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Juxtacrine signalling is the process of cell communication in which ligand and receptors are both
anchored in the cell membrane. We develop three mathematical models for this process, involving
di¡erent mathematical representations of the dynamics of membrane-bound ligand and free and bound
receptors, within an epithelial sheet. We consider the dynamics of this system following a localized
disturbance, such as would be provided by a source of ligand or by the generation of a free edge via
wounding. We study the ability of the juxtacrine mechanism to transmit a signal away from this
disturbance, and show analytically that the spatial half-life of the signal can in fact be arbitrarily large.
This result is quite general, since we use a generic reaction kinetic scheme; the key assumption is that
ligand and receptor production are both upregulated by binding. Moreover, the result applies to all three
of our model formulations. We conclude by discussing applications of the result to the particular case of
the transforming growth factor alpha binding to epidermal growth factor receptor in epidermal wound
healing.
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1. INTRODUCTION

The term `juxtacrine signalling' was coined by Massaguë
(1990) for a method of cellular communication in which
signalling molecules anchored in the cell membrane bind
to and activate receptors on the surface of immediately
neighbouring cells. This is in contrast to the traditionally
recognized activities of cell-signalling molecules, namely
autocrine, paracrine and endocrine, meaning respectively
that the molecules act only on the cell that secreted them,
on nearby cells via extracellular di¡usion and on all cells
within a tissue. There are two main types of juxtacrine
signalling molecule: (i) those that only exist in membrane-
bound forms, such as the Drosophila proteins Boss and
Delta, which bind to the receptors Sevenless and Notch
(Lewis 1996); (ii) those that are membrane-bound precur-
sors which undergo cleavage to give soluble paracrine
ligands. In the latter case the relative rates of cleavage and
decay of the membrane-bound form determine the relative
importance of paracrine and juxtacrine signalling modes.
Examples of this include epidermal growth factor (EGF),
transforming growth factors a (TGFa) and b (TGFb), and
tumour necrosis factor. A more detailed review can be
found in Massaguë & Pandiella (1993).

Mathematical modelling of juxtacrine signalling was
¢rst considered by Collier et al (1996), focusing on the
morphogenetic role of Delta^Notch signalling during
Drosophila development. However, their model cannot be
extended directly to most growth-factor juxtacrine
signalling, because of assumptions made on protein and
receptor release rates. Recently, Monk (1998) has adapted
these previous models to studyTGFb juxtacrine signalling,
with particular application to Xenopusmesoderm induction.
His work indicates that for this system, there is an upper

limit on the range over which the nearest neighbour signals
can travel. This raises the important question of whether
such a limited range is an intrinsic property of juxtacrine
signalling. In this paper we study the rate at which signals
decay in space, and show that the spatial half-life can be
arbitrarily large.

We investigate the behaviour of signals propagated from
a localized disturbance via juxtacrine signalling, using
generic representations of growth factor production and
binding. We will consider three di¡erent mathematical
representations of the local averaging process implied by
the juxtacrine mechanism; the key properties of our results
apply to all three models, indicating that they are a func-
tion of the underlying biology rather than any mathema-
tical details. The potential for long-range juxtacrine
signalling is particularly important in the case of TGFa
signalling away from the edge of epidermal wounds, and
we illustrate our results with numerical simulations for
parameters corresponding to this particular signalling
system. In ½ 2, we introduce our three models, which are
based on the same generic assumptions about the kinetics
of ligand binding and the resulting feedback in ligand and
receptor productionöthe di¡erences between the models
arise from di¡erent representations of juxtacrine commu-
nication. In ½ 3, we predict analytically the types of spatial
signals that result when a stable homogeneous steady state
is perturbed by a disturbance at a ¢xed location. We
discuss the implications of the work in ½ 4.

2. MATHEMATICAL MODELLING OF JUXTACRINE

SIGNALLING

We consider a two-dimensional sheet of cells, repre-
senting an epithelial sheet, with a linear disturbance of
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the normal growth factor and receptor equilibrium. Such
a disturbance arises naturally in a variety of contexts, for
example the localized secretion of ligand in development
control and the generation of a free edge by epithelial
wounding. We consider the behaviour as a function of
perpendicular distance from the disturbance, � say,
measured in units of epidermal cell lengths. Thus the
variables are the cell surface density of ligand, free
receptor and bound receptor, denoted by a(�,t), f (�,t),
and b(�,t), respectively. We will consider three alternative
models, which di¡er in their representation of juxtacrine
interactions between cells. In each case the basis of the
model is a generic representation of ligand^receptor
binding, as illustrated in ¢gure 1a. This simple kinetic
scheme is established as a good approximation for a
number of growth factor^receptor interactions, with
particularly detailed analysis for the binding of EGF to
EGF-R (Waters et al. 1990; Starbuck & Lau¡enburger
1992).

