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Abstract. Invasions in oscillatory systems generate in their wake spatiotemporal oscillations,
consisting of either periodic wavetrains or irregular oscillations that appear to be spatiotemporal
chaos. We have shown previously that when a finite domain, with zero-flux boundary conditions,
has been fully invaded, the spatiotemporal oscillations persist in the irregular case, but die out in a
systematic way for periodic traveling waves. In this paper, we consider the effect of environmental
inhomogeneities on this persistence. We use numerical simulations of several predator-prey systems
to study the effect of random spatial variation of the kinetic parameters on the die-out of regular
oscillations and the long-time persistence of irregular oscillations. We find no effect on the latter, but
remarkably, a moderate spatial variation in parameters leads to the persistence of regular oscillations,
via the formation of target patterns. In order to study this target pattern production analytically, we
turn to λ–ω systems. Numerical simulations confirm analagous behavior in this generic oscillatory
system. We then repeat this numerical study using piecewise linear spatial variation of parameters,
rather than random variation, which also gives formation of target patterns under certain circum-
stances, which we discuss. We study this in detail by deriving an analytical approximation to the
targets formed when the parameter λ0 varies in a simple, piecewise linear manner across the do-
main, using perturbation theory. We end by discussing the applications of our results in ecology and
chemistry.
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1. Introduction. Invasions are a widespread phenomenon in biology and chem-
istry, for instance, the spread of one animal population into a region occupied by
another, the invasion of a wound space by a surrounding cell population, the move-
ment of a reaction front as one chemical is converted to another, etc. Mathematical
modeling of invasions is extensive, dating back to Fisher’s work [10] on the spread of
an advantageous gene and Skellam’s [32] use of a reaction diffusion equation to study
ecological invasion. Recent modeling work predicts that many of the most interesting
invasion effects occur in oscillatory systems, such as cyclic predator-prey interactions
or oscillatory chemical reactions.

Although some work has been done on spatially and/or temporally discrete models
for oscillatory systems [17, 37, 29], the most widely used model type is an oscillatory
system of reaction-diffusion equations. By this, we mean that the kinetic ordinary
differential equations contain a stable limit cycle. In models of this type, invasions
leave behind them spatiotemporal oscillations. These can be simply a periodic wave-
train moving in parallel with the invasion [6], but in many cases have the form of
either a wave-train moving more rapidly than the invasion, or a complex pattern of
irregular spatiotemporal oscillations [28]. These latter behaviors occur via a complex
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wave-train selection mechanism [28, 30], with irregular oscillations arising when the
selected wave-train is unstable. Related instances of irregular oscillations generated
in oscillatory reaction diffusion systems are given in [25, 9, 20].

Recently, we studied the long-term behavior of these spatiotemporal oscillations
after the whole of a finite domain had been invaded, for the most important case of
zero-flux conditions at the ends of the domain [13]. We considered the case when the
invasion (for example, of a prey population by predators) is initiated at one end of the
domain and spreads across to the other end. Numerical simulations showed that when
irregular oscillations are generated behind the invasion, these persist after the whole
domain has been invaded—even in very long time simulations. Contrastingly, when
regular spatiotemporal oscillations were generated these died out towards the purely
temporal oscillations of the limit cycle. This die-out begins with a decrease in the
spatial frequency of the oscillations at one side of the domain, which then progresses
across the domain, with a simultaneous progression of increase in the amplitude of
the oscillations (to the limit cycle amplitude). In order to study the manner of the
die-out in more detail we used a caricature model, which showed the same phenomena
of persistence of irregular oscillations and die-out of regular oscillations in numerical
simulations. Analysis of this simpler system then gave an approximation to the tran-
sition fronts occuring during the die-out, and a measure of the rate of die-out, in terms
of model parameters, which can be related back to the parameters in more general
oscillatory systems in some cases.

The results of this previous work can only be applied to real oscillatory systems
once two key questions have been answered. First, are the phenomena seen in ho-
mogeneous environments robust to the introduction of inhomogeneities? In addition,
will inhomogeneities result in new phenomena, not seen in the homogeneous case?
Examples of the latter have been observed in nature. In the Belousov–Zhabotinskii
reaction it is known that target patterns almost always have an impurity in the center,
and so occur in fewer numbers in a highly purified system [38]. It is also thought that
inhomogeneities are necessary for the formation of spiral waves in cardiac tissue [27];
it is these spiral waves which result in abnormal heart rhythms.

There are clearly many ways in which spatial inhomogeneity can be created.
We focus on achieving this inhomogeneity by spatial variation of parameters, and
there are two very different means of accomplishing this; either there is a simple,
functional variation with spatial position imposed on some parameter(s), or the vari-
ation is “noisy”—randomly generated. Much of the work on the latter has been with
spatiotemporal noise, rather than the purely spatial noise which we consider. An
exception is the work, on discrete time and space models of host-parasitoid interac-
tions, by Comins, Hassell, and May [5] and Holt and Hassell [12], in which it is shown
that noisy spatial variation of demographic parameters can stabilize the system. In
particular, in [5], it is demonstrated that spiral patterns and spatiotemporal chaos
remain clearly evident even with quite high levels of noisy patch-to-patch variation.
Lattice patterns, however, are easily disrupted.

The possibilities for functional variation of parameters are huge, and so the con-
sequences cannot be described generally, but we discuss various examples below. For
reaction-diffusion equations, explicit spatial variation has been shown to have impor-
tant consequences in the areas of traveling wave propagation and pattern formation.
In [39], Xin considered a scalar reaction-diffusion equation with a cubic kinetic term,
where the diffusion coefficient is allowed to vary with spatial position. He showed that,
if the variation of the diffusion coefficient from its mean is sufficiently large, then trav-
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eling waves no longer exist, so that a wave front will begin to propagate from given
initial conditions, but will then stop advancing—a phenomenon known as quench-
ing. A similar result was found in [33], where Sneyd and Sherratt model calcium
wave propagation in inhomogeneous media. Calcium waves can be either excitable or
self-oscillatory. In the excitable regime, the authors used a scalar reaction-diffusion
equation on a domain with a “gap”—a region where the kinetics are set to zero—to
derive a critical gap width, above which waves cannot propagate. In the oscillatory
regime, they used a piecewise constant spatial variation of the kinetics, in a system
of two reaction-diffusion equations, with periodic regions where the kinetics are set
to zero, and demonstrated numerically how these passive regions disturb the periodic
plane waves which propagate behind an invading front. Piecewise constant spatial
variation was also used by Shigesada [31] to study the effects of a heterogeneous
environment on the spread of a single species. There, an invasion condition was de-
termined, which depended on the patch sizes and on the diffusivities and growth rates
of the species within the two different types of patch.

The consequences of spatial variation for pattern formation are less obvious, but
just as important in reality. Although the Turing mechanism for pattern formation
has been widely studied, the usual assumption of a uniform domain often does not
fit with that used in experiments or in natural pattern forming systems. It has been
shown that allowing spatial variation of parameters, in ways which are more applicable
to experiments or nature, can lead to quite major alterations in the patterns which
can be expected at different points in parameter space, and the bifurcation sequences
observed [1, 2].

Spatial heterogeneity has also been shown to have quite major effects on interact-
ing populations. Using a system of two weakly coupled reaction-diffusion equations
with spatial variation of the kinetics, Cantrell, Cosner, and Hutson [3] showed that the
spatial heterogeneity resulted in the permanence of populations which would other-
wise have become extinct. Also, Pascual [24] showed that large-scale spatial variation
in kinetics can induce chaotic oscillations in cyclic predator-prey systems. Spatial
heterogeneity can also lead to a different outcome of competition than that which
occurs in a spatially homogeneous environment [23, 4], and to altered success of the
predator in predator-prey systems, depending upon the location of favorable hunting
grounds [4].

The effects of spatial variation have also been investigated in spatially discrete
systems. Chains of coupled oscillators can be used to model lamprey locomotion,
and any variation of parameters along the length of the fish could be important to
its swimming efficiency. Kopell and Ermentrout [16] analyzed a system of N weakly
coupled oscillators, in the continuum limit as N → ∞, where the natural frequency of
the oscillator, and its coupling strength to each of its neighbors, were allowed to vary
smoothly and slowly along the chain. A special case which they consider is where there
is a local region of lower/higher natural frequencies (with coupling strengths equal
along the chain). They show that a sufficiently large frequency difference can result
in effects not localized to the region of the chain with altered frequencies—including
reversal in direction of the wave from the changed region to one of the boundaries.
Similar effects are shown to result from local regions of weakened coupling.

