerK_ andK ., sinceK _
takes positive values in region Il. Therefare > 2 for all (A, F) in this
region. Along the curve€, the roots ofag(K) both equalKi;. Thus, agl
is approached, the only possible wavelength is that correspondiKg;ito

where
A

k- R
There is no upper bound on the unstable wavelengths. F#@jilhgstrates

the minimum and maximum values of the range of unstable wavelengths for
region Il, as well as thoseA, F) where only one pattern mode is predicted
by linear analysisK_ is equal to zero along the lin&,, but varies from 0

to 1 along the curv€ and the lineZ;. Thus the corresponding wavelength,
w_, increases ag decreases as shown in F&fa). From region I, we know
thatK, = 1 alongLi; K, also varies between 0 and 1 along bgthandC.

Thus the maximum unstable wavelength increases without bound with both
A andF, as shown in Fig6(b). Finally, the single-mode patterns form a
small region close to the curvg as is expected sinee. = wit alongC.

The wavelength of the fastest growing mode is unbounded. We now look at
how K varies in region 1.4 takes values between 0 ang . where

2Ki (Ka fe + da)

Amax = m (17)

Kcrit = (16)
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Figure 5. Contours of the maximum unstable wavelength in region |. The region is delim-
ited by theF-axis and the line€1 (solid), £, (dashed) and’4 (F = 0.049). Together
these two graphics represent region | of the parameter regime. The lower diagram is to a
larger F scale to give a clearer picture of the changes in wavelength near to théine

The minimum value of the range of unstable wavelengths is always 2; the region is divided
according to the integer part of the upper limit, denotedsyy Observe that the range

of unstablew extends as bothl andF increase. In particular, those values where only a
wavelength of 2 is predicted are closedo= 0 and the lineL4. Parameter values used in

the calculations are as in Fi8.

is the value of4 at which(C intersectsC;. SubstitutingAnax into the equa-

tion for K¢t alongC (16) givesKqit = 1. ThereforeKi; varies over the
whole interval[0, 1], as A is varied along the curv€. This corresponds

to werit € [2, 00), and so in contrast to region I, the wavelength of the pat-
tern that we expect to dominate has no upper bound for cefiicr) in

region Il. Although this implies that we would expect to see patterns of any
wavelength, that part of the parameter regime where longer wavelengths are
unstable is very small.

In summary, single-mode patterns with a wavelength greater than 2 are only pos-
sible in region Il; and in theory there is no bound on the unstable wavelength for
parts of the parameter space. Multi-mode patterns are possible in both regions,
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with no upper bound for the wavelength in either region; a pattern of wavelength 2
is always unstable in region |. The wavelength corresponding to the fastest growing
mode,wqit, takes the values 2 or 3 in region | with no such bound in region II.

4. NUMERICAL SIMULATION OF THE MODEL

In this section we present the results of numerical simulations testing the predic-
tions of our linear analysis. We begin by briefly discussing the choice of parameter
values and the particular form of the feedback functions.

The parameter values used in the model simulation are for the particular case of
TGFa binding toEGFR. An explanation of the choice of each individual value
can be found in the work dDwen and Sherratt (1998In particular, they based
kinetic parameters on the data\dhaterset al. (1990 for EGF binding toEGFR.
Following this approach, we fix all parameters not associated with the feedback
functions; these values are listed in the legend of BigSpecifying the forms of
the feedback functions; and P¢, is more difficult since the data available on
production rates of ligand and receptors is extremely limited. However, this can be
achieved to some extent because the functions must satisfy a number of conditions
that relate them to experimentally measurable quantities:

() Inthe absence of any ligand binding at the cell surface, there will be a back-
ground level of receptor expression, gay This is a homogeneous steady
state of the model, and so the equation foflb) gives

Ps (0) = d¢ro. (18)

(i) Specifying the equilibrium levels of free and bound receptfusndbe, de-
fines the steady state level of free ligaagl,implicitly through equation (1c)
as well as the values of the feedback functions at the steady state, so that

b + ki
= M’ Pa(be) = I<i be + daae»
Ka fe

(iif) There will also be a maximum possible level of receptor expressigrsay.
This can be estimated experimentally by saturating cells with ligand. Such
saturation means that the rate of internalization of bound receptors must be
equal to the rate of free receptor production, giving

Pf (rm) = kirm- (20)
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Figure 6. Contours of the minimum and maximum unstable wavelengths, and the values
of A andF where a single pattern mode is unstable in region Il. The region is delimited

by the curveC and the linesC4 (on this scale the right-hand axis) add (F = 0.049).