(a) Model 1 (discrete explicit)
This involves a discrete representation of the cell sheet,

with identical square cells making up a regular array; �
takes integer values corresponding to the number of rows
away from the disturbance, which is taken to be at row

zero (¢gure 1b). This is similar to the modelling approach
used by Collier et al. (1996) and Monk (1998). For our
kinetic scheme, it gives the equations:

@a=@t � ÿkaah f i � kdhbi ÿ daa� Pa(b), (1a)

@f =@t � ÿkahaif � kdbÿ df f � Pf (b), (1b)

@b=@t � kahaif ÿ kdbÿ kib, (1c)

where Pa and Pf are feedback functions, whose form is
discussed below. The notation h�i indicates an average
over neighbouring cells, de¢ned by

hu(�,t)i � u(� ÿ 1,t)� 2u(�,t)� u(� � 1,t)
4

. (2)

This represents the total number of molecules available on
the surface of the cells neighbouring a cell in row �.The term
2u(�,t) stems from our assumption that cells in the same row
behave identically. We describe this model as èxplicit'
because it includes non-local averages of the numbers of
ligands, free receptors, and bound receptors which are expli-
citly active in the juxtacrine signalling process.
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Figure 1. (a) The kinetic scheme used in our model for the binding of ligand to receptors, similar to that of Waters et al. (1990)
for EGF^EGF-R interactions. (b) Schematic illustration of the model representation of the epithelium as a two-dimensional sheet
of cells, indicating a linear disturbance such as would arise due to wounding. (c) When the cells are considered to be randomly
distributed with varying shapes, the model variables can be considered as averages given by some spatial weighting kernel.



(b) Model 2 (continuous explicit)
This model takes � as a real variable, with a continuum

approximation made over a sheet of randomly distributed
cells (¢gure 1c). Thus a(�,t) denotes the ligand density on
the surface of cells at distance � cell lengths from the
disturbance. The model equations are the same as in
equation (1) above, but with h�i de¢ned by

hu(�,t)i �
Z 1
ÿ1

!(s)u(s� �,t)ds. (3)

Here ! is a kernel which gives each point a weight
according to its distance from the cell location �. This
type of integral representation of non-local spatial inter-
actions is widely used in ecological modelling (Neubert et
al. 1995).

(c) Model 3 (continuous implicit)
This again involves a continuum approximation over

the cell sheet, with � a real variable, but with a di¡erent
representation of the juxtacrine interaction. In model 2,
we assumed that ligand and receptor were distributed
uniformly over the surface of a cell. However, in practice
they may be expressed non-uniformly over the surface
and can also move over the cell while remaining
membrane bound; this latter phenomenon has been
modelled mathematically by Gex-Fabry & Delisi (1984).
In our ¢nal model, we consider an extreme case of this,
in which all kinetic reactions and production terms act
pointwise in space, but with production occurring as a
function of the overall receptor number on a cell. This
gives equations

@a=@t � ÿkaaf � kdbÿ daa� Pa(hbi), (4a)

@f =@t � ÿkaaf � kdbÿ df f � Pf (hbi), (4b)

@b=@t � kaaf ÿ kdbÿ kib, (4c)

where h�i is de¢ned by equation (3). Here the interpreta-
tion of the variables is di¡erent from model 2, with a(�,t)
representing the density of ligand at the point �, rather
than the average density on the surface of cells centred at
� (and similarly for b and f ).

We assume that the cell sheet is initially at a homoge-
neous equilibrium (ae, fe,be) (all non-zero); there is always
at least one such equilibrium in model 1. Juxtacrine
signals are then induced by a boundary condition which
perturbs this homogeneous steady state:

(a(�), f (�),b(�)) � (a�, f �,b�) 6� (ae, fe,be) for all �4 0.
(5)

Our interest in spatial signal ranges stems from this distur-
bance, which does not allow the homogeneous steady state
as a solution to model 1. Instead, solutions perturbed at the
boundary evolve to a steady state which varies in space,
gradually approaching the homogeneous steady-state level
as the distance from the disturbance increases.