The existence of target pattern solutions of reaction-diffusion systems on infinite
domains has been extensively studied. Hagan [11] showed that stable target patterns
exist whether or not impurities are present, but that they will arise from typical initial
conditions only if impurities which tend to locally increase the frequency are present.



1016 ALISON L. KAY AND JONATHAN A. SHERRATT

Kopell [15] used a similar approach in the special case of λ–ω systems, showing that
such a local increase in frequency is sufficient to produce one- or two-dimensional
target patterns, but that it has to be sufficiently large, in magnitude and extent, to
produce three-dimensional patterns.

In this paper, we consider the effect of spatial inhomogeneities on the persistence
of oscillations on a finite (one-dimensional) domain with zero-flux boundary condi-
tions. Although our analytical results are quite general we use cyclical predator-prey
systems as a case study, in order to have a specific application in mind. We begin
(section 2) by presenting the results of numerical simulations of invasion of a noisy do-
main for predator-prey systems in the oscillatory regimes, considering the long-term
behavior, after the invasion front has crossed the domain. We use the term “noisy
domain” to mean that the parameters vary randomly across the spatial domain, but
are fixed in time. Then, in sections 3 and 4, we use a caricature model to study
the behavior in more detail; first verifying that the same behavior is seen for noisy
variation of parameters, then using a piecewise linear change in the parameters across
the domain.

2. Spatially varying parameters in predator-prey systems. In this section
we present numerical results on the invasion of a prey population by predators on a
noisy domain. Our results have ecological significance, which will be discussed at the
end of the paper; however, we discuss the predator-prey example at this stage in order
to motivate, via a concrete example, the work on a more generic system in sections 3
and 4.

We consider reaction-diffusion systems with the form

∂h

∂t
= Dh

∂2h

∂x2
+ fh(h, p, x),(1a)

∂p

∂t
= Dp

∂2p

∂x2
+ fp(h, p, x),(1b)

where p(x, t) and h(x, t) denote predator and prey densities, respectively, at time t
and position x in a one-dimensional spatial domain and Dp and Dh are the diffusion
coefficients. Biologically realistic kinetic terms fp and fh will have two nontrivial
equilibria, a “prey-only” steady state which we take to be p = 0, h = 1 by suitable
rescaling, and a “coexistence” state, p = ps, h = hs. For cyclical populations, this
coexistence state will also be unstable and will lie inside a stable limit cycle in the
kinetic phase plane. We have considered three standard sets of predator-prey kinetics,
all of which have such a stable limit cycle for appropriate parameter values:

fh(h, p) = h(1− h)− p(1− e−c(x)h), fp(h, p) = b(x)p(a(x)− 1− a(x)e−c(x)h),

(2)

fh(h, p) = h(1− h)− hp

h+ c(x)
, fp(h, p) =

a(x)ph

h+ c(x)
− b(x)p,(3)

fh(h, p) = h(1− h)− a(x)hp

h+ c(x)
, fp(h, p) = b(x)p

(
1− p

h

)
.(4)
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Here a(x), b(x), and c(x) are positive parameters in all cases. Pascual [24] has pre-
viously studied models of this type with large-scale, linear variations in parameter
values, showing that this can induce chaotic oscillations. Here we consider the quite
different case of small spatial oscillations in parameter values.

We begin by presenting the results of numerical simulations of invasion on finite
spatial domains where the kinetic parameters a, b, c are allowed to vary in a random
way across the domain. We solve (1) with (2), (3) or (4) numerically on 0 < x < L,
with zero-flux boundary conditions at x = 0 and x = L, and initial conditions h =
1, p = 0 on l < x < L for some l � L, with a nonzero initial value of p on 0 < x < l.
This corresponds to the introduction of predators at one edge of a domain that is
otherwise occupied entirely by prey. However, we also initially generate a random
variation of some or all of the kinetic parameters (a, say) across the domain. We do
this by choosing “average” values for each of the parameters (aav) and a maximum
percentage by which we will allow them to vary (P ). We then generate the values of
each parameter at each point in our spatial grid by using a random number generator
to choose a number between −1 and 1 (ρ, say, calculated from a uniform distribution),
and setting a = aav + aav × ρ×P/100. Thus we do not change the sign of any of the
parameters (all of which are positive), so the nature of the species interactions remains
unchanged; we are simply changing the relative effects of each of the terms at each
space point, to model varying quality of the habitat. (Note that, if the percentage
variation is large enough, we may, of course, be choosing the parameters at a point
in space in such a way that the stable limit cycle does not exist at that point.) We
then solve using a Crank–Nicolson scheme, in order to determine the effect that the
spatial noise in the parameter values has on the observed behavior of persistence of
oscillations after invasion; the corresponding behavior for homogeneous domains was
described in [13] and was summarized in section 1.

Numerical simulations for a range of parameters show a clear pattern of behavior.
As one might expect, the noisy spatial variation of the parameters has no effect on
the persistence of irregular oscillations after the invasion of a front with an irregular
wake. A very small amount of noise similarly has no noticeable effect on the die-out of
the regular oscillations after the invasion of a front with a regular wake (Figure 1(a)).
Specifically, the die-out occurs as a transition moving across the domain in the op-
posite direction to the invasion, with a gradual increase in spatial wavelength and
amplitude of the spatiotemporal oscillations. However, we found that a moderate
level of noise could lead to persistence of regular oscillations, but usually of a dif-
ferent spatial frequency than that generated behind the invasion, and with sections
of the domain having the wave-trains traveling in opposite directions (Figures 1(b)
and 1(c)). The regular oscillations produced do, though, have a slightly noisy mod-
ulation of their regular shape. The frequency of the periodic plane-wave selected
appears to depend upon the amount of noise—the larger the noise percentage the
higher the frequency—until too large a noise percentage results in the breakdown of
the regular-looking solution to an irregular-looking one (Figure 1(d)).

The same results were seen if we chose the parameter values randomly at fewer of
the space points, interpolating for the values at intervening points, or if just a small
region of the domain had parameter noise, with the parameters taking their average
values outside of this region.

If we continue the integration from a time long after an invading front has crossed
the domain, resetting the values of the parameters at each space point to their av-
erage values, the periodic plane-waves again die out from the whole of the domain.
This occurs in a manner similar to that after the invasion of a wave front with a
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Fig. 1. Numerical simulations of invasion in a cyclic predator-prey system, showing the behav-
ior after an invasive front with a regular oscillatory wake has reached the far side of a finite domain,
with zero-flux boundary conditions and spatially noisy parameters. (a) P = 0.25%, (b) P = 10%,
(c) P = 20%, (d) P = 90%. Graphs (b) and (c) clearly illustrate the persistence of the regular
oscillations, the latter with just one point on the domain from which periodic plane-waves appear
to be diverging, the former with two; in complete contrast to the case with a homogeneous domain
[13] and graph (a), with a very small noise percentage. Graph (d) illustrates the apparently irregular
solution obtained from the regular wake with a high noise percentage on the domain. The solutions
shown are for (1) with kinetics (3) with noise on the parameters a and b but not c, for parameter
values Dh = Dp = 1, aav = 0.15, bav = 0.05, and cav = 0.2.
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Fig. 1. continued.
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regular wake into an homogeneous domain, but with the decrease in frequency of the
spatial oscillations occurring first at the points from which the wave-trains appear
to be diverging, and progressing outwards from there, rather than beginning at one
of the boundaries. The solution then evolves towards purely temporal oscillations,
corresponding to the limit cycle of the kinetics. This die-out to the purely temporal
oscillations of the limit cycle still occurs in most cases for the irregular-looking behav-
ior produced from regular wakes on domains with large noise percentages. We have,
though, found cases where irregular oscillations are produced from regular wakes by
the high noise percentages and persist even when the noise is stopped.

We note here that we can expect there to be some dependence of results on the
size of the domain used. In cases where dynamic spatial patterning can appear, it will
have some characteristic length scale associated with it, and in order for the pattern to
be apparent we require the domain to be sufficiently larger than this pattern’s length
scale; just as the form of Turing patterns is dependent on the size of the domain [21,
pp. 436–448]. We have always worked with domains which are large compared to the
period of the wave-train generated behind invasion.

