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Abstract. A—w systems are an important prototype for the study of reaction—diffusion equations
whose kinetics possess a stable limit cycle. Here I use such systems to investigate the evolution
of periodic plane waves from exponentially decaying initiai data. I begin by considering the
case in which A(.) and w(.) are both monotonic functions. I show that in this case the reaction—
diffusion solution consists of a wave front moving across the domain, with periodic plane waves
behind. I show that the amplitude of these periodic plane waves is the unique solution of a
simple algebraic equation. For some parameter values, the waves of this amplitude are unstable
as partial differential equation solutions and, in this case, the periodic plane waves degenerate
into more irregular oscillations. I go on to consider a case in which A(.) is a cubic polynomial,
of a form so that the algebraic equation goveming periodic plane wave amplitude has more
than one solution. I show that it is the waves of smallest possible amplitude that appear in
the reaction—diffusion solutions, and that there is a novel bifurcation in the partial differential
equations as these waves appear.

PACS numbers: 0340K

1. Introduction

Systems of reaction—diffusion equations whose kinetics possess a stable limit cycle have
been used to model a number of biological and chemical systems (Tyson and Murray 1989,
Courtemanche and Winfree 1991, Agladze et al 1984), and exhibit an extremely wide variety
of solution types. In particular, spiral and scroll waves (Hagan 1982, Winfree and Strogatz
1983a, b, c, 1984) spatiotemporal chaos (Kuramoto 1978, Rovinsky 1987) and periodic plane
waves (Kopell and Howard 1973, Schneider 1983) have all been studied extensively. This
paper is concerned with periodic plane waves, which are waves moving with constant shape
and speed, that oscillate periodically in both space and time. Solutions of this type were
first studied in detail by Kopell and Howard (1973), who proved the existence of a one-
parameter family of periodic plane waves in a wide class of reaction-diffusion systems in
which the kinetic ordinary differential equations possess a stable limit cycle. Subsequent
work has focused on the existence of periodic plane waves, and their stability as partial
differential equation solutions (Ermentrout 1980, Cope 1980, Maginu 1981, Kapitula 1991).
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An issue that has received very little attention in the literature is the type of initial
conditions that give rise to periodic plane waves. I address this question here for a simple
class of reaction—diffusion systems whose kinetics have a stable limit cycle, namely A-w
systems. These are equations of the form

Uy = Uy + A(Nu — w(r)v (1a)
Uy = Ugx +0()u + A(r)v (1b)

where r = (42 + v®)!/2, u and v are functions of space x and time ¢, subscripts , and ,
denote partial derivatives, and A(0) and w(0) are both strictly positive. The kinetics of (1)
have a circular limit cycle of any radius r that is an isolated zero of A(.), which will be
stable if and only if A(.) decreases monotonically on a neighbourhood of r. Following many
previous authors, I study the system (1) as a prototype for more general reaction—diffusion
systems in which the kinetics have a stable limit cycle.

I will consider a number of different functional forms for A(r) and w(r), with A(r) =0
having a unique real positive root, at r = r;, say, in each case. Kopell and Howard (1973)
showed that in such a case (1) has an essentially unique one-parameter family of periodic
plane wave solutions, given by ’

u = cos[w(F)t + )y(f'.)'/zx] 2a)
v = Fsinfw ()t £ A(7)/*x] (2b)

with 0 < 7 < r_. Thus the periodic plane waves are all circular in the u~v plane, and lie
inside the limit cycle of the kinetics. Kopell and Howard (1973) also showed that (2) is
linearly stable as a solution of (1) if and only if

ey 2
AAG) [1 + (‘”—(—'3) ] +7V() <0. k 3)
A(r)
In particular, waves of sufficiently large amplitude are stable, and waves of sufficiently
small amplitude are unstable.
I consider the solution of systems of the form (1) on 0 < x < o0, ¢t > 0, with initial
conditions

u(x,0) = v(x,0) = Aexp(—£x) @4)

where A and & are positive constants, with A small compared to A(.) and w(.). I take
the boundary conditions to be u, v — 0 as x — oo, with either u;, = v, =0 or # and v
specified at x = 0. In a previous publication (Sherratt 1993a), I showed that in the particular
case