(d) Speci¢cation of feedback functions
Recall that Pa and Pf are the production rates of ligand

and receptor respectively, which we assume to be
increasing functions of the number of bound receptors on

the cell surface, re£ecting positive feedback. This makes
our model fundamentally di¡erent from that of Collier et
al. (1996), who assume down-regulation of ligand expres-
sion as a result of receptor binding on the cell surface;
this is a special property of the Delta^Notch system they
are considering. Numerical simulation of course requires
speci¢cation of particular functional forms for Pa and Pf ,
and for the ¢gures we have used Hill functions (details in
¢gure legends). However, our analysis will be quite
general. Since our calculations involve linearizing about
the homogeneous steady state, the feedback functions
enter only through their slopes at b � be, that is
A � P 0a(be) and F � P 0f (be). Our approach in the
remainder of the paper will be to treat the kinetic para-
meters as having ¢xed (but arbitrary) values, and to
determine the behaviour as a function of the parameters
A and F .

In the special case of a spatially homogeneous
epithelium, all three models reduce to the same system
of three coupled ordinary di¡erential equations. The
range of possible feedback functions is constrained by
the requirement that the homogeneous steady state
(ae, fe,be) is stable as a solution of these equationsö
otherwise the concept of signal range is not relevant.
Standard stability analysis shows that this requires F to
lie below two lines L1 and L2 in the A^F plane,
de¢ned mathematically in equations (A1) and (A2) in
Appendix A. Detailed analysis (summarized in
Appendix A) shows that L1 and L2 can intersect in four
possible ways, depending on parameter values, giving
the stability regions illustrated in ¢gure 2.

3. ANALYSIS OF THE SIGNAL RANGE

Intuitively, one expects that the strength of the feed-
back in the ligand and receptor production terms would
a¡ect the range over which a signal is propagated away
from a perturbation, and this is con¢rmed by numerical
simulations of all three models (representative simulations
of the continuous explicit model are illustrated in ¢gure
3). In order to quantify this dependence, we will consider
in this section the spatial half-life of steady-state solutions
decaying towards the homogeneous equilibrium. This
provides a convenient measure of signal range that can be
calculated analytically.

(a) Predicting spatial decay rates (explicit models)
Wewish to predict the rate at which steady-state solutions

decay in space towards the homogeneous steady stateöthe
solution is perturbed away from this homogeneous state by
the localized disturbance. We consider models 1 and 2
together, and discuss model 3 separately below. At steady
state, the model equations (1) give three equations in space
only. We linearize these equations about the homogeneous
steady state (ae, fe,be), and look for decaying solutions of
the form a(�) � �ae��, etc, where �a is constant.

Substituting these into the linearized equations leads to
the following condition for non-trivial solutions

Km(�)
2
�
df kd � kakiae ÿ kaaeF

	
ka fe �Km(�)

�
df ka feA

	
ÿ �df ki � df kd � kakiae ÿF

	
(ka fe � da) � 0,

(6)
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where the subscript m denotes the model type: d for
discrete, c for continuous, with Kd(�) � ( cosh��� � 1)=2
and Kc(�) �

R1
ÿ1 !(s)e

�sds. Intuitively, Km represents
the contribution of neighbouring cells to the signal
propagation.

We denote the roots of equation (6) for Km(�) as K�
and Kÿ ; the set of permissible decay rates � is given by
the set of solutions of Km(�) � fK�,Kÿg. Note that the
Km(�) are even functions, so the decay rates will come in
pairs of opposite sign, re£ecting the spatial isotropy of the
model. We expect the decay rate observed in practice in
model solutions to be given by the pair of solutions with
the smallest magnitude, since all linear modes will be
present; intuitively, this is just saying that solutions will
decay as slowly as they can. Figure 4 illustrates the
accuracy of this analysis in comparison with numerical
simulations of the full model equations.

It is exactly the relationship between Kd(�) and Kc(�)
which determines the di¡erence between the discrete and
continuous explicit models in terms of the rate at which
their steady-state solutions decay in space towards the
homogeneous equilibrium. The analysis of (A,F ) space in
terms of the solutions fK�,Kÿg is identical, with the only
di¡erences in predicted decay rates arising from the
di¡erent values of � that Kc(�) and Kd(�) give as inverses
of fK�,Kÿg. In fact, with the kernel !(s) � (�(s� 1)�
2�(s)� �(sÿ 1))=4, the continuous model reduces exactly
to the discrete model.

(b) Predicting spatial decay rates (implicit model)
As for the explicit models, we linearize the equations

for the time-independent system about the spatially
homogeneous steady state, and substitute perturbations
proportional to exp(��). Imposing the requirement of
non-trivial solutions gives the condition

Kc(�) �
kaki(daae � df fe)� dadf (kd � ki)

(kadf feA� kadaaeF )
. (7)

Hence for a given parameter set we may solve for �, and
the values predicted by this analysis are in close agreement
with decay rates calculated from numerical simulation of
the full equations (see ¢gure 4).