The ecological implications of these results will be discussed in section 5. Prior
to this, we study in more detail the way in which spatial heterogeneity can lead to
persistence of regular oscillations, using a caricature system of oscillatory reaction-
diffusion equations.

3. Spatially varying parameters in λ–ω systems.

Background. We have been unable to make any progress studying the predator-
prey models (1) with (2), (3) or (4) analytically, for general parameter values. How-
ever, there is a special case in which the systems are much more amenable to analysis,
namely for kinetic parameters close to the Hopf bifurcation, and for equal predator
and prey diffusion coefficients. In this case the kinetics can be approximated by the
Hopf normal form, giving

∂u

∂t
=
∂2u

∂x2
+ λ(r)u− ω(r)v,(5a)

∂v

∂t
=
∂2v

∂x2
+ ω(r)u+ λ(r)v,(5b)

where u and v represent appropriate linear combinations of the predator and prey
densities p and h. Here r = (u2 + v2)

1
2 , with λ(r) = λ0(x) − λ1r

2 and ω(r) =
ω0(x) − ω1r

2, where λ0, λ1 > 0, and we allow λ0, ω0 to vary with spatial position x.
Note that the system (5) is very general, being the normal form of any oscillatory
reaction-diffusion system close to Hopf bifurcation, provided the variables have the
same diffusion coefficient. Thus our calculations will apply to a range of applications
in addition to ecology, and this is discussed further in section 5.

Reaction-diffusion systems of the form (5) are known as “λ–ω systems,” and
were first studied by Kopell and Howard [14]. The key to the analytical study of such
systems is to work in terms of polar coordinates in the u-v plane, r and θ = tan−1 v/u,
in terms of which (5) becomes

∂r

∂t
=
∂2r

∂x2
− r

(
∂θ

∂x

)2

+ r(λ0(x)− λ1r
2),(6a)

∂θ

∂t
=
∂2θ

∂x2
+

2

r

∂r

∂x

∂θ

∂x
+ (ω0(x)− ω1r

2).(6b)
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From this formulation, when λ0(x) ≡ λ0 and ω0(x) ≡ ω0, it is clear that there is
a spatially homogeneous circular limit cycle solution, with amplitude (radius) rc =

(λ0/λ1)
1
2 . Moreover, there is a family of periodic wave-train solutions, which are

also circular in the u-v plane, with amplitude r̂ for any r̂ < rc. The form of these
wave-train solutions is easily determined: substituting r(x, t) = r̂, a constant, into (6)
implies θ(x, t) =

√
λ(r̂)x+ ω(r̂)t+ θ0, where θ0 is an arbitrary constant, which may

be set to zero without loss of generality. Thus the periodic waves have the form

u(x, t) = r̂ cos θ(x, t)= r̂ cos(
√
λ(r̂)x+ ω(r̂)t),

v(x, t) = r̂ sin θ(x, t)= r̂ sin(
√
λ(r̂)x+ ω(r̂)t).

Thus we have a sinusoidal periodic plane wave moving with speed ω(r̂)/
√
λ(r̂) in the

negative x-direction. There is also the mirror image wave, where θ(x, t) = −√λ(r̂)x+
ω(r̂)t, which moves with the same speed in the positive x-direction.

Kopell and Howard [14] derived a stability condition for the periodic wave-train
solutions of λ–ω systems, which in the case of (6) with λ0(x) ≡ λ0 and ω0(x) ≡ ω0

shows that the periodic plane waves are stable if and only if their amplitude r̂ > r̂c,

where r̂c =
[

2λ0

λ1

(
λ2

1+ω2
1

3λ2
1+2ω2

1

)]1/2
. The existence of this precise stability result is in

sharp contrast to more general oscillatory reaction-diffusion systems, for which results
on stability of periodic waves are quite limited [22, 19].

Numerical simulations with parameter noise. We cannot use λ–ω systems
to mimic the invasion process used for predator-prey equations, as there is no equiv-
alent of the prey-only equilibrium, but we can investigate persistence of oscillations
by using appropriate initial conditions. Thus to investigate the persistence of reg-
ular oscillations on finite domains with zero-flux boundary conditions we solve the
equations numerically with initial conditions consisting of a periodic plane-wave of
stable amplitude r̂ > r̂c on the whole of the domain (which is taken sufficiently large
compared to the period of the plane-wave). We consider behavior arising from these
initial conditions when the parameters λ0 and ω0 vary randomly with spatial position
x, in the same way as was described for the parameters in the predator-prey equations
in the preceding section.

Our results showed that, for a very small variation of the parameters, the regular
oscillations still die out, towards the purely temporal oscillations of the limit cycle
(although this is now “noisy”—its amplitude varies slightly with x) (Figure 2(a)).
Figure 3 illustrates this die-out plotted in terms of r and θx, and clearly shows that
it is occuring via transition fronts in r and θx, starting from the right-hand side and
progressing across the domain from there. This is identical to the die-out of regular
oscillations seen on homogeneous domains, and thus the analysis done in that case
[13], where approximations to the transition fronts were derived and an estimate of
the rate of die-out in terms of parameters was obtained, still applies for sufficiently
small noisy variations.

For larger parameter variations though, numerical simulations again show per-
sistence of regular oscillations. However, these oscillations do not consist just of a
single wave-train traveling across the domain; rather the domain is divided into at
least two regions, with a wave-train traveling in the opposite direction, but in phase,
in neighboring regions. That is, we get one-dimensional versions of a series of either
target patterns or shocks (Figure 2(b)). Note that the term “target pattern” refers
to wave-trains diverging from a point, meaning that the group velocities are directed
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a)

1351 < t < 1358

1201 < t < 1208

1051 < t < 1058

901 < t < 908

751 < t < 758

601 < t < 608

451 < t < 458

301 < t < 308

151 < t < 158

1 < t < 8

b)

1351 < t < 1358

1201 < t < 1208

1051 < t < 1058

901 < t < 908

751 < t < 758

601 < t < 608

451 < t < 458

301 < t < 308

151 < t < 158

1 < t < 8

Fig. 2. Numerical simulations showing (a) the die-out towards the limit cycle and (b) the
formation of a target pattern, on a noisy domain. The solutions are for (5), with, respectively, a
0.25% and 15% variation in λ0, ω0 (around their average values of 1 and −1/2, respectively) and
with λ1 = ω1 = 1, from an initial periodic plane-wave of stable amplitude r̂ = 0.9.
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Fig. 3. An illustration of the solution shown in Figure 2, replotted in terms of r and θx. This
shows that the initial regular oscillations are dying out in a way which is identical to that which
occurs on a homogeneous domain, except with a noisy modulation. As in Figure 2, λ0 and ω0
have a maximum noisy variation of 0.25% around average values of 1 and −0.5, respectively, and
λ1 = ω1 = 1. The solutions are plotted as a function of space x (−150 < x < 150), at equally spaced
times (interval 20); the arrows indicate the direction in which the solutions evolve as time increases.

outwards—the phase velocities could be going in either direction, depending on the
exact form of ω(·); the case with wave-trains converging on a point (group velocities
directed inwards) is usually referred to as a “shock.”

The changing of direction of the wave-trains can be seen more clearly by re-
plotting in r, θx coordinates, where sections of “constant” r and θx show the periodic
plane-waves (although there will be a noisy modulation of these constant values), and
a change in sign of θx shows the change in direction of the wave-train (Figure 4). The
way in which θx changes sign—that is, whether it changes from negative to positive or
from positive to negative as x increases—(along with the sign of w(·) evaluated at the
wave-train amplitude) then tells us whether we actually have a target or a shock. This
formulation of the results also allows us to see that a steady state has been reached,
as continuing the integration further results in no significant change to the r, θx plots.
However, if we continue the integration having reset the parameters to their average
values, we see the periodic plane-waves dying out in a manner similar to that seen on
the homogeneous domain, except that it occurs symmetrically from either side of the
point at which the target pattern was centered, rather than progressing inwards from
one side of the domain.

Again, to confirm that we are not seeing a numerical artifact, we allow noisy
variation of the parameters at fewer space points, interpolating for the values at
intervening points, or having just one section of the domain with noisy parameters,
with the parameters taking their average values on the rest of the domain. These
simulations still result in target pattern solutions appearing. The solutions in each
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Fig. 4. An illustration of the final time-plot of the solution in Figure 2(b), replotted in terms of
r and θx. This shows clearly the sections of “constant” r and θx values to either side of a change in
sign of θx, so illustrates that we have plane-waves converging on/diverging from a central point; a
shock/target. It is actually a target rather than a shock, as the group speed of the plane-wave to the
left of the point is negative and that to the right is positive, so the two waves are diverging from the
point. Due to our choice of the function ω(r) = −1/2− r2, the phase velocities are directed towards
the point, and so the waves will appear (on a graph where the time interval between successive time
plots is sufficiently small) to be converging on the point.

case are essentially the same; the only difference being a slightly longer transitionary
period.

