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Abstract

Juxtacrine signalling is emerging as an important means of cellular communication,

in which signalling molecules anchored in the cell membrane bind to and activate re-

ceptors on the surface of immediately neighbouring cells. We develop a mathematical

model to describe this process, consisting of a coupled system of ordinary di�erential

equations, with one identical set of equations for each cell. We use a generic repre-

sentation of ligand±receptor binding, and assume that binding exerts a positive feedback

on the secretion of new receptors and ligand. By linearising the model equations about a

homogeneous equilibrium, we categorise the range and extent of signal patterns as a

function of parameters. We show in particular that the signal decay rate depends cru-

cially on the form of the feedback functions, and can be made arbitrarily small by

appropriate choice of feedback, for any set of kinetic parameters. As a speci®c example,

we consider the application of our model to juxtacrine signalling by TGFTGFa in response to

epidermal wounding. We demonstrate that all the predictions of our linear analysis are

con®rmed in numerical simulations of the non-linear system, and discuss the implica-

tions for the healing response. Ó 1998 Elsevier Science Inc. All rights reserved.
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1. Introduction

Juxtacrine signalling is emerging as an important means of cellular com-
munication. Traditionally, the activity of cell signalling molecules has been
divided into autocrine, paracrine and endocrine, meaning respectively that the
molecule acts only on the cell that secreted it, on a group of neighbouring cells
(via extracellular di�usion), and on all cells within a tissue (e.g., hormones).
However, within the close-packed cellular structure of an epithelium, a fourth
method of communication is possible, in which signalling molecules anchored
in the cell membrane bind to and activate receptors on the surface of imme-
diately neighbouring cells. This was termed `juxtacrine signalling' by Massagu�e
[1], and subsequently a large number of examples have been identi®ed.

Some juxtacrine ligand molecules are simply the precursors of soluble pa-
racrine ligands. Good examples of this are epidermal growth factor (EGFEGF) and
the closely related transforming growth factor-a (TGFTGFa), which are initially
secreted in membrane-bound forms and subsequently cleaved to give the sol-
uble form [1,2]. Both anchored and soluble forms of these growth factors are
able to bind to epidermal growth factor receptors (EGFEGF-R-R), so that both jux-
tacrine and paracrine modes of signalling are possible. In fact, in the case of
TGFTGFa, the cleavage of the membrane-bound precursor is typically slower than
its turnover, so that the juxtacrine signalling mode dominates. A related ex-
ample is provided by tumour necrosis factor, which also exists in a membrane-
bound precursor to the soluble form; both of these forms are active, although
in this case they bind to di�erent cell surface receptors [3]. Other juxtacrine
ligands exist only in membrane-bound forms: for example the Drosophila
proteins Boss and Delta, which bind selectively to the receptors Sevenless and
Notch [4]. More comprehensive lists of juxtacrine signalling molecules are
given in Refs. [5,6].

Explicit mathematical modelling of juxtacrine communication was ®rst
considered by Collier et al. [7]. They considered the pattern-forming potential
of the Notch±Delta system, and derived conditions for the formation of spatial
patterns. These are patterns with the semi-wavelength of a single cell, and such
structures are indeed observed in neural development [8]. In this paper we
investigate the di�erent question of the range over which juxtacrine signals may
be transmitted, and the speed of this transmission. This has been studied re-
cently by Monk [9], in a model for juxtacrine signalling by members of the
transforming growth factor-b family, which are important regulators in de-
velopment [10]. Monk [9] presents numerical simulations and analytical ar-
guments which suggest that there is an upper bound on the number of cells
over which a given level of cell activation may be attained. Here, we present an
analytical study of the rate at which signals decay in a more general model for
juxtacrine signalling, which suggests that, in general, arbitrarily small signal
decay rates are possible. Moreover our analysis determines a parameter regime
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in which patterns will form, through a di�erent mechanism from that studied
by Collier et al. [7].

In order to illustrate our analysis, we will present, throughout the paper,
numerical simulations of the particular case of TGFTGFa-mediated juxtacrine sig-
nalling following epidermal wounding, and we now give a brief biological
overview of this system. In adult mammals, epidermal wounds heal by a
combination of cell crawling at the wound edge, and enhanced proliferation
further back ± see Ref. [11] for review. Although this combined mechanism of
healing was established many years ago [12], the underlying molecular details
remain unclear. TGFGFa is implicated as an important element of the process in
humans, since normal human keratinocytes produce TGFTGFa both in vivo and in
vitro [13], and TGFGFa upregulates both migration and proliferation of kera-
tinocytes in culture [14]. Moreover, Schultz et al. [15] have shown that addition
of exogenous TGFTGFa accelerates epithelial wound healing. TGFGFa is synthesised as
a 160 amino acid membrane-bound precursor, pro-TGFTGFa, with a half-life of
about 2 h [16]. The 50 amino acid soluble form of TGFTGFa is generated by
cleavage of pro-TGFTGFa, a process which has a half-life of about 4 h [1,2].
Therefore the membrane-bound precursor is the dominant form of TGFTGFa
making it an ideal case for studying the range over which juxtacrine signals can
be transmitted. In practice, many di�erent growth factors act in concert in
epidermal wound healing [17], and the distance from the wound edge over
which the TGFTGFa signal is active is a key indicator of its importance in the
overall repair process.

The structure of this paper is as follows. In Section 2, we describe our model
and discuss parameter estimation for the epidermal wound healing case study.
In Section 3, we present an analytical determination of signalling range, and
then (Section 4) we discuss the rate at which di�erent signalling pro®les will be
achieved. In Section 5, we extend this analysis to consider the range of possible
signalling pro®les, and their dependence on parameters. The biological impli-
cations are discussed in Section 6.

2. Development of a mathematical model

Our mathematical model has a very simple form conceptually, consisting
of ordinary di�erential equations which represent ligand±receptor binding,
with one set of these equations for each cell. We use a representation of li-
gand±receptor binding that is as generic as possible, based on the scheme
illustrated in Fig. 1. Thus we assume that a single ligand molecule binds
reversibly to a receptor on the cell surface, giving an occupied receptor that is
internalised within the cell. In practice, new ligand and new receptors will be
produced at the cell surface, through a combination of recycling, release from
intracellular stores, and de novo production within the cell. This complex
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series of processes has been modelled explicitly in a few speci®c cases [18,19],
but we make the simplifying assumption that production of both ligand and
receptor occurs at a rate that increases with the current level of occupied
receptors. Such positive feedback is a central assumption in our model; it is
well-documented for a number of ligand±receptor interactions, including the
binding of N-formylated peptides to leucocytes [20], the binding of cAMP to
Dictyostelium cells [19,21], and the binding of TGFTGFa and EGFEGF to EGFEGF-R-R in
keratinocytes [13,22,23].