Graphs (a) and (b) show the lower and upper limits of the range of unstable wavelengths
for region Il; w— denotes 1 plus the integer part of the minimum unstable wavelength,
while wy denotes the integer part of the maximum unstable wavelength, as ib. Hige
minimum w increases a§ decreases, whereas the maximunincreases asl and 7
increase. Graph (c) illustrates that, as expected, the single-mode patterns are close to the
curveC; on this scale we can see where patterns of 3, 4 and 5 cells are predicted. Parameter
values used in the calculations are as in Big.
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In our numerical simulations, we will consider feedback functions of Hill form:

CMpm
Pa(b) = 7le+ o (21a)
2
Cb"
P = 4 21
i (b) C3+Cg+bn (21b)

The parameter§,, Cz, C4 andCs are constrained by conditiont8)—(20), leaving

three free parameterS,, m andn, which can be varied in model simulations. Our
objective is to confirm the types of pattern predicted by linear analysis, where we
took A andF to be controlling parameters. It is therefore necessary to consider
how we can varyd andF using the free parameters of the model. By fix@®g m

can be used to varyl andn to vary F. If we increaseC,, a smaller range ah is
required to vary4 over the parameter space.

We solve the nonlinear ordinary differential equations (1a)—(c) numerically us-
ing a fourth- and fifth-order Runge—Kutta method. To simulate cells as part of a
continuum, we take our boundary conditions to be periodic. The initial conditions
are small random perturbations about the homogeneous steady state Ali#in
of the equilibrium.

Before we study the numerical results in detail, we begin by noting that all the
simulations we carried out agree with the analysis concerning when patterns form.
The differences between the predictions of the linear analysis and the numerical
solution of the nonlinear differential equations occur in the pattern wavelengths, as
we shall discuss using the results below.

4.1. Numerical solutions on an array of 30 cells.Firstly, we describe simu-
lations on an array of 30 cells. We would expect to be able to see patterns with
wavelengths of 2, 3, 5, 6, etc. cells, since these are all divisors of 30. Linear analy-
sis predicts that for a few values gfand.F in region I, the unstabl& correspond

to a single wavelength of 2 cells. We solve the model for such parameter values;
the results of the simulations are illustrated in FigNone of the solutions for this

set of parameters form a regular pattern, and those that almost develop to a single-
mode pattern tend towards a wavelength of 4 cells. To examine this phenomenon
more closely, we investigate the temporal evolution of the pattern. We therefore
look at a solution of the model for just one of the variables in more detail, at six
time intervals (Fig8). We use different parameter values for which the uniform
steady state is more unstable to random perturbations and so the pattern evolves
much quicker than in Figi. Nevertheless, the behaviour remains the same. We
observe that the formation of the pattern appears to occur once distinct peaks in the
number of free receptors are established. These peaks then grow to the detriment
of the number of free receptors in neighbouring cells; high numbers of receptors
are never found in consecutive cells. It also seems that the distance between the
development of the first peaks determines whether other peaks can evolve between
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them, and if so, with what frequency. We notice from Hghat, over the array of
30 cells, a peak in the number of free receptors corresponds to both a peak in the
number of bound receptors and a trough in the number of ligand molecules.