Numerical simulations with piecewise linear λ0 and ω0. It is obviously
difficult to get analytic results, even in λ–ω systems, when we have allowed noisy
variation of the parameters. In this section then, we consider an explicit functional
variation of the parameters, which we will show gives similar numerical results to
those for noisy parameters—in particular, giving one-dimensional target patterns if
the domain is sufficiently large—and then, in section 4, we attempt to obtain an
approximate solution in this case. Work in this simpler case may also give us some
insight into why target patterns are produced when the parameters are allowed to
vary randomly across the domain.

Before we begin, we use rescalings to simplify the system. The most general
system in our required form is

∂r̃

∂t̃
=
∂2r̃

∂x̃2
− r̃

(
∂θ̃

∂x̃

)2

+ r̃(λ̃0(x̃)− λ1r̃
2),(7a)
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∂θ̃

∂t̃
=
∂2θ̃

∂x̃2
+

2

r̃

∂r̃

∂x̃

∂θ̃

∂x̃
+ (ω̃0(x̃)− ω1r̃

2) ;(7b)

we will drop the tildes after rescaling the variables. Here the variation of λ̃0, ω̃0

with x̃ which we consider is piecewise linear, taking a constant value in most of
the domain, and a different constant value in a region in the center, with a linear

variation between the two values. Mathematically, we set λ̃0(x̃) = λ0(1 + ρλεf̃(x̃))

and ω̃0(x̃) = ω0(1 + ρωεf̃(x̃)), where λ0, ω0 are constants (λ0 > 0), ρλ,ω are −1, 0

or +1, ε is a small parameter, the domain is −x̃max < x̃ < x̃max and f̃(·) reflects
the piecewise linear variation and is defined explicitly below. We simplify the system
using the rescalings

Ω0 = ω0/λ0, x̃ = x/

√
λ0, θ̃ = θ,

Ω1 = ω1/λ1, t̃ = t/λ0, r̃ = r

√
λ0/λ1,(8)

in terms of which equation (7) becomes

∂r

∂t
=
∂2r

∂x2
− r

(
∂θ

∂x

)2

+ r(λ0(x)− r2),(9a)

∂θ

∂t
=
∂2θ

∂x2
+

2

r

∂r

∂x

∂θ

∂x
+ (Ω0ω0(x)− Ω1r

2),(9b)

where λ0(x) = 1+ρλεf(x), ω0(x) = 1+ρωεf(x), and f(x) = f̃(x/
√
λ0). Thus we have

a system where the limit cycle on a homogeneous domain (f ≡ 0) has amplitude 1.
To be specific, we take Ω0 < 0, Ω1 > 0, which implies that ω(r) = Ω0ω0(x)−Ω1r

2 < 0
for all 0 < r < 1. (This makes it easier to distinguish targets from shocks). We take
f(·) to have the form

f(x) =



x2 + x

x2 − x1
on − x2 < x < −x1,

1 on − x1 < x < x1,
x2 − x

x2 − x1
on x1 < x < x2,

0 otherwise,

(10)

where x1, x2 satisfy 0 < x1 < x2 < xmax.
In our numerical simulations of (9), we expect the size of the domain to affect

the results, and so we consider the specific cases xmax = 10 and xmax = 100, with
x1 = x2/2 = xmax/4. For a fixed value of ε (taken to be 0.01), we can summarize our
results as follows.

When we decrease λ0 or increase ω0 in a region in the center of the domain:
• For xmax = 100, we observe bands of periodic plane waves to either side of the
central region, converging (with phase velocity) to the center. Thus a change
in sign of θx occurs at x = 0, changing from positive to negative as x increases
through zero. That is, we obtain a target pattern solution (Figure 5(a)).

• For xmax = 10, there is still a change in sign of θx at x = 0, however there
are no obvious periodic plane-waves (Figure 5(b)).
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Fig. 5. Graphs illustrating examples of r and θx plots in each of four cases: (a) xmax = 100,
λ0 decreased (ρλ = −1), (b) xmax = 10, λ0 decreased (ρλ = −1), (c) xmax = 100, λ0 increased
(ρλ = +1), (d) xmax = 10, λ0 increased (ρλ = +1), showing the qualitative differences obtained
(solid lines). The dashed lines indicate the region boundaries (−x2,−x1, x1, x2). All of the plots
are solutions of (9) with ρω = 0 (ω0(x) ≡ 1), Ω0 = −1/2, Ω1 = 1, where f(x) is given in (10) and
ε = 0.01, plotted at t = 2000, from initial conditions of a periodic plane-wave of stable amplitude
r̂ = 0.9.

When we increase λ0 or decrease ω0 in the center of the domain:

• For xmax = 100, we observe a small band of periodic plane-waves in the central
region, with little/no spatial variation outside of the region. The plane-waves
move in one direction; no change in sign of θx occurs (Figure 5(c)).

• For xmax = 10, we now get a change in sign of θx at x = 0, but changing from
negative to positive as x increases through zero. No periodic plane waves are
evident (Figure 5(d)).

If both λ0 and ω0 are changed, by the same amount ε,

• our results suggest that the form of the solution is determined by the direction
of change of λ0. For example, when both λ0 and ω0 are increased on a domain
with xmax = 100, we see just one band of periodic plane waves, in the center
of the domain—not a target pattern, as would occur if ω0 was increased but
λ0 remained unchanged across the domain.

Discussion of results of numerical simulations. On a small domain, we
expect that we may not see spatial variation, as it will be the change in the parameter
values in the center of the domain which will select the wavelength of the periodic
plane-waves, and if this wavelength is larger than the domain size, the periodic plane-
waves will not be seen. This domain size effect is demonstrated numerically by doing
simulations on the small domain with larger values of ε; eventually ε is large enough for
small regions with constant r and θx to begin to develop—corresponding to periodic
plane-waves beginning to form. (We remark, however, that when ε is taken too large,
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Fig. 6. Graphs illustrating the change in the form of the steady solution on a large domain
when ε is decreased, for (a) ε = 0.1, (b) ε = 0.01, and (c) ε = 0.001 (solid lines). The dashed lines
indicate the region boundaries (−x2,−x1, x1, x2). The solutions shown are for (9) with ρλ = −1,
ρω = 0 (ω0(x) ≡ 1), Ω0 = −1/2, Ω1 = 1, where f(x) is given in (10), and is plotted at t = 2000
from an initial periodic plane-wave of stable amplitude r̂ = 0.9.

the solution no longer settles down to a steady state. Instead, the point at which
θx = 0 oscillates between −x2 and x2, with a similar oscillation in the shape of
r). Equivalently, periodic plane-waves will not appear on large domains if ε is taken
sufficiently small (the critical size of which is dependent upon the domain size), as
illustrated in Figure 6(c).

On large domains, the form of the periodic plane-waves which develop when λ0

is decreased in the center is dependent upon the value of ε; smaller values of ε lead
to waves with an amplitude closer to 1 (the limit cycle amplitude) and a frequency
closer to 0, until they are no longer evident for very small ε. This is because the
size of the region of the domain in which they form—where flat sections of the r, θx
plots are seen—shrinks as ε decreases; it is “eaten into” by boundary effects. This
is illustrated in the sequence of graphs in Figure 6. Decreasing the values of x1 and
x2 also has the effect of increasing the amplitude and decreasing the frequency of the
selected periodic plane-wave; only very slowly at first, but then faster, as x1, x2 → 0.
This effect is illustrated by the series of graphs in Figure 7. The value of x2 can also
affect the extent of the plane-waves: intuitively, a value of x2 closer to xmax leaves
less room for the plane-waves, as they only occur in regions outside of −x2 < x < x2.