(c) What is the maximum signal range?
Large signal ranges correspond to the decay rate �

being small. In such cases Kd(�) and Kc(�) can be
expanded as power series, enabling relatively simple
approximations for � to be derived. Applying this proce-
dure gives the following expressions for the half-life of
decay, H say (� ln 2=�), for the three models:

model 1

H �
�

ka fe(2(df kd � kakiae)� dfAÿ 2kaaeF� ln 2
dadf (kd � ki)� kaki(daae � df fe)ÿ df kafeAÿ dakaaeF

�1=2

,

(8)
model 2

H � ������
2G
p �

ka fe(2(df kd�kakiae)�dfAÿ2kaaeF ) ln 2
dadf (kd�ki)�kaki(daae�df fe)ÿdf kafeAÿdakaaeF

�1=2

,

(9)
model 3

H � ������
2G
p �

(kadf feA� kadaaeF ) ln 2
dadf (kd�ki)�kaki(daae�df fe)ÿkadf feAÿkadaaeF

�1=2

.

(10)

where G � R�1ÿ1 !(s)s2ds. The key feature of these
formulae is that the denominator inside the square root is
the same in all cases, and is precisely zero on L1 ; recall
that the homogeneous equilibrium becomes unstable as
parameters are varied across this line. Since L1 always
forms part of the boundary of the stability domain (see
¢gure 2), the signal half-life becomes arbitrarily large
within the stability domain, for parameters su¤ciently
close to the line L1. Figure 4 illustrates the accuracy of
these approximations, and shows how the half-life of
decay increases dramatically as A approaches L1. There
is an important caveat to this result, however. Since the
line L1 corresponds to marginal stability of the homo-
geneous equilibrium, a long-range signal will require a
long time-scale to be established. In reality, maximum
signal range within a given ¢nite time will correspond to
parameters slightly away from the line L1, re£ecting a
compromise between signal range and evolution time.
Note that the signal range predicted by the discrete

and continuous explicit models depend in the same way
on kinetic parameters, with any di¡erence due to the
details of the spatial kernel !(�). This is as expected,
since these models are based on identical biological
assumptions. The formula for the implicit model is
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di¡erent, re£ecting the assumption of non-uniform
receptor expression over the surface of the cell, but the
key property of arbitrarily long signal half-life holds for
all three cases.

The expressions (8^10) are based on the assumption of a
simple monotone decay away from a localized disturbance.
In fact, for the explicit models, such a disturbance can
generate solutions other than monotonic decay. Mathemati-
cally, this arises because there are solutions of equation (6)
which imply complex values of �. This allows for two addi-
tional signal types, namely oscillatory decay, and propa-
gating patterns. A detailed mathematical study of these
cases for the discrete version of the explicit model can be
found in (Owen & Sherratt 1998). In contrast the implicit
model (model 3) always implies simple decaying solutions.

4. DISCUSSION

The central conclusion from this work is that for any
juxtacrine signalling system with our highly generic
ligand^receptor kinetics, solutions which decay from
some disturbance to a homogeneous steady state can have

an arbitrarily large signal half-life, independent of the
details of the spatial coupling. A system in which the
range of a juxtacrine signal is particularly important is
the TGFa^EGF-R interaction in epidermal wound
healing. In adult mammals, such wounds heal by a
combination of cell crawling at the wound edge, and
enhanced proliferation further back (for review, see
Martin 1996). Although this combined mechanism of
healing was established many years ago (e.g. Winter
1972), the underlying molecular details remain unclear.
TGFa, which acts via binding to EGF-R in a mainly
juxtacrine manner, has traditionally been considered to
be an important element in the epidermal wound healing
process in humans. Normal human keratinocytes produce
TGFa both in vivo and in vitro (Co¡ey et al. 1987), and
TGFa upregulates both migration and proliferation of
keratinocytes in culture (Barrandon & Green 1987).
Moreover, addition of exogenous TGFa accelerates
epithelial wound healing. The kinetic binding scheme
illustrated in ¢gure 1 is well established for this particular
ligand^receptor interaction, and there is extensive
previous modelling work on which kinetic parameters can
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Figure 3. Numerically calculated solutions of the continuous explicit juxtacrine model (de¢ned by equations (1) and (3)),
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wound-induced perturbation clearly increases as the parameter C2, and hence the strength of feedback in TGFa production,
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can only simulate a ¢nite range of cells, N, so we impose the right-hand boundary condition a(�) � a(N),(�) � f (N), b(�) � b(N)
for all �4N . This is not signi¢cant provided N is su¤ciently large.



be based; our numerical simulations illustrated in ¢gures
2^4 have all used parameters determined in this way
(details in ¢gure legends).