Intuitively, we can explain this by considering the situation of a particular gell,
say, where a peak in the number of occupied receptors has formed. The increase in
bound receptors up-regulates production of both ligand molecules and free recep-
tors, although this is more pronounced for free receptors since receptor feedback
is stronger than ligand feedback (i.&.,> .A). This balance in feedback strengths
will be discussed later. The number of ligand molecules decreases due to a com-
bination of weaker ligand feedback and our assumption that the cells are part of
a regular two-dimensional grid; so that there is always an excess of free receptors
on two identical neighbouring cells to bind to ligand in cgllkeeping the level
of ligand low. Once established, the peaks in free and occupied receptors jn cell
grow, while those in neighbouring cells,— 1 andj + 1, decrease. This can be
explained by the competition to bind to ligand molecules in gethose cells with
fewer free receptors will bind to less ligand and form fewer bound receptor com-
plexes. The number of occupied receptors on the surface ofjcell$ andj + 1
therefore decreases, and consequently reduces their production of free receptors.
The relative size and position of initial peaks in bound receptors thus dictates the
subsequent development of the pattern.

The differences between the linear analysis and the numerical solutions for pa-
rameters in region | prompted us to test the analysis by solving the linearized equa-
tions (3a)—(c) numerically. For different parameter sets, the pattern wavelength
observed in each case was in agreement with the linear analysis. Therefore, we
can only conclude that the nonlinearities in the model override the wavelengths
predicted by the linearized system.

For parameters in region Il, single-mode patterns of a range of wavelengths are
predicted by linear analysis and this is confirmed in numerical simulations. More-
over, the separation of the peaks depends crucially on the feedback strengths; nu-
merical investigation demonstrates that increasing the strength of ligand production
induces longer range patterns. Fig@rshows the results of simulations in which
the strength of receptor up-regulatiaf)(is kept fixed while the strength of ligand
feedback ) is allowed to vary. In these simulations, we observe patterns with
wavelengths of between 5 and 15 cells as ligand feedback is increased. The out-
come of these numerical studies agrees qualitatively with our analytical predictions
for werit, the wavelength that we expect to dominate in the solution of the model.

If the strength of receptor feedback is also increased, then numerical results (not
shown) indicate that the average wavelength decreases. Therefore, the longer range
wavelengths are generated by the strongest feedback in ligand production and the
weakest feedback in receptor production that still enable patterns to evolve.

4.2. Numerical solutions on an array of 60 cells.By doubling the number of
cells in the model, regular patterns of wavelength 4 are now a possible solution
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Figure 7. Three solutions of the model for 30 cells, each corresponding to different
(random) initial conditions. Linear analysis predicts the formation of a pattern with a
wavelength of 2 cells. In all the simulations of the nonlinear equations for these parameter
values we observe no regular form of pattern. The nearest solution to a pattern with a
wavelength of four cells is illustrated in (a); a regular pattern of mode 4 is not possible
in this case since 4 is not a divisor of 30. Notice that peaks in the number of free and
bound receptors, which are always at least four cells apart, correspond to troughs in the
number of ligand molecules. Intuitively, we can explain this by considering the situation
of a particular cell,j say, where a peak in the number of occupied receptors has formed.
Production of ligand molecules and free receptors is up-regulated by bound receptors until
the point of saturation; hence the high number of free receptors. However, the number of
ligand molecules decreases due to our assumption that the cells are part of a regular two-
dimensional grid; so that the high number of free receptors in two identical neighbouring
cells bind to the ligand molecules in cgll The values of the free parameters in the
feedback functions ar€, = 2500,m = 0.1013 andh = 3.1059. The other parameters

are as in Fig3. The profiles are for = 1800 h.
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Figure 8. Temporal evolution of the free receptor profile in a solution of the nonlinear
model. Between 18 and 24 hours, several distinct peaks appear. Once established, these
peaks grow to the detriment of the number of free receptors in neighbouring cells. This
can be explained by the ‘competition’ to bind to ligand molecules in cells with such high
numbers of receptors. From Fig.we can see that cells where these peaks occur have
the smallest numbers of ligand molecules, and so free receptors in neighbouring cells have
fewer ligands to bind to. Therefore the number of occupied receptors on the surface of
neighbouring cells decreases, which reduces their production of free receptors. The dis-
tance between the early peaks appears to determine whether other peaks will consequently
form between them, and if so, with what frequency. The values of the free parameters in
the feedback functions af& = 2500,m = 1 andn = 3.5. Timet is given in hours. The