The complete difference in the form of the solutions when λ0 is increased or de-
creased in the center of a large domain is striking. When λ0 is decreased, the symmetry
of the domain is maintained by the solution which evolves from the nonsymmetric ini-
tial conditions—a one-dimensional target pattern. The same is true of the solution
on a smaller domain (for a fixed ε) (compare Figures 5(a) and (b)). However, when
λ0 is increased, the domain symmetry is broken by the solution which evolves on a
large domain, whereas it is maintained on small domains (compare Figures 5(c) and
(d)). Symmetry breaking must then occur as the domain size is increased, with ε
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Fig. 7. Graphs illustrating the change in the form of the steady solution on a large domain
when x1 and x2 are decreased. The sequence shows that, as x1 and x2 decrease, the amplitude of
the periodic plane-waves, r, moves closer to the limit cycle amplitude, 1, and the spatial frequency
of the periodic plane waves, θx, decreases to 0. The dashed lines indicate the region boundaries
(−x2,−x1, x1, x2), which are taken as (a) x1 = 25, x2 = 50; (b) x1 = 12 x2 = 24; and (c) x1 = 6,
x2 = 12 (solid lines). The solutions shown are for (9) with ρλ = −1, ρω = 0 (ω0(x) ≡ 1),
Ω0 = −1/2, Ω1 = 1, where f(x) is given in (10) and ε = 0.01, plotted at t = 3000 from an initial
periodic plane-wave of stable amplitude r̂ = 0.9.

fixed (or, alternatively, as ε is increased on a fixed domain). We now investigate this
behavior in more detail by constructing an analytical approximation to the solution,
by treating (9) as a perturbation problem in the small parameter ε.

4. Perturbation solution for piecewise linear λ0. In this section, we study
analytically the case of piecewise linear spatial variation of the parameter λ0, as
defined by the function f(·) in (10), with ω0 constant (ρω = 0). To do this we solve
for steady state solutions of the equations (9), by expanding for small ε, separately in
the three regions 0 < x < x1, x1 < x < x2, and x2 < x < xmax. We then join these
solutions, and apply boundary conditions at x = 0 and x = xmax; we require that r
is symmetrical about x = 0, with θx antisymmetric, so that rx(0) = θx(0) = 0.

4.1. Regular solution of the problem. We look for steady solutions of (6),
satisfying rt = 0 and θt = σ, where σ is an unknown constant, independent of time.
Note that the solution we are looking for is a steady state for r and θx, but not for θ:
u and v continue to oscillate. If we then write φ = r′/r and ψ = θ′ (where ′ is d/dx),
(9) becomes

r′ = φr,(11a)

φ′ = ψ2 − φ2 + r2 − 1− ρλεf(x),(11b)

ψ′ = σ(ε)− 2φψ +Ω1r
2 − Ω0,(11c)



SPATIAL NOISE STABILIZES PERIODIC WAVE PATTERNS 1029

where we have used λ0(x) = 1 + ρλεf(x) with ρλ = ±1, where f(x) is as in (10).
We then assume a series solution of (11), in each of the three regions, of the form

r(x; ε) = r0(x) + γ1(ε)r1(x) + . . . ,

φ(x; ε) = φ0(x) + α1(ε)φ1(x) + . . . ,

ψ(x; ε) = ψ0(x) + δ1(ε)ψ1(x) + . . . ,

σ(ε) = σ0 + β1(ε)σ1 + . . . ,

where γ1, α1, δ1, and β1 are functions of ε to be determined, but which tend to zero
as ε → 0. Substitution of these forms into (11) then gives leading-order solutions of
r0(x) = 1, φ0(x) = ψ0(x) = 0 (and σ0 = Ω0 − Ω1); this is as expected, since when
ε = 0 there is no variation of parameters across the domain, and so the only steady
solution on the finite domain with zero-flux boundary conditions is the limit cycle.
The equations for the higher-order terms then depend on the region being considered.

In the center region, 0 < x < x1, f(x) ≡ 1, and so the next-order terms in (11)
give the equations

γ1r
′
1 = α1φ1,(12a)

α1φ
′
1 = δ21ψ

2
1 + 2γ1r1 − ρλε,(12b)

δ1ψ
′
1 = β1σ1 + 2Ω1γ1r1.(12c)

For these equations there are two distinguished limits; that is, there are two possible
expansions for which a maximum number of terms in (12) are of leading order. Usually,
the appropriate rescaling in a perturbation theory problem is a distinguished limit
in this sense. In this case, the two possibilities are γ1 = α1 = δ21 = β2

1 = ε, or
γ1 = α1 = δ1 = β1 = ε. Detailed consideration of both cases shows that it is the
second of these two limits which is important. In this case, we have to solve

r′1 = φ1,(13a)

φ′1 = 2r1 − ρλ,(13b)

ψ′
1 = σ1 + 2Ω1r1,(13c)

which, using our requirements that r be even and ψ odd about x = 0, gives

r
(c)
1 =

Ac

2

(
e
√

2x + e−
√

2x
)
+
ρλ
2
,(14a)

φ
(c)
1 =

Ac√
2

(
e
√

2x − e−
√

2x
)
,(14b)

ψ
(c)
1 =

Ac√
2
Ω1

(
e
√

2x − e−
√

2x
)
+ σ1x+ ρλΩ1x(14c)
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in the center region (c), 0 < x < x1, where Ac is the one remaining constant of
integration. Similarly we can find solutions in each of the other two regions, with this
same distinguished limit. Specifically, we obtain

r
(m)
1 =

1

2

(
Ame

√
2x +Bme

−√
2x
)
+ C(x2 − x),(15a)

φ
(m)
1 =

1√
2

(
Ame

√
2x −Bme

−√
2x
)
− C,(15b)

ψ
(m)
1 =

1√
2
Ω1

(
Ame

√
2x −Bme

−√
2x
)
− CΩ1x

2 + (2CΩ1x2 + σ1)x+ cm(15c)

in the middle region (m), x1 < x < x2, and

r
(o)
1 =

1

2

(
Aoe

√
2x +Boe

−√
2x
)
,(16a)

φ
(o)
1 =

1√
2

(
Aoe

√
2x −Boe

−√
2x
)
,(16b)

ψ
(o)
1 =

1√
2
Ω1

(
Aoe

√
2x −Boe

−√
2x
)
+ σ1x+ co(16c)

in the outside region (o), x2 < x < xmax, where C = ρλ/2(x2 − x1) and Am, Bm, cm
and Ao, Bo, co are constants of integration.

We can now join the center and middle solutions at x = x1, and the middle and
outside solutions at x = x2, to determine the values of the constants Am, Bm, cm and
Ao, Bo, co in terms of Ac, ρλ, x1 and x2. This gives the solution

(17)

r
(c)
1 = Ac cosh

√
2x+

ρλ
2
,

ψ
(c)
1 = Ω1

√
2Ac sinh

√
2x+ (σ1 + ρλΩ1)x,

r
(m)
1 = Ac cosh

√
2x+

C√
2
sinh

√
2(x− x1) + C(x2 − x),

ψ
(m)
1 = Ω1

√
2Ac sinh

√
2x+ CΩ1 cosh

√
2(x− x1)− CΩ1(x

2 − 2x2x+ 1 + x2
1) + σ1x,

r
(o)
1 = Ac cosh

√
2x+

C√
2

(
sinh

√
2(x− x1)− sinh

√
2(x− x2)

)
,

ψ
(o)
1 = Ω1

√
2Ac sinh

√
2x+ CΩ1

(
cosh

√
2(x− x1)− cosh

√
2(x− x2) + x2

2 − x2
1

)
+ σ1x.

Here we have not written the explicit solutions for φ1 in each of the regions, as we
always have φ1 = r′1.

If we now apply the zero-flux boundary conditions to the outside solutions at
x = xmax, that is, r

′
1(xmax) = 0 and ψ1(xmax) = 0, we find

σ1 = −ρλΩ1
x1 + x2

2xmax
,(18a)
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Ac = −ρλ cosh
√
2(xmax − x1)− cosh

√
2(xmax − x2)

2
√
2(x2 − x1) sinh

√
2xmax

.(18b)

We remark that it is at this point that the solution using the alternative distinguished
limit “fails,” as the application of the zero-flux boundary conditions leads to the

conclusion that ψ
(o)
1 = 0, where ψ(o)(x) = 0 + ε1/2ψ

(o)
1 (x), and so we would have to

look at the next terms in the series solution, which would be precisely those we have
obtained using the second distinguished limit.