M) =do—r"  @@)=ao—r’ ©)

where A, wp and p are positive constants, the solution of (1) evolves from (4) into a wave
front moving in the positive x direction, leaving periodic plane waves behind it. I derived a
relationship for the amplitude of these periodic plane waves as a function of the decay rate
& and the other parameters. Here I extend this work to other A—w systems. In particular I
show that when A(r) is a cubic function with [w(r) — ©(0))? linear, there is a bifurcation
in the amplitude of the periodic plane waves behind the leading wave front as the slope
of [w(r) — w(0)]* passes through a critical value. My motivation for studying a wider
range of A—w systems is the ultimate goal of progressing to more general reaction—diffusion
systems, which I am only able to study numerically at the moment (Sherratt 1993b,¢). An
understanding of the breadth of phenomena possible in A—w systems is an important first
step in this progression.
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2. Monotonic () and w(7r)

It is most convenient to analyse (1) using polar coordinates in u—v space, that is r =
(u? +v?)!/2, 0 = tan~"(v/u), in terms of which the partial differential equations (1) are

re =r\(r) + rey — r6? (6a)

6; = w(r) + Ocx + 2r,0,/r. ' (6b)

When A(.) and w(.) are given by (5), numerical evidence suggests that the exponentially
decaying initial data (4) evolve to transition wave fronts of constant shape and speed in r
and 6,, moving in the positive x direction (Sherratt 1993a). The solutions are essentially
independent of A and the boundary conditions at x = 0. The steady-state values behind the
transition front correspond to a periodic plane wave, and the speed s of the front is given
by

[%‘ +2(0)/¢ 0<&<V/A0)
5= @)

2vA(0) § 2 VA 0). .

}
This speed is familiar from solutions of the Fisher equation (McKean 1975, Larson 1978,
Rothe 1978, Manoranjan and Mitchell 1983), and can be justified intuitively on the basis
that (6a) has the same linearization as the Fisher equation at the leading edge of a transition
front. Numerical solutions for a number of other forms of A(.) and w(.) for which A(.)
is monotonically decreasing and w(.) is either monotonically increasing or decreasing also
exhibit this behaviour of transition wave fronts in r and 6,, with wave speed given by (7),
as illustrated in figure 1. The steady state behind the transition ftont corresponds to periodic
plane waves. ' .

Based on these observations, and following my previous approach (Sherratt 1993a), I
look for solutions of (6) of the form r = 7(z), 6, = ¥ (z), where z = x—st and F(2). ¥(2) »
0 as z — oo. This implies that r(x, t) = 7(x —st) and 0(x, t) = ¥(x — s5t) + w(0)¢, where
W(.) is an indefinite integral of ¥(.). The functions 7(.) and ¥(.) must satisfy a third-order
system of ordinary differential equations:

F' 4 P+ FAMF) —FYr =0 (8a)

V' + (s + 2F /)Y + 0(F) — 0(0) = 0. (8b)
Non-trivial steady states 7 = Fr;, 1} = Jrs of this system have st = [w(0)- — w(Fs)]/s, with
rs a solution of
.. _ [ef) — 07
A(r) = [—s—-—-—— . )
s
When A(.) is a monotonically decreasing function, with w(.) either monotonically
increasing or monotonically decreasing, (9) has a unique solution for 7;. Therefore, one
expects that the steady-state values of r and 6, behind the transition front are just 7 and ¥,
with the ~transi~ti0n front corresppnding to a heteroclinic connection in (8) between 7 = 7,
r'=0,¢ =y, and 7 =7 = ¢ = 0. I have confirmed this numerically for a number of
different functional forms of A and w, and an example is illustrated in figure 2.

i
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Figure 2. An example of the comparison of the transition waves in r and 6, in the solution

of (1) subject to (4) (——), with the heteroclinic connection in (8) between 7 = F' = ¢y = 0
and 7 = 75, ¥ = 0, § = ¢ (»). The forms for A(.) and w(.) are as in figure 1(a), and the
comparison is equally good for a variety of other forms for A(.) and w(.). The heteroclinic
connection was calculated by solving the system (8) numerically as an initial value problem,
using a Runge—Kutta—Merson method. The initial value used was 7 = 7; — €e|, I’ = —ee3,
¥ = s — €e3, where 0 < € « 1, and (ey, €2, e3) is the normalized eigenvector corresponding
to the unique positive eigenvalue of (8) at the non-zero steady state. The broken lines indicate
the steady-state values 7s and .