We consider a two-dimensional epithelial sheet, which we represent as a
regular array of identical, square cells. For simplicity, we restrict attention to
the propagation of a signal away from a linear disturbance, so that the be-
haviour is one-dimensional, varying with cell number away from the distur-
bance; this is a natural ®rst case to study in order to develop an understanding
of juxtacrine signalling. For the example of epidermal wound healing, this case
would represent well the propagation of elevated TGFTGFa levels away from the
edge of any reasonably large wound. Within a one-dimensional context, we
anticipate that our assumption of a regular grid of square cells will be a fair
approximation; however, experience from cellular automata models [24] indi-
cates that the structure of two-dimensional behaviour would depend signi®-
cantly on any imposed geometry of the cellular network.

Our model thus consists of a series of coupled ordinary di�erential equations
for the numbers of ligand molecules aj�t�, unoccupied receptors fj�t�, and
occupied receptors bj�t�, on the surface of cells in row j, j � 0; 1; 2; . . .; j � 1
corresponds to the cell row at the wound edge, and t denotes time. We assume
that all of the ligand is anchored to the cell membrane. As discussed in Sec-
tion 1, some growth factors that are primarily membrane bound can also be
cleaved to give a freely di�using form; however, we neglect this complication in
order to focus on juxtacrine signalling in isolation. Using the kinetic scheme
discussed above, the model equations are

Fig. 1. A schematic representation of the kinetic scheme used in our model for the binding of ligand

to receptors. The scheme is similar to that of Waters et al. [29] for EGFEGF--EGFEGF-R-R interactions. We base

our parameters for the epidermal wound healing case study on the values they determined from

experiments on the binding of EGFEGF to EGFEGF-R-R on rat lung epithelial cells.
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oaj
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� ÿkaaj

�fjÿ1 � 2fj � fj�1�
4

� kd
�bjÿ1 � 2bj � bj�1�

4
ÿ daaj � Pa�bj�;�1a�

ofj

ot
� ÿka

�ajÿ1 � 2aj � aj�1�
4

fj � kdbj ÿ df fj � Pf �bj�; �1b�

obj

ot
� ka

�ajÿ1 � 2aj � aj�1�
4

fj ÿ kdbj ÿ kibj; �1c�

(j P 1). Here Pa and Pf represent the synthesis of TGFTGFa and EGFEGF-R-R, and will be
discussed in detail below. Our assumption of juxtacrine communication is re-
¯ected by the use of averages of the concentrations of nearest neighbours in the
ligand binding terms. These represent the overall number of ligand molecules
and free and bound receptors on the surfaces of cells adjacent to those in row j.
Within the context of our representation of the epithelium as a monolayer of
square cells, two of the four cells adjacent to a cell in row j are also in row j,
with the other two adjacent cells in rows jÿ 1 and j� 1. We neglect any
variation in receptor or ligand densities over the surface of one cell, so that
exactly 1

4
of the receptors/ligand on each adjacent cell is available for binding to

ligand/receptors on the original cell. In practice, receptors may move on the cell
surface, while remaining bound within the cell membrane; this was modelled in
Ref. [25]. This could lead to cell polarisation, and its inclusion is a natural
extension of our model.

The synthesis of new ligand and receptor by epidermal cells is a crucial
aspect of the model. As explained above, we assume that this is controlled by a
positive feedback to the level of occupied receptors on the cell surface. Thus the
production rates Pa of ligand and Pf of receptor are functions of the bound
receptor number bj. Our only assumption in general is that both of these
production rates increase with bj. In particular applications, the data available
on production rates of ligand and receptors is typically extremely limited.
However, the forms chosen for Pa and Pf can be speci®ed to some extent be-
cause they must satisfy a number of conditions that relate them to quantities
that are more easily measurable in experiments:

(i) In the absence of any ligand binding at the cell surface, there will be a
background level of receptor expression, say r0. This is a homogeneous steady
state of the model, and so the equation for f in Eqs. (1a)±(1c) gives

Pf �0� � df r0: �2a�
(ii) Normal equilibrium levels of free and bound receptors, fe and be say, are

often known in particular systems. Specifying fe and be de®nes the normal
steady state level of free ligand, ae, implicitly through Eq. (1c), as well as the
values of the feedback functions at the steady state, so that

ae � �kd � ki�be

kafe
; Pa�be� � kibe � daae; Pf �be� � kibe � df fe: �2b�
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(iii) In any system, there will be a maximum possible level of receptor ex-
pression, rm say. This can be estimated experimentally by saturating cells with
ligand. Such saturation means that the rate of internalisation of bound re-
ceptors must be equal to the rate of free receptor production, giving

Pf �rm� � kirm: �2c�

2.1. Case study: TGF-a signalling in epidermal wound healing

Our objective is to study the way in which a purely juxtacrine communi-
cation system transmits a signal away from a disturbance. Thus we are con-
cerned with a semi-in®nite array of cells, 06 j <1 say, with aj � ae, fj � fe,
bj � be at t � 0 for 16 j <1, and with a boundary condition at j � 0 re-
¯ecting the imposed disturbance. We begin by describing the results of model
simulations for our illustrative example, namely epidermal wound healing.
Here j � 1 represents the wound edge, so that there are no cells in row 0; thus
the appropriate boundary condition is

a0 � f0 � b0 � 0: �3�
We will not consider either movement or division of cells, so that there is no
actual simulation of the healing process in the model; this has been the focus of
previous mathematical models for epithelial wound healing [26±28]. We are
simply concerned with the response of ligand (TGFTGFa) and receptor (EGFEGF-R-R) to
the creation of the wound edge.

For the particular case of TGFTGFa and EGFEGF-R-R, there is extensive previous
modelling work on which our parameter values can be based. In particular, we
will use the results of Waters et al. [29] on epidermal growth factor (EGFEGF)
binding to EGFEGF-R-R. This ligand±receptor interaction has in fact been modelled in
considerable detail, including receptor cooperativity [30], intracellular ligand±
receptor binding, and the details of internalisation via smooth and coated pits
[31]. However, we neglect these details in the interests of simplicity, assump-
tions also made by Waters et al. [29].