The asymptotic solution up to order ε is then

r(x; ε) = 1 + εr1(x),(19a)

θx(x; ε) = εψ1(x),(19b)

σ(ε) = ω0 − 1 + εσ1,(19c)

where r1 and ψ1 are given in (17) for each region 0 < x < x1, x1 < x < x2 and
x2 < x < xmax, and Ac and σ1 are given in (18). The solutions for x < 0 are then
produced by appropriate reflections of the solutions on 0 < x < x1, x1 < x < x2

and x2 < x < xmax, respectively, using the fact that r is even and ψ is odd about
x = 0. This asymptotic solution thus fits well with the results of numerical simulations
on domains which are sufficiently small for a given value of ε, or alternatively, for
large domains given a sufficiently small ε (Figure 8). However, it cannot recreate
the periodic plane-waves, which are seen only if ε or xmax are sufficiently large—the
solution is not uniformly valid for large x, as terms in the solution which should be
O(ε) become O(1) for x sufficiently large. The solution is thus only valid for larger
domains if we decrease ε sufficiently.

4.2. Singular solution to the problem. Motivated by the form of the regular
solution, we look for a solution valid on larger domains and for larger values of ε,
which will show the regions of periodic plane-waves (i.e., constant r and θx). The
perturbation problem is singular in this case, and a separate rescaling is required for
values of x comparable with 1/

√
ε. A full perturbation analysis would involve the use

of two small parameters, ε and 1/xmax, since we require xmax → ∞ sufficiently fast
as ε→ 0 in order for the solution to retain its form; however we do not attempt this.
Rather, we adopt the simpler approach of rescaling separately for x small and large,
and matching the two rescaled solutions. Numerical simulations indicate that it is
necessary for x2 to be large in order for target patterns to form clearly, and so we take
X2 = ε1/2x2, where X2 is fixed as ε→ 0 (x2 = O(ε−1/2)). Thus we rescale x in both
the outside and middle regions. The point x1 can be large or small, in comparison
to 1/

√
ε, but we consider only the simpler case of small x1, so that no rescaling is

required in the center region.

Rescaling in the outside region. We begin by rescaling for large x, based at
the boundary point xmax; that is, we set Xo = ν(ε)(x−xmax), where ν is an unknown
function of ε to be determined by matching, but with ν(ε) → 0 as ε→ 0. We then let
r(x) = R(Xo), φ(x) = Φ(Xo), and ψ(x) = Ψ(Xo), and rewrite equation (11) in terms
of X;

ν
dR

dXo
= ΦR,(20a)
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Fig. 8. Graphs illustrating the match of our approximate solution (19) (solid lines) with numeri-
cal solutions (crosses) on small domains when λ0 is decreased in the center of the domain (ρλ = −1).
The comparison is excellent. The dotted lines indicate the region boundaries (−x2,−x1, x1, x2). The
numerical solutions are for (9) with λ0(x) = 1 + ρλεf(x), Ω0 = −1/2 and Ω1 = 1, where f(x) is
given in (10), xmax = 10, x2 = 5, x1 = 2.5 and ε = 0.01, plotted at t = 2000 from an initial periodic
plane-wave of stable amplitude r̂ = 0.9. The comparison is just as good in the case when λ0 is
increased in the center of the domain (ρλ = +1), but the r solutions are reflected in r = 1 and the
θx solutions are reflected in θx = 0.

ν
dΦ

dXo
= Ψ2 − Φ2 +R2 − 1,(20b)

ν
dΨ

dXo
= σ(ε)− 2ΦΨ + Ω1R

2 − Ω0.(20c)

We assume a series solution of (20) of the form

R(Xo; ε) = R0(Xo) + Γ1(ε)R1(Xo) + . . . ,

Φ(Xo; ε) = Φ0(Xo) +A1(ε)Φ1(Xo) + . . . ,

Ψ(Xo; ε) = Ψ0(Xo) + ∆1(ε)Ψ1(Xo) + . . . ,

σ(ε) = σ0 + β1(ε)σ1 + . . . ,

with Γ1, A1,∆1, and β1 functions of ε which are o(1) as ε → 0. However, here
σ = θt remains the same as for the regular solution, so that we have β1 = ε. Again,
when ε = 0 we know that the steady solution is the limit cycle, and so R0 ≡ 1
and Φ0 = Ψ0 ≡ 0. Substitution of these forms into (20) then gives the next-order
equations

νΓ1
dR1

dXo
= A1Φ1,(21a)

νA1
dΦ1

dXo
= ∆2

1Ψ
2
1 + 2Γ1R1,(21b)
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ν∆1
dΨ1

dXo
= εσ1 + 2Ω1Γ1R1.(21c)

The distinguished limit of these equations is then ν = ∆1 = Γ
1/2
1 = A

1/3
1 = ε1/2.

Thus we must solve the equation dΨ1/dXo + Ω1Ψ
2
1 = σ1, with R1 = −Ψ2

1/2 and
Φ1 = dR1/dXo. There are four possible solutions of this:

Ψ1 =
a

Ω1
tan(−a(Xo +K)), or

a

Ω1
cot(a(Xo +K)) if a2 = −σ1Ω1 > 0,

or
a

Ω1
tanh(a(Xo +K)), or

a

Ω1
coth(a(Xo +K)) if a2 = σ1Ω1 > 0,(22)

where K is the constant of integration in each case.
To get flat sections, corresponding to target patterns, we choose the tanh solution

for Ψ1, and by setting K = 0 we can then satisfy the zero-flux boundary conditions
required at x = xmax. Thus we have the solution in the outside region as

r(o)(x) = R(ε1/2(x− xmax)) = 1− ε
σ1

2Ω1
tanh2(ε1/2

√
σ1Ω1(x− xmax)),(23a)

ψ(o)(x) = Ψ(ε1/2(x− xmax)) = ε1/2
√
σ1

Ω1
tanh(ε1/2

√
σ1Ω1(x− xmax)),(23b)

to first order.
Note that in the case ρλ = +1, we see that we cannot construct a shock pattern

using our above approximate solutions. This is because the shock requires ψ > 0 for
x > 0, but

ψ(o) = ε1/2
√
σ1

Ω1
tanh(ε1/2

√
σ1Ω1(x− xmax)) < 0 for all x ∈ (x2, xmax).

This provides some validation for our results from the numerical simulations with a
piecewise linear parameter variation in section 3, where we observed that ρλ = +1
gave just one band of periodic plane-waves in the center region; not a shock pattern,
as we might have expected given the target pattern in the case ρλ = −1. However,
this is not absolute proof that such a shock solution does not exist: It remains a
possibility that one of the other three possible solutions in (22) for Ψ1 could give a
solution in the form of a shock, but we have not investigated this.

Rescaling in the middle region. To find an approximate solution in the middle
region, it is necessary for us to find a composite between a rescaled solution and an
unrescaled solution in this region. We only do this for the case ρλ = −1 (λ0 decreased
in the center of the domain), as this is the case that gives the target pattern we are
attempting to approximate; we have already demonstrated that it is not possible to
get a shock pattern in the case ρλ = +1 as a mirror image of the target for ρλ = −1,
as the outside region solution does not have the required form for this.

We must first recalculate our unrescaled solution, under the assumption x2 =
O(ε−1/2) rather than O(1), as was used in section 4.1. Writing X2 = ε1/2x2 in
(11) with f(x) = (x2 − x)/(x2 − x1) = (X2 − ε1/2x)/(X2 − ε1/2x1) = 1 to leading
order, and again assuming solutions in the form r(x) = 1 + γ1(ε)r1(x) + . . . , φ(x) =
α1(ε)φ1(x) + . . . , ψ(x) = δ1(ε)ψ1(x) + . . . , gives the same distinguished limit as
previously; γ1 = α1 = δ1 = ε. Solving the leading-order equations then gives

r(m) = 1 +
ε

2

(
Ame

√
2x +Bme

−√
2x
)
− ε

2
,(24a)
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ψ(m) = ε
Ω1√
2

(
Ame

√
2x −Bme

−√
2x
)
+ ε(σ1 − Ω1)x+ εcm,(24b)

where r(m) = 1 + εr
(m)
1 , ψ(m) = εψ

(m)
1 to O(ε) and Am, Bm, cm are constants to be

determined by matching and joining.
We now consider solutions in this middle region for large x, using the rescaling

Xm = ν(ε)x. We let r(x) = R(Xm), φ(x) = Φ(Xm), and ψ(x) = Ψ(Xm), and
rewrite (11) in terms of Xm in the middle region (where f(x) = (x2 − x)/(x2 − x1)):

ν
dR

dXm
= ΦR,(25a)

ν
dΦ

dXm
= Ψ2 − Φ2 +R2 − 1 + ε

(
X2 −Xm

X2 − νx1

)
,(25b)

ν
dΨ

dXm
= σ(ε)− 2ΦΨ + Ω1R

2 − Ω0.(25c)

We again assume a series solution of (25) of the form

R(Xm; ε) = 1 + Γ1(ε)R1(Xm) + . . . ,

Φ(Xm; ε) = A1(ε)Φ1(Xm) + . . . ,

Ψ(Xm; ε) = ∆1(ε)Ψ1(Xm) + . . . ,

σ(ε) = Ω0 − Ω1 + εσ1 + . . . ,

with Γ1, A1,∆1, and β1 functions of ε which are o(1) as ε → 0. (We have again
assumed the limit cycle solution when ε = 0.) Substitution of these forms into (25)
then gives the next-order equations

νΓ1
dR1

dXm
= A1Φ1,(26a)

νA1
dΦ1

dXm
= ∆2

1Ψ
2
1 + 2Γ1R1 + ε

1

X2
(X2 −Xm),(26b)

ν∆1
dΨ1

dXm
= εσ1 + 2Ω1Γ1R1.(26c)

The distinguished limit of these equations is then ν = ∆1 = Γ
1/2
1 = A

1/3
1 = ε1/2.