other parameters are as in F3y.
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Figure 9. The bound receptor profile for five different simulations of the model. Longer
range patterns are generated by increased ligand feedback: the distance between the peaks
in occupied receptors increases as the strength of the ligand production increases, the weak-
est feedback being in (a) and the strongest in (e). This agrees qualitatively with the predic-
tions of the linear analysis for the wavelength that we expect to dominate in the solution of
the full model. The values of the free parameters in the feedback functio@s ate2500,

n = 3 andm varies in each simulation as follows: (a) 0.8, (b) 1.0, (c) 1.5, (d) 1.87 (e) 1.95.

As mincreases, the strength of ligand up-regulatidn,increases. The other parameters

are as in Fig3. Timet = 1800 h.

form. We start by looking at simulations for those parameters in region | where
linear analysis predicted pattern formation with a wavelength of 2 cells. This is the
situation illustrated in Fig7 for 30 cells. FigurelOshows that, as in the case of 30
cells, we do not observe a regular form of pattern in the solution of the nonlinear
model: as the initial conditions vary, the pattern form changes. To check that a pat-
tern of mode 2 was unstable for these parameters, we used as our initial conditions,
perturbations of wavelength equal to 2 cell lengths about the homogeneous steady
state, and observed the solution over time. The pattern did not decay and so we
conclude that the linear analysis is correct in predicting that a wavelength of two
cells is unstable for these parameter values.
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Figure 10. Three solutions, (a), (b), (c) of the model for 60 cells, each corresponding to
different (random) initial conditions. The parameter values are the same in all three cases,
as given in Fig7. Linear analysis predicts the formation of a pattern with a wavelength
of 2 cells. In all the simulations of the nonlinear equations for these parameter values we
observe no regular form of pattern. Tirhe= 3600 h.

4.3. Multi-mode solutions. The parameter values used in the above simulations
were all for regions where linear analysis predicts a single unstable wavelength.
We now consider some parameter regions where linear analysis predicts a range
of unstable wavelengths. Solution of the nonlinear equations for parameter values
in region | where wavelengths 2, 3 and 4 are predicted to be unstable by linear
analysis results in no regular form of pattern (not shown). However, the peaks in
the number of free and bound receptors are at similar levels to those in solutions
with previous parameter sets. Figureillustrates simulations for values of and

F in region | where the unstable wavelengthgange from 2 to 56. Theyit
corresponding t& .i—an approximation of the fastest growing mode—is 2. The
solution is quite different from previous simulations: again there is no regular form
of pattern, but here we see many more peaks in the number of receptors, and much
lower levels of ligand molecules and occupied receptors.
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Figure 11. Solution of the nonlinear model for 60 cells. Linear analysis predicts the forma-
tion of a pattern with a wavelength between 2 and 56 cells. The pattern we expect to dom-
inate is of mode 2; this wavelength corresponds to the fastest growing mode. The levels
of each variable in the solution are quite different from those seen in previous simulations:
the peaks in free receptor numbers are double those inlBjgvhile there is a marked
reduction in the number of ligand molecules and bound receptors. Although no regular
pattern forms, there are fewer cells between each peak in the number of free and bound
receptors. The values of the free parameters in the feedback functio@s ate2500,

m = 11170 anch = 12.3041. The other parameters are as in Biglimet = 10000 h.

In summary, even with the variety of patterns described above, the mechanism
exhibits a robustness throughout the numerical results: each pattern consists of
high isolated peaks. In terms of cell development, this means that there are always
two distinct fates, one adopted by the cells with high levels of bound receptors and
another by their neighbours.

5. DIsSCUSSION

Previous work has shown that juxtacrine signalling can generate patterns of wave-
length 2 cells, as one might expect for a nearest-neighbour mechanism. In particu-
lar, Collier et al. (1996 studied a discrete model for Delta—Notch signalling during
development. Their model is considerably different from ours because of the par-
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ticular details of the Delta—Notch system; the model includes lateral inhibition of
neighbouring cells via a negative feedback loop involving two variables—in con-
trast to our three-variable model which has positive feedback. They found that this
feedback mechanism only gives rise to patterning with a length scale of one or
two cells, which is consistent with the fine-grained patterns seen in a number of
developmental processes.