Building on work by Wiley and co-workers in the 1980s [32±34], Waters et
al. [29] performed in vitro experiments using foetal rat lung epithelial cells, to
study the binding, dissociation, and internalisation of radiolabelled EGFEGF; they
used their data to estimate parameter values in an ordinary di�erential equa-
tion model. This model is the same as the kinetic component of Eqs. (1a)±(1c),
except that, to simulate their experimental procedure, they assumed a constant
rate of supply of free receptors and neglected cellular production of ligand.
Their results determined the kinetic parameters as: binding,
ka � 1:8� 108 Mÿ1 minÿ1; dissociation, kd � 0:12 minÿ1; internalisation,
ki � 0:19 minÿ1; and turnover of free receptors, df � 0:03 minÿ1. EGFGF and
TGFTGFa are highly related growth factors, containing the same active domain
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which binds to EGFEGF-R-R, and thus we expect ka, kd and df to be roughly the same
for the two proteins. However, we anticipate that the rate of internalisation ki

will be signi®cantly lower for TGFTGFa than for EGFEGF since the latter is primarily in
soluble form, while bound TGFTGFa molecules will be attached via their trans-
membrane domain to a neighbouring cell; in the absence of any quantitative
data, we take ki � 0:019 minÿ1 for TGFTGFa, a factor of 10 less than for EGFEGF.

For the remaining parameters, we base the value of da on a detailed study of
TGFTGFa cleavage regulation [16], which suggests that the turnover time of TGFTGFa is
about 2 h, giving da � 0:006 minÿ1. We take the maximum possible number of
EGFEGF-R-R per cell, rm � 25 000, based on the experimental data of Oberg et al.
[35], and assume that the unstimulated receptor number r0, and equilibrium
level of free and occupied receptors, fe and be, are all 3000. These last three
parameters are based on intuitive estimates, in the absence of quantitative
experimental data. We leave parameters associated with the feedback functions
Pa and Pf as free parameters, to be varied in model simulations.

We begin by describing simulations with Monod type feedback functions:

Pa�b� � C1b
C2 � b

; Pf �b� � C3 � C4b
C5 � b

: �4�
The qualitative di�erence between these functions re¯ects the intuitive expec-
tation that in the complete absence of ligand binding, no ligand will be se-
creted, but that there will be a background level of receptor expression. The
parameters C1,. . .,C5 are constrained by conditions 2(a)±(c), leaving one free
parameter, which we take as C2, the number of bound receptors at which the
ligand secretion rate attains half its maximum value. Numerical simulations of
the model (1) with (4) and with the parameters described above show that the
solution evolves to an equilibrium in which TGFTGFa and occupied EGFEGF-R-R levels
increase away from the wound edge, with the free EGFEGF-R-R level decreasing
(Fig. 2). Moreover, the extent to which the perturbation at the wound edge is
propagated away from that edge increases with the parameter C2. This is
consistent with intuitive expectation, since C2 re¯ects the strength of positive
feedback in TGFTGFa production. In the remainder of the paper, we will study the
model analytically, leading to a quantitative understanding of this relationship.

3. Predicting spatial decay rates

We wish to predict the rate at which large time solutions decay in space
towards the homogeneous steady state ± this homogeneous state is not a so-
lution itself because of the wounded boundary condition at j � 0. Setting time
derivatives to zero in Eqs. (1a)±(1c) gives three coupled di�erence equations:

0 � ÿkaaj
�fjÿ1 � 2fj � fj�1�

4
� kd

�bjÿ1 � 2bj � bj�1�
4

ÿ daaj � Pa�bj�;
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0 � ÿka
�ajÿ1 � 2aj � aj�1�

4
fj � kdbj ÿ df fj � Pf �bj�;

0 � ka
�ajÿ1 � 2aj � aj�1�

4
fj ÿ kdbj ÿ kibj:

Linearising about the homogeneous steady state �ae; fe; be� by setting
aj � ae � ~aj; fj � fe � ~fj; bj � be � ~bj, gives

0 � ÿkafe~aj ÿ kaae
� ~fjÿ1 � 2 ~fj � ~fj�1�

4
� kd

�~bjÿ1 � 2~bj � ~bj�1�
4

ÿ da~aj �A~bj;

Fig. 2. Numerically calculated solutions of the model (1), speci®ed with Eq. (4). The solutions are

shown after 166.7 hours (10 000 minutes) of evolution with the wounded boundary condition (3),

for C2 increasing from 10 000 to 50 000 at intervals of 10 000. The distance of propagation of the

wound-induced perturbation clearly increases as the parameter C2, and hence the strength of

feedback in TGFTGFa production, increases. The other parameters are ka� 0.0003 moleculesÿ1 minÿ1,

kd � 0.12 minÿ1, ki� 0.019 minÿ1, da� 0.006 minÿ1, df � 0.03 minÿ1, fe� 3000, be� 3000, r0� 3000,

rm� 25500. Although analytically we treat the domain as semi-in®nite, we can only simulate a ®nite

number of cells, N, and so we must specify an additional condition for cell N � 1 ± we use

uN�1 � uN . This is not signi®cant provided N is su�ciently large; for this simulation, and those in

subsequent ®gures, we use N� 120.
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0 � ÿkafe
�~ajÿ1 � 2~aj � ~aj�1�

4
ÿ kaae

~fj � kd
~bj ÿ df

~fj �F~bj;

0 � kafe
�~ajÿ1 � 2~aj � ~aj�1�

4
� kaae

~fj ÿ kd
~bj ÿ ki

~bj:

Here A � P 0a�be� and F � P 0f �be� are the slopes of the feedback functions at
the normal steady state; we will show that these are key parameters in the
control of signal range. We look for decaying solutions of the form ~aj � �aekLj,
etc, where �a is constant, and L is the length of an epidermal cell. Each of the
bracketed terms for the contribution of neighbouring cells is then of the form

�~ajÿ1 � 2~aj � ~aj�1�
4

� �aekL�jÿ1� � 2�aekLj � �aekL�j�1�

4

� �aekLj �eÿkL � 2� ekL�
4

;

with a corresponding reduction for b and f . For notational simplicity, we de®ne

Kd�k� � ekL � eÿkL � 2

4
� cosh�kL� � 1

2
; �5�

intuitively, this can be thought of as the `nearest neighbour contribution' to the
equilibrium. Substituting into the linearised equations, dividing throughout by
ekLj, and collecting the terms in matrix form gives