Thus we must solve the equation

dΨ1

dXm
+Ω1Ψ

2
1 =

Ω1

X2

(
Xm +

X2

Ω1
(σ1 − Ω1)

)
,(27)

with R1 = −Ψ2
1/2 − (X2 − Xm)/2X2 and Φ1 = dR1/dXm. The general solution of

(27) can be written in terms of Airy functions, Ai(·), Bi(·), as

Ψ1(Xm) =
1

(Ω1X2)1/3

(
Ai′(z) +Q Bi′(z)
Ai(z) +Q Bi(z)

)
,(28)
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where z =
Ω

2/3
1

X
1/3
2

(
Xm +

X2

Ω1
(σ1 − Ω1)

)
, and Q is a constant of integration to be

determined.
To match the unrescaled and rescaled solutions in the middle region we use the

intermediate limit xη = η(ε)x, with ε1/2 � η(ε) � 1. We first consider matching of
the ψ solutions, where, in terms of the xη, the unrescaled solution is

ψ(m) ∼ − ε
η
(1− σ1)xη

to leading order if Am = 0. (The unrescaled and rescaled solutions will never match
if the unrescaled solution is allowed to increase exponentially with x, and so we must
have Am = 0.) The rescaled solution in the middle region, in terms of xη, is

Ψ(m)(Xm) = ε1/2Ψ1(Xm) = ε1/2Ψ1(ε
1/2xη/η) =

ε1/2

(Ω1X2)1/3

(
Ai′(z) +Q Bi′(z)
Ai(z) +Q Bi(z)

)
,

where z = Ω
2/3
1

(
Xm + X2

Ω1
(σ1 − Ω1)

)
/X

1/3
2 . By Taylor expanding the Airy functions

about z0 = X
2/3
2 (σ1 −Ω1)/Ω

1/3
1 , we can see that in order for this rescaled solution to

match with the unrescaled solution to order ε/η, two conditions must be satisfied:

Ai′(z0) +Q Bi′(z0) = 0,(29)

Ai′′(z0) +Q Bi′′(z0)
Ai(z0) +Q Bi(z0)

= z0.(30)

The latter condition (30) is simply the differential equation for Airy functions, and so
is automatically satisfied, thus we are left with (29), which will enable us to calculate
σ1 once we have determined Q. The r solutions match with no further conditions,
and we have the composite solutions in the middle region

r(m)
comp(x) = 1− ε

2
+ ε

Bm

2
e−

√
2x − ε

2
Ψ2

1(ε
1/2x) +

ε3/2

2

x

X2
,(31a)

ψ(m)
comp(x) = ε1/2Ψ1(ε

1/2x)− ε
BmΩ1

2
e−

√
2x + εcm,(31b)

where Ψ1 is given by (28).

Joining solutions at the region boundaries. Now we must consider joining
these composite middle region solutions with the central solutions at x1 and the
outside solutions at x2, which are, respectively,

r(c)(x) = 1 + ε
Ac

2

(
e
√

2x + e−
√

2x
)
− ε

2
,(32a)

ψ(c)(x) = ε
Ac√
2
Ω1

(
e
√

2x − e−
√

2x
)
− ε(Ω1 − σ1)x(32b)

(from (19) and (14)) and

r(o)(x) = 1− ε
σ1

2Ω1
tanh2(ε1/2

√
σ1Ω1(x− xmax)),(33a)

ψ(o)(x) = ε1/2
√
σ1

Ω1
tanh(ε1/2

√
σ1Ω1(x− xmax)),(33b)

from (23).
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Considering first the join at x1, we need to expand Ψ1(ε
1/2x1) in the middle

solutions, for which we require expansions of the Airy functions and their derivatives

at z = X
2/3
2 (σ1 − Ω1)/Ω

1/3
1 + ε1/2x1Ω

2/3
1 /X

1/3
2 . We do this by Taylor expanding the

Airy functions about z0 = −X2/3
2 (Ω1 − σ1)/Ω

1/3
1 again, and using (29) and (30) we

get Ψ1(ε
1/2x1) ≈ −ε1/2(Ω1 − σ1)x1. Thus we have

ψ(m)
comp(x1) ≈ −εBm

2
e−

√
2x1 + εcm − ε(Ω1 − σ1)x1

= ψ(c)(x1) = ε
Ac√
2
Ω1

(
e
√

2x1 − e−
√

2x1

)
− ε(Ω1 − σ1)x1.(34)

Similarly

r(m)
comp(x1) = 1− ε

2
+ ε

Bm

2
e−

√
2x1

= r(c)(x1) = 1− ε

2
+ ε

Ac

2

(
e
√

2x1 + e−
√

2x1

)
(35)

and

φ(m)
comp(x1) =

dr
(m)
comp

dx
(x1) = −εBm√

2
e−

√
2x1

= φ(c)(x1) =
dr(c)

dx
(x1) = ε

Ac√
2

(
e
√

2x1 − e−
√

2x1

)
(36)

to leading order, and so we must have Ac = Bm = cm = 0.

All that remains to do is to join the middle and outside solutions at x2 = X2/ε
1/2,

which should determine the value of the remaining unknown Q, after which we can
determine the value of σ1 from (29), and so predict the amplitude and frequency of the
periodic plane waves in the target pattern formed when the parameter λ0 is decreased
in the center of the one-dimensional domain. We will only consider joining the ψ
solutions at x2, as the r and φ solutions then follow automatically, with no further
conditions required. Evaluating the composite middle solution, (31b), at x2 = X2/ε

1/2

and equating with the outside solution (33b) at x2 we have

ψ(m)
comp(x2) = ε1/2Ψ1(X2)

=
ε1/2

(Ω1X2)1/3

(
Ai′(z2) +Q Bi′(z2)
Ai(z2) +Q Bi(z2)

)
= ψ(o)(x2) = ε1/2

√
σ1

Ω1
tanh(

√
σ1Ω1(X2 −Xmax)),

where z2 = σ1X
2/3
2 /Ω

1/3
1 and Xmax = ε1/2xmax. So, rearranging, we have

Q = −Ω
1/6
1 Ai′(z2)−√

σ1X
1/3
2 tanh(

√
σ1Ω1(X2 −Xmax))Ai(z2)

Ω
1/6
1 Bi′(z2)−√

σ1X
1/3
2 tanh(

√
σ1Ω1(X2 −Xmax))Bi(z2)

.(37)
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The full solution is then

r(c) = 1− ε

2
,

ψ(c) = −ε(Ω1 − σ1)x,

r(m) = 1− ε

2
− ε

2(Ω1X2)2/3

(
Ai′(z) +Q Bi′(z)
Ai(z) +Q Bi(z)

)2

,

ψ(m) =
ε1/2

(Ω1X2)1/3

(
Ai′(z) +Q Bi′(z)
Ai(z) +Q Bi(z)

)
,(38)

r(o) = 1− ε
σ1

2Ω1
tanh2(ε1/2

√
σ1Ω1(x− xmax)),

ψ(o) = ε1/2
√
σ1

Ω1
tanh(ε1/2

√
σ1Ω1(x− xmax)),

where z = Ω
2/3
1 (ε1/2x− X2

Ω1
(Ω1 − σ1))/X

1/3
2 , X2 = ε1/2x2, Q is given by (37) and σ1

is determined by the condition (29), which is

Ai′(z0) +Q Bi′(z0) = 0

with z0 = X
2/3
2 (σ1 − Ω1)/Ω

1/3
1 .