To be specific, I consider in particular detail the case of A(r) = Ag—r?, w(r) = woxr®?,
where Ag, wp, p and « are strictly positive parameters. For this system, (9) is

R*™ +5s’R— 522 =0 (10)

where R = 7{, and the result (3) implies that the periodic plane wave of amplitude 7, will
be linearly stable as a solution of (1) if and only if

P > Poit = (4/s)(R®™! + o’ R*7), (11)
When p < peir, the periodic plane wave solution r = 7, 8 = J/sx + wot is unstable.
Numerical solutions in this case show a band of periodic plane waves immediately behind the
transition front in r, with more irregular oscillations further back (figure 3). It is important
to stress, however, that there is not a sudden change in the solutions as p decreases through
Pcrir- Rather, there is a gradual development of irregular oscillations behind a band of
regular oscillations, whose thickness decreases as p decreases and the periodic plane waves
become gradually more unstable. One striking observation in figure 3, which is also true for
the wide range of other parameter sets that I have tried, is that these irregular oscillations
have an amplitude which, although it varies, is always less than r|, = A(‘,/ P. The fact that,

provided A < rL/ﬁ, 0<rix, p < for all x, ¢t > 0, is implied by the following result:
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Figure 3. An example of the solution of (1) subjec% to (4) with A(r) = A9 — r” and
w(r) = apy — r*? when p < pcie. 1 plot r and u as functions of x at ¢+ = 37, and as
functions of ¢ at x = 11. The amplitude rp of the limit cycle in the kinetics is denoted by
a dashed line. The solution consists of a transition front in r (and 6,), with periodic plane
waves of amplitude 7; immediately behind this transition front. However, these periodic plane
waves are unstable as reaction—diffusion solutions, and degenerate further back to give irregular
spatiotemporal oscillations. The parameter values are Ay =2, wy =4, p=1,a =3, & = 1.

.

Consider a A—w system (1) with x € R and with rA(r) =0 héving real positive roots at
r=ryand r =ry > r;. If at some time t = #y, ry < r(x, ) < r,Vx € R, then Vt > 1,
n<rix,t)<nv¥x ek

The proof of this result is straightforward. If r(x, t) > r, for some x and ¢ > ry then by
continuity there must be a previous time #; > f at which r(x, #;) < r,Vx, with some point
x = x* at which r = r; and r, > 0. Since r has a local maximum at x = x*, r;;, <0, so
that ry = rA(r) + rex — r02 = ryx — 1202 < —ry0?2 < 0, which is a contradiction. Similarly
r 2 ry for all x and ¢ > f5. The result also holds when the spatial domain is half the real
line or an interval of the real line, provided the boundary conditions at the finite boundaries
are either u and v fixed (at values such that r‘2 <ul+2g ,.22) oru, = v, =0.

3. Cubic A(r) and linear [w(r) — w(0)]?

Since A(r) > 0 on [0, r.) with A(r.) = 0, and [w(r) — w(0)]* > 0 with equality at r = 0,
(9) will always have at least one root on (0, r.]. However, when A(.) and w(.) are not
monotonic, there may be more than one root, although there will always be an odd number
of roots (counting roots by multiplicity). I consider here one class of functional forms for
which there are either one or three roots, depending on parameters. The particular functional
forms I consider do not have any special significance. Rather, I use them to illustrate the
type of behaviour that can evolve from initial conditions of the form (4) in a A~ system
for which (9) has more than one root.
]
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The system I consider is
Ar)=k—(r—b—a)r—b)(r—b+a) o@r)=Q —cr'/? (12)

subject to the following parameter restrictions: (i) b > a/+/3; (i) k > 2a%/3%?; (iii)
k < a*b. The form of A(r) is illustrated in figure 4. Condition (ii) ensures that A(r) =0
has a single real root, while condition (i) ensures that both turning points occur at positive
values of r. The right-hand side of (9) is the linear function (c?/s*)r, which can intersect
A(r) at either one or three points. Now the maximum positive slope of A(r) occurs between
the turning points, at r = b, and condition (iii) implies that the slope of A(r) at this point
is greater than that of the line joining (b, A(b)) and (0, 0). Therefore, as c varies, (9) will
have three real positive roots for ¢; > ¢ > ¢; > 0, with one real positive root for ¢ > ¢,
and ¢ < c;. Here c; and c; are critical values that depend on s, k, b and a, and that can in
principle be determined analytically. The variation with ¢ of the roots of (9) is illustrated
in figure 4.