ÿkafe ÿ da ÿkaaeKd�k� kdKd�k� �A

ÿkafeKd�k� ÿkaae ÿ df kd �F

kafeKd�k� kaae ÿkd ÿ ki

0BBB@
1CCCA

�a
�f
�b

0BBB@
1CCCA � 0: �6�

We wish to ®nd non-trivial solutions, so we require the determinant of the
matrix to be zero. Expanding the determinant gives a quadratic equation
whose roots determine the values that Kd�k� may take

Kd�k�2 df kd � kakiae ÿ kaaeF
� 	

kafe �Kd�k� df kafeA
� 	ÿ df ki � df kd

�
�kakiae ÿF

	�kafe � da� � 0: �7�
We denote the roots of Eq. (7) for Kd�k� as K� and Kÿ. We can allow K� and
Kÿ to be complex, so that either both roots are real, or they are complex
conjugates ± the subscripts indicate that we order the roots with
Re�K��P Re�Kÿ�. The set of permissible decay rates k is given by the set of
solutions of Kd�k� � fK�;Kÿg. Note that Kd is an even function of k which is
increasing with jkj, so the decay rates will come in pairs of opposite sign, with
the boundary condition selecting the direction of decay.

Turning now to the way the magnitude of the decay rate depends on pa-
rameters, we consider ®rst the parameter C2. It is straightforward to show that
A increases with C2, and thus the coe�cient of Kd�k� in Eq. (7) also increases.
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The other coe�cients are independent of C2, and for the parameter set cor-
responding to TGFTGFa±EGFEGF-R-R, the coe�cient of Kd�k�2 is positive, and the
constant term is negative, so that the positive solution K� of Eq. (7) decreases.
In turn this means that jkj decreases as C2 increases, corresponding to a smaller
rate of decay to the homogeneous steady state. This is consistent with the re-
sults illustrated in Fig. 2. Moreover, as C2 tends to in®nity, A, and hence the
coe�cient of Kd�k�, tend to a ®nite limit. Again the other coe�cients stay ®xed,
so that K� will tend to a limit, and consequently the magnitude of the decay
rate will be bounded below. Fig. 3 shows the variation of predicted decay rate

Fig. 3. Predicted magnitude of the decay rate as C2 varies, for the steady state of the model (1),

speci®ed with Eq. (4) and the wounded boundary condition (3). The points represent decay rates

calculated from simulation data 166:7 h (10 000 min) after wounding. The solid line indicates the

decay rate predicted by linear analysis, which is given by the solution for k of Eq. (7), where Kd�k�
is speci®ed by Eq. (5). The dashed line shows the values given by a lowest order approximation to

the decay rate Eq. (8), which is clearly very accurate. The other parameters are as in Fig. 2. The

decay rate is estimated from the results of numerical simulations by using the formula (9) for each

of the variables a, f and b, and calculating the point j where the norm of the di�erences between the

rates is a minimum: speci®cally ksim � �kj
a � kj

f � kj
b�=3, where j is chosen such that

�kj
a ÿ kj

f �2 � �kj
a ÿ kj

b�2 � �kj
f ÿ kj

b�2 is a minimum.
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with C2, together with decay rates calculated from numerical simulations of the
model. Continuation of the curve of predicted decay rates, as C2 increases
further, con®rms that the decay rate is bounded.

Another way to address these issues is to consider an approximation to the
solution for the decay rates, so that we may get a more easily understandable
relationship with parameters. In practice, we expect the decay rate to be small,
jkj � 1. Expanding Kd�k� as a power series and substituting this into Eq. (7)
gives to leading order

k � � 2

L

��������������������������������������������������������������������������������������������������������������
dadf �kd � ki� � kaki�daae � df fe� ÿ df kafeAÿ dakaaeF

kafe 2�df kd � kakiae� � dfAÿ 2kaaeF
ÿ �s

: �8�

We can see that increasing C2, and hence A, will decrease the numerator in the
square root, and increase the denominator, so that the magnitude of the decay
rate will decrease. Note that we have roots of either sign which correspond to
the di�erent directions of decay. One direction is selected by the boundary
conditions which break the symmetry of the system ± the wounded boundary
condition (3) means that it is the negative root which is of interest. Fig. 3 in-
cludes this approximation to the predicted decay rate, and illustrates that it is
highly accurate.

3.1. Calculating the decay rate from simulation data

In order to test the predictions we have made, we must generate numerical
solutions to which we can make a comparison. Consider the proposed form for
the solution, aj � ae � �aekLj; fj � fe � �f ekLj; bj � be � �bekLj; then the decay rate
calculated at the jth cell from the simulated solution for aj, kj

a, is de®ned by

kj
a �

ln
aj�1ÿae

ajÿae

��� ���
L

�
ln �aekL�j�1�

�aekLj

��� ���
L

� ln�ekL�
L

� k: �9�
We expect the solution to have a transient near the wound edge, before ap-
proaching the normal steady state with the predicted decay rate, so that kj

a is
expected to tend towards the predicted value as j tends to in®nity. Of course,
the calculated decay rate diverges as the steady state is approached, due to
numerical errors. Hence there is a middle region, between the transients at the
edge and the region of numerical inaccuracy, where we ®nd useful information.
The calculation is done in the above way for each variable ± typical calculated
decay rate pro®les are shown in Fig. 4(a).

3.2. Generalized positive feedback may give zero signal decay

We have shown that for the feedback functions (4), the magnitude of the
decay rate is bounded away from zero. However, the formula (8) implies that
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zero decay rates are possible for appropriate A and F. To con®rm this in
simulations, we considered feedback functions of Hill form:

Pa�b� � Cm
1 bm

Cm
2 � bm

; and Pf �b� � C3 � Cn
4bn

Cn
5 � bn

: �10�

As in the case m � n � 1 discussed in the previous section, the parameters C1,
C3, C4 and C5 can be related to experimentally measurable quantities using
Eqs. (2a)±(2c), leaving C2, m and n as free parameters. In simulations of the
model (1) with the parameter set corresponding to epidermal wound healing,
we found that for m and n ®xed at su�ciently large values (e.g. m � n � 2),
increasing the parameter C2 causes the magnitude of the decay rate to decrease,

Fig. 4. (a) Typical pro®le of spatial decay rates for solutions of the juxtacrine model. The rates are

calculated from simulation data using scheme (9), after 166:6 _6 h (10 000 min), with C2 � 8000. (b)

Estimation of the temporal rate of growth to the spatially varying steady state. At each cell number

the growth rate was calculated according to Eq. (15), using a previously generated solution from a

simulation with the same parameters. The calculated growth rates are shown from 26:6 _6 to 60 h at

intervals of 6:6 _6 h. As the solution evolves, the temporal growth rate seems to approach a constant

level across the whole domain. The other model details and parameters are as in Fig. 2.
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apparently without bound, until at su�ciently large C2, the normal steady state
becomes unstable (not illustrated for brevity). In the following two sections, we
will extend our linear analysis in order to explain this fundamental di�erence
between m � n � 1 and large values of m and n, namely that decay rates are
bounded in the former case and not in the latter.