It should be noted that this solution is valid only when x1 is small, as we would
have to rescale in the central region if x1 were allowed to be large. Figure 9 illustrates
the very good fit of the analytical approximation to the numerical solution, provided
x1 is small: here (29) and (37) have been solved numerically to calculate σ1, which has
the value 0.384 for parameters used in Figure 9. We can thus predict that the target
patterns formed when the parameter λ0 is decreased in the center of a one-dimensional
domain (in a manner given by (10), where x1 = O(1) and x2 = O(ε−1/2)) will have

amplitude r = 1− εσ1/2Ω1 + o(ε) and frequency θx = ε1/2
√

σ1

Ω1
+ o(ε1/2), where σ1 is

determined from (29) with (37). Note that this is consistent with θx =
√
λ(r), as we

expect for plane waves in λ–ω systems. We also have θt = Ω0−Ω1+εσ1+o(ε) = ω(r),
as expected. The restriction to x1 = O(1) means that we do not require a rescaling
for large x in the central region; but this calculation could of course be carried out,
were we to allow x1 = O(ε−1/2). The matching of rescaled and unrescaled solutions
would then occur in the central region, joining with just the rescaled solutions in the
middle and outside regions. This would lead to an equation determining σ1, and so
give the amplitude and frequency of the target pattern produced in this case.

Using the rescalings (8), we see that the target patterns formed in the general
system (7) would have

r̃ =

√
λ0

λ1

(
1− ε

σ1

2

λ1

ω1
+ o(ε)

)
,

ψ̃ = θ̃x̃ = ε1/2

√
σ1λ0λ1

ω1
+ o(ε1/2),

θ̃t̃ = λ0

(
ω0λ1 − λ0ω1

λ0λ1

+ εσ1 + o(ε)

)
.

Using (37) and (29) to calculate σ1 shows that it and σ1λ1/ω1 are increasing func-
tions of Ω1 = ω1/λ1; thus it can be determined how the amplitude and frequency
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Fig. 9. Graphs illustrating the comparison of our matched asymptotic solution (38) (solid lines)
with a numerical solution (dashed lines), in the case where x1 is sufficiently small (O(1)) and x2 is
sufficiently large (O(1/ε1/2)). The value of σ1 is given by numerically solving (29) with (37). The
dotted lines indicate the region boundaries (−x2,−x1, x1, x2). The plots are for x1 = 1, x2 = 20,
xmax = 100, and ε = 0.01, and the numerical solution is of (5) with λ0(x) = 1− εf(x) (ρλ = −1),
where f(x) is given by (10), and is plotted at t = 2000 from an initial periodic plane-wave of stable
amplitude r̂ = 0.9.

of the target patterns will change according to the values of each of the parameters
ω0, ω1, λ0, λ1, and ε. As these parameters can be related to the parameters in more
general oscillatory reaction-diffusion equations close to Hopf bifurcation, it would be
possible to predict how the target patterns produced there depend upon parameter
values.

The case of piecewise linear parameter variation studied in this section is obviously
quite different from the random variations used in section 2. Nevertheless, the analysis
does give a clear insight into the way in which spatial variation of parameters is able to
stabilize periodic wave patterns. The percentage variation must be sufficiently high in
order that 1/

√
ε is comparable with xmax: in this case the addition of spatial variation

is a singular perturbation problem in which periodic wave trains appear even though
they are absent for uniform parameters. It is often clear, from plots like that shown
in Figure 4, that in the case of random parameter variation, the targets have their
centers (where θx = 0) positioned on regions where λ0 is below its average value. Of
course, the random variation will produce many regions where λ0 is decreased, and
the detail of target center selection is a complex problem, outside the scope of our
work.

5. Discussion. In this paper we have considered the long-term behavior after
invasion of a finite region with spatial heterogeneity and zero-flux boundary condi-
tions in oscillatory reaction-diffusion equations—in contrast to the homogeneous finite
domains considered in [13]. In section 2 we used numerical simulations of several dif-
ferent predator-prey systems on spatially noisy domains. This showed that irregular
wakes persist after the initial invasion. The effect on regular wakes depended critically
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on the amount of noise: a small percentage of noise in parameters had no affect on
the die-out of the regular oscillations after invasion—it occured in the same manner
as previously observed in [13] on homogeneous domains, so that the work presented
there is still valid on finite domains with sufficiently small spatial variation of param-
eters. Large noise percentages, though, led to the persistence of regular oscillations
across the domain—in a series of one or more target patterns. Increasing the noise
still further led to the breakdown of the regular wakes to irregular-looking ones, which
persist for a long time and throughout the domain. However, in most of these cases,
and where target patterns are produced after invasion, continuing the numerical solu-
tion after halting the noisy spatial variation of parameters led to die-out of the spatial
oscillations again, to the purely temporal oscillations of the limit cycle.

In section 3 we introduced λ–ω systems and verified that they mimic the behav-
ior of regular oscillations on finite domains where the parameters are allowed to vary
randomly with spatial position, as was observed for predator-prey systems. In par-
ticular, giving rise to target pattern solutions if there is a sufficiently large parameter
variation. The same behavior is also observed for a piecewise linear spatial variation
of the parameters on sufficiently large domains, with a target pattern appearing if
the parameter is decreased in the center of the domain, but just one section of pe-
riodic plane-waves appearing if the parameter is increased there. On small domains
however, periodic plane-waves are not apparent, but there is still a spatially inhomo-
geneous steady state attained. We then (section 4) obtain approximate solutions for
the steady state attained for a λ–ω system with such a spatial variation of a param-
eter, both on large and small domains. This enabled us, in certain circumstances,
to predict the the amplitude and frequency of the periodic plane-waves which will
develop on large domains, given the variation of λ0.

For ecology, the consequences of this work are two-fold. Ecologists are understand-
ably sceptical about the results of theoretical work on a completely homogeneous do-
main, as real systems undoubtably contain some degree of spatial heterogeneity. Our
results show that if this spatial heterogeneity manifests itself as noisy spatial variation
of demographic parameters, and this noise is of a sufficiently small percentage, then
the results gained by working on homogeneous domains still hold. However, larger
environmental variations lead to the persistence of regular oscillations, via the produc-
tion of target patterns. The detection of periodic plane-waves in ecological systems
obviously requires a detailed analysis of spatiotemporal data. This has recently been
carried out for vole populations in the Kielder forest [18], where statistical techniques
were used to show that the observed spatially asynchronous, cyclically time-varying
vole populations correspond to a periodic traveling wave.

It has long been known that impurities can facilitate the formation of target pat-
terns in chemical systems (although such have certainly not been found at the center
of every target pattern), and this work provides further numerical evidence for this.
For the Belousov–Zhabotinskii reaction in the oscillatory regime, it has been demon-
strated experimentally that temperature can affect the amplitude of the oscillation,
with higher temperatures decreasing the amplitude [7, 8]. This could then provide
a method of verifying our results on inhomogeneous finite domains experimentally:
In a one-dimensional reaction vessel with temporal oscillations imposed at each end,
such as that used by Stössel and Münster [34], stable periodic waves could be set
up. Then the boundary conditions could be changed to zero-flux, and a different
temperature imposed in a region around the center of the reaction vessel. Our work
predicts that, for a sufficiently large temperature difference, the result should depend
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critically on whether the temperature in the center of the vessel is higher or lower
than that for the rest of the vessel. If the central temperature is higher, then we
expect a target pattern to form, whereas if the central temperature is lower, then
we expect that the periodic plane-waves will die out; except for a band local to the
region of lower temperature. Another possible experiment could involve oxygen or
light, which are both known to affect the oscillations in the Belousov–Zhabotinskii
reaction [35, 36, 26]. If the reactants were placed on a thin gel layer, in a reaction
vessel that is closed except for a sheet over the top with randomly placed holes to
allow oxygen or light to permeate through, then we could expect regular oscillations
to be stabilized, in the form of target patterns, whereas they would otherwise have
died out. Chemical experiments such as these provide the most effective method of
testing our mathematical predictions.

Acknowledgment. We thank John Merkin for drawing our attention to the
effects of oxygen on the Belousov–Zhabotinskii reaction.
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