The question of the range of TGFa activity in
epidermal repair is raised by recent work of Werner and
co-workers (Werner et al. 1992, 1994), showing a large
induction of (KGF) by dermal ¢broblasts as an early
response to wounding. KGF is a member of the
¢broblast growth factor family, and stimulates the
proliferation of keratinocytes (see Tsuboi et al. (1993)
and Pierce et al. (1994) for quantitative data) by binding
to KGF-R; this receptor is upregulated in the epidermis
following wounding (Werner et al. 1992; Marchese et al.
1995). Since it is produced in the relatively acellular
papillary dermis, KGF has the potential to exhibit long-
range activity via extracellular di¡usion, consistent with
the observed increase in cell division over many cell
diameters from the wound edge. Our results show that
TGFa acting in a juxtacrine manner may be as
important in mitotic upregulation as KGF, even at sites
quite distant from the wound edge. The key determinant

of this role is the strength of the feedback in TGFa and
EGF-R expression, corresponding toA and F in the model.
Experi-mental measurement of these parameters in vitro is
quite feasible, using an approach similar to that developed
by Kudlow et al. (1986) for measuring EGF-Rupregulation
by EGF binding. This data, combined with our modelling
results, would enable a detailed comparison of the relative
contributions of TGFa and KGF to mitotic upregulation as
a function of distance from the edge of an epidermal
wound.

A key feature of the work in this paper is the detailed
comparison of discrete and continuous models for the
same phenomena. Spatially discrete models are an
increasingly important tool in cell biology, enabling
detailed modelling that re£ects the cellularity of the
tissue concerned. The relatively simple situation of signal-
ling in an epithelium with stationary cells enables our
discrete model to be studied analytically. More generally,
discrete models tend to be a computational tool, but have
nevertheless been used very e¡ectively to study cell
rearrangements in development (Weliky et al. 1991) and
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the aggregation of cellular slime moulds (Savill &
Hogeweg 1997; Van Oss et al. 1996; Dallon & Othmer
1997). Within the context of wound healing, the natural
extension of our work is to develop an enlarged model
framework including cell movement and proliferation,
and receptor di¡usion. For such an extended model, the
continuous formulation is the simplest to use, enabling
direct inclusion of existing continuum models for these
processes (Sherratt & Murray 1990; Gex-Fabry & Delisi
1984). The very close agreement of the continuum model
with the discrete representation in the basic context that
we consider provides strong evidence that it is a realistic
representation of the juxtacrine signalling process.

M.R.O. was supported in part by an earmarked studentship
from the Engineering and Physical Sciences Research Council.
We thank John Dallon for helpful discussions.

APPENDIX A

In this Appendix we brie£y summarize the arguments
showing that the only possible regions of the A^F
parameter plane in which the homogeneous steady state
(ae, fe,be) is stable are those illustrated in ¢gure 2.
Standard linear analysis shows that stability is
determined by the roots of a cubic polynomial. Applying
the Routh^Hurwitz conditions gives two inequalities
which must be satis¢ed for all the roots to have negative
real part, and hence for the homogeneous steady state to
be stable. These inequalities determine two lines which
bound the region of stability, L1 and L2, given by

L1: F � ki �
df (kd � ki)

kaae
� kidf fe

daae
ÿ df fe

daae
A, (A1)

L2: F � ki � da �
df fe
ae
� dadf � (kd � ki)(da � df )

kaae

� d2a (df � kd � ki)�(kaae�ka fe�kd�ki�1)kaki fe�(df fe�daae)ka
(df � kaae � ka fe � kd � ki)kaae

ÿ fe(da � kaae � ka fe � kd � ki)
ae(df � kaae � ka fe � kd � ki)

A. (A2)

These lines both have negative slopes and are positive
when A � 0. Their relative gradients depend on the
relationship between da and df : for da5df , independent of
the other kinetic parameters, the line L1 has a more
negative gradient than line L2 ; for da4df , the opposite is
true. Note that the region under both lines is stable, with
the homogeneous steady state unstable otherwise.
Calculation of the values of A and F at which L1 and L2

intersect shows that A40 at intersection if da4df and
F40 at intersection if df4da. This restricts the possible
con¢gurations to those illustrated in ¢gure 2.
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