4. Stability of the homogeneous equilibrium

Our objective in the remainder of the paper is to determine the form and rate
of decay towards the homogeneous steady state that is implied by the model
(1), as a function of parameter values. In view of the qualitative di�erences in
behaviour described above for di�erent Hill coe�cients, we will treat the pa-
rameters A and F as dominant, and consider the behaviour in di�erent re-
gions of the A±F plane. Recall that A and F are simply the slopes of the
feedback functions at b � be. We begin, in this section, by investigating the
temporal stability of the normal (homogeneous) steady state to homogeneous
perturbations, since only stable equilibria will ever be seen in a biological
context.

Linearising the model (1) as before about the spatially homogeneous steady
state �ae; fe; be�, but including time dependence, gives

o~a
ot
� ÿkafe~aj ÿ kaae

� ~fjÿ1 � 2 ~fj � ~fj�1�
4

� kd
�~bjÿ1 � 2~bj � ~bj�1�

4
ÿ da~aj �A~bj;

o ~f
ot
� ÿkafe

�~ajÿ1 � 2~aj � ~aj�1�
4

ÿ kaae
~fj � kd

~bj ÿ df
~fj �F~bj;

o~b
ot
� kafe

�~ajÿ1 � 2~aj � ~aj�1�
4

� kaae
~fj ÿ kd

~bj ÿ ki
~bj:

The condition for non-trivial solutions of the form ~a�t�; ~f �t�; ~b�t�ÿ � �
��a; �f ; �b�eat can be easily derived as

Q�a� � a3 � a2 da � df � kaae � kafe � kd � ki

� 	
� a dadf � �kd � ki��da � df � � kaae�da � ki�
�

�kafe�df � ki� ÿ kafeAÿ kaaeF
	� dadf �kd � ki�

� kaki�daae � df fe� ÿ df kafeAÿ dakaaeF

� 0:

The roots of this cubic characteristic equation determine the stability of the
homogeneous steady state.
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4.1. L1 and L2: Lines in �A;F� space which bound the region of temporal
stability

The conditions for all the roots of a cubic polynomial of the form
a3 � a1a2 � a2a� a3 to have negative real part are: a1 > 0, a3 > 0 and
a1a2 ÿ a3 > 0. We clearly have a1 > 0, and the remaining two conditions de®ne
curves in �A;F� space which delimit the relevant regions. Algebraic simpli®-
cation shows that these curves are in fact straight lines, which are respectively

L1: F � ki � df �kd � ki�
kaae

� kidf fe

daae
ÿ df fe

daae
A; �11�

L2: F � ki � da � df fe

ae
� dadf � �kd � ki��da � df �

kaae

� d2
a �df � kd � ki� � �kaae � kafe � kd � ki � 1�kakife � �df fe � daae�ka

�df � kaae � kafe � kd � ki�kaae

ÿ fe�da � kaae � kafe � kd � ki�
ae�df � kaae � kafe � kd � ki�A: �12�

These lines both have negative slope and are positive when A � 0; the ho-
mogeneous steady state is stable if A and F lie on the same side of both lines
as the origin. Fig. 5 illustrates that there are six possible geometries for this
region, according to the relative slopes of the lines, and the location of their
point of intersection. It is clear that the relative gradients of the two lines
depend on the relationship between da and df . For da < df , independent of the
other kinetic parameters, the line L1 has a more negative gradient than line
L2; for da > df , the opposite is true. Moreover, the two lines intersect at

A � ki ÿ dadf

df ÿ da
ÿ d2

a ae

�df ÿ da�fe
ÿ d2

a �df � kd � ki�
�df ÿ da�kafe

; �13a�

F � ki � df �da�df � kaae� � df �kafe � kd � ki��
�df ÿ da�kaae

; �13b�
so that for da < df the intersection is for a positive value of F, while for da > df

the intersection is for positive A. These observations eliminate the cases (c) and
(f) in Fig. 5 respectively, for any values of the kinetic parameters; this has
important implications for the spatial decay rates, which will be described in
the following section.

4.2. Predicting the temporal growth rate of a signal

The above calculation of the stability of an equilibrium state can also be
used to estimate the rate at which a juxtacrine signal develops, following a
localised disturbance such as wounding. This is a crucial issue, since a long
signal range will not be signi®cant if it takes a very long time to be established.
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We are concerned with the rate at which the solution decays to a spatially
varying (decaying) state which, for su�ciently large j, will be very close to the
homogeneous steady state. To leading order, this rate of decay is determined
by the same eigenvalue equation Q�a� � 0 as for the homogeneous steady state.
For general perturbations, the rate will thus be determined by the root for a
with least negative real part. For values of A and F close to the line L1, this
root will be small in absolute value, and can thus be approximated by ne-
glecting the a2 and a3 terms, giving

a � df kafeA� dakaaeFÿ dadf �kd � ki� ÿ kaki�daae � df fe�
� 	

dadf

�� ��kd � ki��da � df � � kaae�da � ki�
�kafe�df � ki� ÿ kafeAÿ kaaeF

	
: �14�

Fig. 5. A schematic illustration of the possible con®gurations of the lines L1 (solid) and L2 (da-

shed). The region under both lines is such that the normal steady state is temporally stable to

homogeneous perturbations, and the solid line also coincides with a zero spatial decay rate. Parts

(a),(b), and (c) are all the possibilities for da < df , since this implies that line L1 has a more negative

slope than line L2. We can eliminate case (c) because we show in the main text that for da < df the

lines must intersect at a positive value of F. Similarly for da > df ± cases (d), (e), and (f) ± we can

eliminate case (f) because the lines must intersect at a positive value of A. We show in Section 5

that this means that whatever the kinetic parameters, it is never the case that an instability of the

normal steady state can prevent solutions with zero decay rate.
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As expected, with the other parameters such that the homogeneous normal
steady state is stable (corresponding to the shaded region in Fig. 5), this ex-
pression is negative, since the numerator is negative, and the denominator is
positive. Note that the line L1 corresponds exactly to the numerator being
equal to zero, and hence to a change in stability, as expected.