A
¢ <c<e,

c=c;

AMr) and ([o(r)-w(0))/s)?

e<e,

Figure 4. An illustration of the qualitative forms of A(r) (full curve) and [(w(r) — w(0))/s)?
(broken curve) given by (12). The latter function is shown for a variety of values of the parameter
¢. Intersections of these curves are roots of (9), and the number of roots changes from 1 to 3,
and then back to | again, as c increases.

I begin by considering the nature of these roots as steady states of the third-order system
of ordinary differential equations (8). Straightforward linearization shows that at a steady
state (7, 0, V), where 7 is a root of (9), the eigenvalues u satisfy

(3 + 25 + [52 + 4A(re) + X (r) i + [srs (W (rs) — ¢2/sH)] = 0.

If A'(rs) > c2/s?%, then the Routh-Hurwitz conditions imply that all the eigenvalues have

negative real part, so that the steady state is stable. When there are three roots for (9),

this is the case for the middle root. Conversely, if A'(r;) < c2/s2, Descarte’s rule of signs

implies that exactly one of the eigenvalues is real and positive, so that the steady state is
N :

w”
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unstable. Since the sum of the three eigenvalues is negative, the other two must either be
real and negative or a complex conjugate pair with negative real part. This is the case when
there is a single root of (9), and for the smallest and largest roots when there are three.

A final preliminary observation concerns the stability as solutions of (1) of the periodic
plane waves whose amplitudes are roots of (9). When there are three roots, the slope of
A is positive at the middle one; therefore (3) implies that the corresponding periodic plane
waves are linearly unstable. The waves corresponding to the other two roots can be stable
or unstable, depending on the parameters; however, it is straightforward to determine the
stability numerically, using (3), for any given set of parameters.

A typical example of the variation with ¢ of the solutions of (11) with (12) subject to
(4) is illustrated in figure 5. For ¢ < ci, there is a single root of (9), and the solution of
the reaction—diffusion system again has the form of an advancing wave front, with periodic
plane waves behind this front (figure 5(a)). The amplitude of the waves is equal to the
root of (9). For the example shown in figure 5(a), these periodic plane waves are stable
as solutions of (1); however, for other parameters they are unstable, and then the waves
degenerate into more irregular oscillations further back from the leading front, as discussed
previously. For c just below c, there is a band of smaller amplitude oscillations immediately
behind the leading front; this band appears to have constant width (figure 5(b)).

As ¢ increases through c, the solution bifurcates and the amplitude of the periodic plane
waves behind the advancing front changes to the smallest root of (9) (figure 5(c)). Again,
if these periodic waves are unstable as solutions of (1), they degenerate into more irregular
oscillations further back. This will always be the case for c just above c;, since A'(r,) will
then be positive. For the parameter values used in figure 5(c), the periodic plane waves
with amplitude the smallest root of (9) are in fact unstable as solutions of (9). However,
they are only just unstable, and thus the solutions consist of a wide band of periodic plane
waves, with larger amplitude oscillations much further back.

As c increases above ci, the solution changes gradually as the smallest root of (9)
varies, and as the stability of the corresponding periodic plane waves varies. As ¢ increases
through ¢, so that the number of roots of (9) returns to one, this gradual variation continues
(figures 5(d) and 5(e)), and there is no sudden change in the reaction—diffusion solution.

In order to explain these results, I return to the ordinary differential equations (8)
governing travelling fronts in r and 6,. When there is a unique root of (9), I have
shown above that the corresponding steady state has one real, positive eigenvalue, with the
other eigenvalues having negative real parts. Therefore there are exactly two trajectories
originating from this steady state in F—F'—yr phase space; the only other steady state is
(0,0, 0). Numerical phase portraits strongly suggest that one of the trajectories originating
from (7, 0, ¥,) terminates at (0, 0, 0) (figure 6(a)), and it is to this heteroclinic connection
that the solutions of (9) evolve.

When there are three roots of (9), I have shown that the steady state of (8) corresponding
to the middle root is stable, while those corresponding to the smallest and largest roots
are unstable, with exactly two trajectories originating from each steady state. What are
the connections between these steady states? Numerical evidence suggests that there are
heteroclinic connections between the steady state corresponding to the middle root of (9)
and those corresponding to both of the other roots, and that there is also a connection
between the steady state corresponding to the smallest root of (9) and (0, 0, 0). However, it
appears that there is no connection between the largest root of (9) and (0, 0, 0) (figures 6(b)
and 6(c)). I have been unable to prove that such a connection does not exist but I now
establish a partial result, that there does not exist a connection between these steady states
that is monotonically decreasing in r.