Here we have shown the much more surprising result that, when combined with
positive feedback in ligand and receptor expression levels, juxtacrine signalling can
generate a wide range of longer wavelength patterns. Linear analysis of our model
predicts that patterns of a length scale longer than one or two cells are possible;
and we observe such patterns in the numerical simulations. Indeed, patterns with a
longer range have been characterized during early development in the fruit fly. One
such example is during neuroblast segregation irCttesophilaembryo Skeath
and Carroll, 1992 Another is in the developing eye of thgrosophilg which
consists of a reiterated pattern of 800 unit eyes known as ommatidia. In each
ommatidium there are eight photoreceptor neurons or retinula cells. Juxtacrine
signalling by the ligand Boss to the receptor Sevenless triggers just one of the
retinula cells (R7) to differentiate, enabling the fly to detect ultraviolet light, while
the other seven cells adopt different fat&gp(rsky and Rubin, 1994 A similar
patterning process takes place in the developing eye of the flour Heisttdium
(Friedrich, 1998.

The patterns we observe in our simulations are generated over timescales ranging
from hours to days, depending on the strength of the pattern-generating instability.
The model we are proposing is generic, and the timescale of pattern formation
implied by our parameter values may be inappropriate for particular applications.
Indeed, some of the mechanisms involved in early development are likely to be
quicker than the binding of GFe to EGFR. However, this is a ligand—receptor
system for which there exists an extensive amount of empirical data, and in the
absence of complete data sets for other juxtacrine signalling molecules, we have
used this system in our simulations for consistency.

We have shown that pattern formation in our model for juxtacrine signalling is
dependent on parameters of the feedback functions. The linear analysis we carried
out to derive the conditions for pattern formation is similar to techniques used
by Turing (1953 to investigate diffusion-driven instability in reaction—diffusion
systems. Furthermore, the juxtacrine term in our model appears to be similar to
the discretized form of one-dimensional diffusion. However, it is the nature of
the spatial coupling that distinguishes the patterning mechanism considered in this
work from Turing models. For the purposes of this discussion, the average can be
written in @ more general form, such that

aj-1+ ni1aj +aj41

(qj) =
Hn2

for constantgt; andu,, whereu; = 2, u, = 4 gives the specific form used in our
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model. There is an argument for allowipg > 2, in the case where the molecule
acts in both a juxtacrine and autocrine manner. Also, if weuget O then this
corresponds to the purely one-dimensional case of a single row of cells. However
the substitutiont; = —2, which gives the central difference approximation, would
not make sense biologically within the context of our model; likewise= +2
does not give the discretized form of a partial derivative. As an aside, we mention
that for the casei; = 0, the patterns we observe in numerical simulations (not
shown) have one distinct difference from those of our model; the absence of a
contribution from cellj to the local average allows peaks of receptors to form in
consecutive cells. Another important distinction between the Turing mechanisms
and ours is the need for thresholds. Continuum patterning mechanisms require the
imposition of thresholds in order to determine cell fate. In contrast, the nature of
the patterns generated by our model with their high isolated peaks gives a robust
framework for determining cell fate, without the need for such arbitrary levels.
Additionally, there are known systems of juxtacrine signalling molecules whereas
evidence of diffusing morphogens in developmental biology remains elusive.
There are numerous extensions which could be carried out to the present work.
A natural step would be to consider the problem in two dimensions for varying
geometrical structuresCollier et al. (1999 investigated pattern formation on a
hexagonal cellular network. The model itself could be extended to incorporate
other biologically relevant features, such as cell movement and cell polarization;
the latter could arise from receptors moving on the cell surface while remaining
bound within the cell membrane. As mentioned in Seclippome growth factors
that are primarily membrane bound can also be cleaved to give a freely diffusing
form; we would therefore need to include some paracrine signalling in the model.
This is particularly relevant to signalling via tles R pathway in the developing
eye ofDrosophila(Freeman, 1997
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