In order to compare these predictions with the results of numerical simu-
lations, we determine the rate of convergence of a numerical solution to a
numerically simulated steady state, determined as the long-time solution in a
previous simulation for the same parameter set. Speci®cally, we de®ne the
temporal growth rate for the variable u at cell number j by

au;j � uj�t � dt� ÿ uj�t�
dt�uj�t� ÿ uj;ss� ; �15�

where uj;ss denotes the numerically estimated long-term equilibrium. Fig. 4
includes an example of the somewhat subjective estimation given by this
scheme for the rate of growth to the spatially varying steady state. We calcu-
lated au;j for each cell at every time step in our numerical simulations, and the
®gure shows the calculated values at constant intervals of time. As the solution
evolves, the temporal growth rate seems to approach a level which is constant
across the whole domain, but as the solutions approach the steady state within
the limits of numerical accuracy, the calculated growth rates become wildly
inaccurate. These results con®rm the validity of Eq. (14), suggesting in fact that
it is a good approximation for a wide range of parameter values, even for A
and F fairly far from the line L1. Moreover, the results suggest that the ap-
proach to the spatially varying steady state occurs at approximately the same
rate, whatever the location in space.

5. Analysis of spatially varying steady states

Having considered temporal stability, we now look in detail at the spatial
decay rates k in di�erent parts of the A±F plane, and the corresponding
qualitative form of signal pro®le. Recall from Section 3 that the decay rates are
determined as the roots for k of Kd�k� �K� and Kd �Kÿ, where K� are the
roots of the quadratic Eq. (7), with the `nearest neighbour contribution' Kd

de®ned in Eq. (5).

5.1. Zero spatial decay rates correspond to the line L1

We begin by considering the curve in A±F space along which Kd�k� � 1,
which corresponds to zero decay rates and hence unbounded signal range.
Setting Kd�k� � 1 in Eq. (7) gives
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df kd � kakiae ÿ kaaeF
� 	

kafe � df kafeA
� 	

ÿ df ki � df kd � kakiae

� ÿkaaeF
	�kafe � da� � 0

which when rearranged gives a line which is exactly the line L1 encountered
above when analysing the temporal stability. This connection arises because
solutions with zero decay rate are just uniform perturbations of the normal
steady state, and so can only exist as steady states for the linearised system if
the normal steady state has a zero eigenvalue, which corresponds exactly to the
line L1. Thus the closer the parameters take us to this line, while remaining in
the stable region already described, the smaller the decay rate will be. This
result has a number of important implications. Firstly, recall that in Section 2
we described the observation of a lower bound on the magnitude of the decay
rate when Hill-type feedback functions with m � n � 1 are used. The expla-
nation for this is now straightforward: as the parameter C2 increases, A ap-
proaches a limit which places the system at some ®nite distance from the line
L1 in �A;F� space. Secondly, recall that in Section 4 we showed that of the
various con®gurations of the lines L1 and L2 illustrated in Fig. 5, cases (c)
and (f) do not arise for any parameter set. These are exactly the cases in which
the domain of stability of the equilibrium state is bounded entirely by L2, and
the fact that they cannot arise means that for any parameter set, arbitrarily
small decay rates can be generated simply by altering the feedback functions in
order to change A and F.

5.2. L3 and L4: Lines in �A;F� space corresponding to zero coe�cients in (7)

We have shown that the line L1 corresponds to one of K� being 1. We now
consider two other cases that give qualitative changes in behaviour, namely
when one of K� is in®nite and when one is zero. The former case corresponds
to the coe�cient of Kd�k�2 being zero in Eq. (7); this occurs on the line

L3: F � ki � df kd

kaae
: �16�

The case of one of K� being zero corresponds to the constant term in the
quadratic Eq. (7) being zero, which occurs on the line

L4: F � ki � df �kd � ki�
kaae

�17�
which is clearly at a larger value of F than the line L3. For F above the value
of L4, the constant term in the quadratic Eq. (7) will be positive.

5.3. C: The curve in �A;F� space along which K� �Kÿ

Between the lines L3 and L4 lies a curve C which is the boundary of the
region in which the roots K� are complex. It is found by setting the discrim-
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inant of the quadratic Eq. (7) to be zero ± this curve C then corresponds to the
locus of points where the quadratic has equal roots. It is given by

C: F � ki � df �2kd � ki�
2kaae

�
df

�����������������������������������������������������������������������
�da � kafe��k2

i �da � kafe� ÿ kafeA
2�

q
2kaae�da � kafe� ;

�18�
note that when A � 0, C coincides with the lines L3 and L4. In fact, the curve
C is the envelope of the (straight line) contours of constant Kd�k�. Thus every
line of equal Kd�k� must lie tangent to it, and in particular the line Kd�k� � 1
(namely L1) touches it at the point

A � 2�da � kafe�ki

da � 2kafe
; F � ki � df kd

kaae
� kidf �da � kafe�

kaae�da � 2kafe� :

5.4. Fitting together these lines and curves in �A;F� space

We now consider the way in which L3, L4 and C ®t into the possible ar-
rangements of lines L1 and L2, namely cases (a), (b), (d) and (e) in Fig. 5. We
consider this case by case below, and illustrate the results in Fig. 6.

Fig. 6(a): For da < df , straightforward examination shows that the line L4

is clearly at a smaller value of F than the point (13) at which lines L1 and L2

intersect. Hence line L3 must also lie below the intersection, and the curve of
zero discriminant C, because it intersects line L1 and lies between L3 and L4,
must sit wholly within the stable region.

Fig. 6(b): Clearly from case (a) we know that the two lines and one curve lie
at a smaller F value than at the intersection, but additionally it is clear that
they lie at a smaller value of F than that at which line L1 intersects the axis, so
that again the curve of zero discriminant C, which touches the line L1, must sit
wholly within the stable region.