9
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(a) (c)

=Yoo

Figure 6. (a) The phase portrait of the system (8) for
the parameter values used in figure 5(a), so that ¢ < ¢;.
There is a unique non-zero steady state (o), and there
appears to be a heteroclinic connection between this
steady state and 7 = 7 = ¢ = 0. (b) The phase
portrait of the system (8). for the parameter values used
in figure 5(d), so that ¢y < ¢ < c3. There are three
non-zero steady ‘states (denoted by ). The apparent
connections between these steady states are illustrated
schematically in (c).

(z)
00 05 10 1,5 20 25 30 35 40 45

t(z)

Figure 7. A projection onto the ¥ = 0 plane of the heteroclinic connection between the unique
non-zero steady state and the origin in (8), for the parameter values used in figure 5(b). The
third variable ¥ decreases monotonically along this trajectory. The heteroclinic connection was
calculated as described in the legend to figure 2. This figure illustrates that the band of small
amplitude oscillations is simply a facet of the shape of the heteroclinic connection, along which
F' becomes very small (but is still strictly positive) at 7 = 2.2.

To prove this, denote 7' = w, so that the system (8) is
F=w (13a)
w = —sw — FA(F) + Fy? (13b)

V' = —sy — Qu/F)Y + cF2. ‘
o i

(13¢)



Periodic plane waves in A—w sytems 1065

Let r, be some value less than the middle root of (9), and greater than both the smallest
root of (9) and the position of the local minimum of A(.). There is then a unique value of
r, ry say, on (i, r_), satisfying A(¥;) = A(7), and the largest two roots of (9) both lie in
(r1, ). Consider the portion 7 > 7, w < 0 of the plane 1/7 = /A(r1). Then

V > —sVAF) +c?l”2 >0 (14)

since the right-hand side of (9) is greater than the left-hand side at 7.

Now restrict attention to 17/ > A(F;) and F{ < F < 7, and let A(7) be a smooth
function satisfying A(F) > F[A(F) — A(F1)] on 7| < F < F,, with A(F) = A(F;) = 0, and
A'(F)) > 0, A'(F) < A'(Fy) on (71, 7). It is clear that such a function exists. Then

w = ——sw—F}»('r')+F\Z2 > —sw—F[A(F) —A(F)] > —sw—FR[AMF) = A(r)] > —sw—A(F).
(15)

Consider now the second-order system given by (13a) and w’ = —sw — A(F). This system
has steady states at 7 = 7|, w = 0 and 7 = 7, w = 0, and it is a standard result that there is
a heteroclinic connection between these two steady states (Kolmogoroff et al 1937). This
connection consists of a trajectory originating from (7, 0) and terminating at (7, 0); it
remains in the half plane w < 0, and thus 7 decreases monotonically along it. I denote this
trajectory by w = W(r).

Returning to the third-order system (13), consider the set, S say, with 7, < 7 < 7, and
¥ > /A(71), bounded by the surface w = W (F), and the planes w = 0 and ¥ = /A(7)).
The steady states corresponding to the middle and largest root of (9) lie on the w = 0
portion of dS, while (0, 0, 0) lies outside S. Moreover, the inequalities (14) and (15) imply
that all trajectories that leave S do so through the w = 0 portion of S, entering the w > 0
half space. Therefore if a trajectory leaving the steady state corresponding to the largest
root of (9) terminates at (0, 0, 0), it must have 7 > 0 at some point along its length, which
is the required result. As I have already mentioned, numerical evidence suggests that in
fact there is no such trajectory.

I return now to the numerical solutions of the partial differential equations, illustrated in
figure 5 and discussed above. The observed bifurcation in these solutions at ¢ = ¢; admits
a simple explanation in terms of the heteroclinic connections in the phase space of (8). As ¢
increases through c), the connection between the origin and the steady state corresponding
to the largest root of (9) disappears, and a connection between the origin and the steady
state corresponding to the smallest root of (9) appears. This change in connections mirrors
exactly the change in the transition fronts in r and 6, observed in solutions of (1). When
c is just below c;, the observed band of small amplitude oscillations immediately behind
the transition front in r (as in figure 5(b)) is simply a facet of the shape of the heteroclinic
connection, along which 7’ comes close to zero (figure 7).
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