Fig. 6(d): For da > df , straightforward examination shows that the lines L3

and L4 lie below the value of F at which line L1 intersects the axis, and above
the value at which the lines L1 and L2 intersect. Again, the curve of zero
discriminant C, which touches the line L1, must sit wholly within the stable
region.

Fig. 6(e): As for case (d), the lines and curves must lie below the value of F
at which line L1 intersects the axis. However, in this case the intersection of
lines L1 and L2 occurs for negative F, and the lines and curves are all positive
in the positive quadrant, so that again the curve of zero discriminant C must sit
wholly within the stable region.

5.5. Steady state behaviour in the 5 regions speci®ed

For each of these cases, the stable region is divided up by L1; . . . ;L4 and C
into ®ve regions, which are numbered in Fig. 6(a); the corresponding num-

142 M.R. Owen, J.A. Sherratt / Mathematical Biosciences 153 (1998) 125±150



bering scheme applies to the cases illustrated in parts (b), (d), and (e) of Fig. 6.
We now consider the form of the roots of Kd�k� �K� in each of these regions,
and hence the qualitative form of the signalling pro®le. The solutions we give
for k can be derived from K� and Kÿ by substituting k � kr � iki into the
expression (5) for Kd�k�, and equating real and imaginary parts. For notational
simplicity, we give only roots for k with negative real part; in all cases there are
corresponding roots with positive real part.

Region 1: K�;Kÿ 2 �1;1�:

) k 2 ÿ coshÿ1�2K� ÿ 1�
L

; ÿ coshÿ1�2Kÿ ÿ 1�
L

� �
:

Each of these real eigenvalues corresponds to a monotonically decaying solu-
tion; the decay rate observed in practice will be the root with smallest absolute
value. Examples of this monotonic signal decay are illustrated in Fig. 2.

Fig. 6. Analytically derived lines L1; :::;L4, and the curve C, delineating regions of di�erent

combinations of root types for K� and Kÿ. The numbers relate the regions to the cases analysed in

the text. Cases (a), (b), (d) and (e) correspond to the four possible con®gurations of the two lines

determining temporal stability to homogeneous perturbations.
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Region 2: K� 2 �1;1�;Kÿ 2 �ÿ1; 0�:

) k 2 ÿ coshÿ1�2K� ÿ 1�
L

; ÿ coshÿ1�1ÿ 2Kÿ� � ip
L

� �
:

The ®rst of these solutions for k corresponds to a monotonically decaying
signal pro®le; the second represents a spatially oscillatory decay, with cells
alternating between ligand/receptor levels above and below the homogeneous
equilibrium. The solution observed in practice will be that corresponding to the
root for k whose real part has smallest absolute value, and it is straightforward
to show that this must always be that corresponding to monotonic decay. To
see this, note that taking cosh of both roots shows that the alternating root has
the smallest real part if and only if K� �Kÿ > 1. Now the sum of the roots of
the quadratic Eq. (7) is just ÿc=b, where b and c are the coe�cients of Kd�k�2
and Kd�k� respectively, which are both positive in this region. Thus K� �Kÿ is
always negative, and so the alternating root cannot have the smallest real part.

Region 3: K�;Kÿ complex: K� �Kr � iKi and Kÿ �Kr ÿ iKi

) k 2 ÿ kr;1 � ki;1� �i; ÿkr;2 � ki;2� �if g;
where kr;1 and kr;2 are the solutions for kr of

cosh4�krL� ÿ 4�K2
i ÿK2

r �Kr� cosh2�krL� � �2Kr ÿ 1�2 � 0;

and �ki;1 and �ki;2 are the solutions for ki of

cos4�kiL� ÿ 2�2K2
i � 2K2

r ÿ 2Kr � 1� cos2�kiL� � �2Kr ÿ 1�2 � 0:

In this case, the signal pro®les exhibit an oscillatory decay in space, but with an
oscillation wavelength that is not (in general) a whole number of cell lengths.
This gives a complex decaying signal pro®le; an example is illustrated in Fig. 7.

Region 4: K�;Kÿ 2 �0; 1�:

) k 2 cosÿ1�2K� ÿ 1�
L

i;
cosÿ1�2Kÿ ÿ 1�

L
i

� �
:

In this case, all the eigenvalues are purely imaginary, so that a decaying signal
pro®le is not possible. Rather, all solutions are periodic in space, suggesting the
possibility of patterned solutions. Of course, our analysis is only valid close to
the homogeneous equilibrium, and thus does not guarantee that patterns will
form in practice. However, spatial patterning is indeed the solution form we
have observed in numerical simulations with A and F in this parameter re-
gion, as illustrated in Fig. 8. Intuitively, this pattern arises via a `winner takes
all' mechanism ± neighbouring cells compete for ligand, and when more ligand
binds to one particular cell, the e�ect is self-reinforcing because of the positive
feedback in the system.

In common with all our numerical simulations, Fig. 8 was generated using
parameters corresponding to epidermal wound healing; in this case, wounding
induces a perturbation away from the normal steady state, which forms a
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growing pattern that reaches a stable, spatially patterned equilibrium. It is
important to emphasise that the homogeneous equilibrium is also stable in this
parameter regime. Nevertheless, when the wound boundary condition (3) is
replaced by a symmetry boundary condition that is compatible with the ho-
mogeneous equilibrium, the pattern continues to grow (illustrated in Fig. 8),
rather than receding, as a decaying signalling pro®le would.

Region 5: K0� 2 �0; 1�;Kÿ 2 �ÿ1; 0�:

) k 2 cosÿ1�2K� ÿ 1�
L

i; � coshÿ1�1ÿ 2Kÿ� � ip
L

� �
:

The ®rst of these solutions corresponds to a spatially patterned solution, while
the second corresponds to an oscillatory decay in signal, with oscillations

Fig. 7. Numerical simulation of the model (1), speci®ed with Eqs. (2a)±(2c), and with Hill function

feedbacks given by Eq. (10), with m � 1:0 and n � 2:95. Linear analysis predicts complex spatial

eigenvalues, and hence oscillatory decay, corresponding to Region 3 of Fig. 6. The solid points and

lines indicate the solution after 5000 h of evolution with the wounded boundary condition (3). The

other parameters are ka� 0.0003 moleculesÿ1 minÿ1, kd � 0.12 minÿ1, ki� 0.019 minÿ1, da� 0.006

minÿ1, df � 0.03 minÿ1, fe� 3000, be� 3000, r0� 3000, rm� 25500, C2� 8000..
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having a period of two cell lengths. The purely imaginary eigenvalue has the
real part of smallest magnitude (zero), so we expect this solution to dominate,
giving patterned solutions similar to those seen in Region 4, and illustrated in
Fig. 8.

Outside these ®ve regions, the homogeneous steady state is unstable. We
have concluded that solutions decay in Regions 1, 2 and 3, and that patterns
form in Regions 4 and 5. Further analysis (not included here for brevity) shows
that in its region of stability, the normal homogeneous steady state is always
stable to inhomogeneous as well as homogeneous perturbations, except pre-
cisely in Regions 4 and 5.

Fig. 8. Numerical simulation of the model (1), speci®ed with Eqs. (2a)±(2c), and with Hill function

feedbacks given by (10), with m � 1:0 and n � 3:0. Linear analysis predicts purely imaginary spatial

eigenvalues, and hence pattern formation, corresponding to Region 4 of Fig. 6. The solid points

and lines indicate the solution after 500 h of evolution with the wounded boundary condition (3).

The open points and dotted lines indicate the solution a further 500 h after the introduction of a

``healed'' boundary condition �a0; f0; b0� � �a1; f1; b1�, which is compatible with the normal ho-

mogeneous steady state. Interestingly the patterned solution continues to persist and spread, in

contrast to decaying solutions which recede to give the normal homogeneous steady state. The

other parameters are ka� 0.0003 moleculesÿ1 minÿ1, kd � 0.12 minÿ1, ki� 0.019 minÿ1, da� 0.006

minÿ1, df � 0.03 minÿ1, fe� 3000, be� 3000, r0� 3000, rm� 25500, C2� 8000..
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6. Discussion

Juxtacrine signalling has the potential to generate signals which carry over a
number of cell lengths, and the focus of this paper has been to quantify this
phenomenon. We have shown that for any set of kinetic parameters, arbitrarily
small signal decay rates can be generated by altering the feedback in ligand and
receptor production, and we have characterised the qualitative form of signal
pro®le predicted by the model, as a function of parameters.

Given the possibility of very long signal ranges, it is important to consider
the time scales over which such solutions may develop. Our stability analysis
shows that as the signal range increases, the rate at which solutions approach
the steady state decreases, so that we may expect there to be some optimum
pay-o� between fast growth and long range. In this context, the key question is:
for a given spatial location X , what is the parameter set giving maximal
stimulation of a cell at that location at a given time T ? The analysis in the main
body of the text enables us to answer this question, at least within the context
of the linear regime. The numerators of expressions (8) and (14), for the ap-
proximate spatial decay and temporal growth rates respectively, indicate that
the temporal growth rate varies roughly in proportion to the square of the
spatial decay rate. Thus the stimulation of a cell can be approximated by a
perturbation of the form AeÿgX �1ÿ eag2T �, where we consider g > 0 to be the
spatial decay rate ± A and a are constants. For given X and T, this expression
initially increases as g increases, reaching a maximum, after which it decreases.
Thus we predict that there is trade-o� between signal range and evolution time,
with a compromise giving the maximal stimulation at a given point in space
and time. However, numerical results from our wound healing simulations
suggest that in practice, non-linear terms dominate the majority of the evolu-
tion once a wound is made, so that for realistic timescales, maximal stimulation
is given by simply minimising the spatial decay rate g. Moreover, details of
temporal evolution may be complicated by delays in the secretion of new re-
ceptor and ligand, arising from transcription and translation times, which may
be signi®cant on the time scale of juxtacrine signalling. Detailed modelling
incorporating such delays is an important challenge for future work. However,
the equilibrium behaviour, on which we have focussed in this paper, will not be
a�ected by such delays.

We have seen that there is a regime in our model which gives spatial patterns
propagating away from the wound edge. This is an important observation in
view of the increasingly appreciated importance of juxtacrine signalling in
developmental biology. Collier et al. [7] have previously studied a model for
Delta±Notch signalling during development, which also exhibits spatial pat-
terns. Their model is very di�erent from ours because of the particular details
of the Delta±Notch system; the model includes lateral inhibition of neigh-
bouring cells via a feedback loop which is positive in one variable, and negative
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in the other ± in contrast to our model which has only positive feedback. This
lateral inhibition was found to only give rise to patterning with a length scale of
one or two cells, which is consistent with the ®ne-grained patterns seen in many
developmental processes. However, patterns with a longer range have been
characterised, for instance during neuroblast segregation in the Drosophila
embryo [36], and Fig. 8 clearly illustrates that our model does admit the pos-
sibility of such solutions. A natural extension of this work would be to study
the types of pattern seen in a fully two-dimensional model.

Throughout the paper, we have illustrated our results with numerical sim-
ulations using parameter values which correspond to juxtacrine signalling by
TGFTGFa (binding to EGFEGF-R-R) in the epidermis, following wounding. This example
is important because of the possibility that TGFTGFa might play a signi®cant role in
coordinating the response of the epidermis to injury, which includes cell
movement at the wound edge and signi®cantly elevated proliferation in a band
of cells around the wound (see Ref. [11] for review). In particular, it has been
suggested that hair follicles are a possible source of regenerative keratinocyte
stem cells [37]. Thus a key issue is whether TGFTGFa signalling is su�ciently long-
range to enable transmission of a signal between hair follicles (typical sepa-
ration is 1±2 mm in humans). Our results enable this question to be answered if
the form of the feedback functions were known, indicating that determination
of these functions is an important goal for experiments.

Our modelling also suggests the use of in vitro experiments on cell sheets as
a means of verifying predictions in any particular system. For example, in the
wound healing context, `wounding' of epithelial sheets derived from cultured
keratinocytes is an established experimental procedure [38,39], which is closely
related to our modelling framework. A detailed analysis of the protein kinetics
in the remaining cells could be carried out, at least in principle, enabling direct
comparison with model results. A key advantage of such a setup would be that
the signalling kinetics would not be in¯uenced by other cell types, wound
healing mechanisms, and sources of protein. Within this framework, it would
also be possible to manipulate rates of TGFTGFa or EGFEGF-R-R secretion, enabling
veri®cation of the predicted qualitative dependence of signal range on model
parameters. The combination of such experiments and detailed mathematical
modelling would enable a very detailed understanding of the juxtacrine sig-
nalling process.
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