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Angiogenesis, the formation of blood vessels from a pre-existing vasculature, is
a process whereby capillary sprouts are formed in response to externally supplied
chemical stimuli. The sprouts then grow and develop, driven initially by endothe-
lial cell migration, and organize themselves into a branched, connected network
structure. Subsequent cell proliferation near the sprout-tip permits further exten-
sion of the capillary and ultimately completes the process. Angiogenesis occurs
during embryogenesis, wound healing, arthritis and during the growth of solid
tumours. In this paper we initially generate theoretical capillary networks (which
are morphologically similar to those networks observedin vivo) using the discrete
mathematical model of Anderson and Chaplain. This discrete model describes the
formation of a capillary sprout network via endothelial cell migratory and prolif-
erative responses to external chemical stimuli (tumour angiogenic factors, TAF)
supplied by a nearby solid tumour, and also the endothelial cell interactions with
the extracellular matrix.
The main aim of this paper is to extend this work to examine fluid flow through
these theoretical network structures. In order to achieve this we make use of
flow modelling tools and techniques (specifically, flow through interconnected net-
works) from the field of petroleum engineering. Having modelled the flow of a
basic fluid through our network, we then examine the effects of fluid viscosity,
blood vessel size (i.e., diameter of the capillaries), and network structure/geometry,
upon: (i) the rate of flow through the network; (ii) the amount of fluid present in
the complete network at any one time; and (iii) the amount of fluid reaching the
tumour. The incorporation of fluid flow through the generated vascular networks
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has highlighted issues that may have major implications for the study of nutrient
supply to the tumour (blood/oxygen supply) and, more importantly, for the delivery
of chemotherapeutic drugs to the tumour. Indeed, there are also implications for the
delivery of anti-angiogenesis drugs to the network itself. Results clearly highlight
the important roles played by the structure and morphology of the network, which
is, in turn, linked to the size and geometry of the nearby tumour. The connected-
ness of the network, as measured by the number of loops formed in the network
(the anastomosis density), is also found to be of primary significance. Moreover,
under certain conditions, the results of our flow simulations show that an injected
chemotherapy drug may bypass the tumour altogether.

c© 2002 Society for Mathematical Biology. Published by Elsevier Science Ltd. All
rights reserved.

1. INTRODUCTION

Angiogenesis (syn neovascularization), the formation of blood vessels from a
pre-existing vasculature, is a crucial component of many mammalian growth pro-
cesses. It occurs in early embryogenesis during the formation of the placenta, after
implantation of the blastocyst in the uterine wall (Graham and Lala, 1992). It also
occurs, in a controlled manner, in adult mammals during tissue-repair (Arnold and
West, 1991; Pettetet al., 1996). By contrast, uncontrolled or excessive blood-vessel
formation is essential for tumourigenesis and is also observed in arthritis, abnormal
neovascularization of the eye, duodenal ulcers, and following myocardial infarction
(Folkman and Klagsbrun, 1987; Folkman, 1985, 1995). These instances may be
considered pathological examples of angiogenesis (Muthukkaruppanet al., 1982;
Folkman and Brem, 1992). In each case, however, the well-ordered sequence of
events characterizing angiogenesis is the same, beginning with the rearrangement
and migration of endothelial cells from a pre-existing vasculature and culminat-
ing in the formation of an extensive network, or bed, of new capillaries (Madri
and Pratt, 1986). In this paper we focus exclusively on tumour-induced angio-
genesis, although the results from the mathematical model and flow simulations
have implications for neovascularization arising in the other growth processes men-
tioned earlier.

The first event of tumour-induced angiogenesis involves the cancerous cells of a
solid tumour secreting a number of chemicals, collectively known as tumour angio-
genic factors, or TAF (Folkman and Klagsbrun, 1987), into the surrounding tissue.
These factors diffuse through the tissue space creating a chemical gradient between
the tumour and any existing vasculature. Upon reaching any neighbouring blood
vessels, endothelial cells lining these vessels are first induced to degrade the par-
ent vessel basement membranes and then migrate through the disrupted membrane
towards the tumour.

The initial response of the endothelial cells to these angiogenic factors is a chemo-
tactic one (Sholley et al., 1984; Terranovaet al., 1985; Paweletz and Knierim,
1989; Stokeset al., 1990), initiating the migration of the cells towards the tumour.
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Following this, small, finger-like capillary sprouts are formed by accumulation of
endothelial cells, which are recruited from the parent vessel. The sprouts grow
in length due to the migration and further recruitment of endothelial cells (Cliff ,
1963; Schoefl, 1963; Warren, 1966; Ausprunk and Folkman, 1977; Sholleyet al.,
1984) and continue to move toward the tumour directed by the motion of the lead-
ing endothelial cell at the sprout-tip. Further sprout extension occurs when some of
the endothelial cells of the sprout-wall begin to proliferate. Cell division is largely
confined to a region just behind the cluster of mitotically inactive endothelial cells
that constitute the sprout-tip. This process of sprout-tip migration and proliferation
of sprout-wall cells forms solid strands of endothelial cells amongst the extracel-
lular matrix. The cells continue to make their way through the extracellular matrix
which consists of interstitial tissue, collagen fibre, fibronectin and other compo-
nents (Liotta et al., 1983; Paweletz and Knierim, 1989). Interactions between the
endothelial cells and the extracellular matrix are very important and directly affect
cell migration. In particular, the specific interactions between the endothelial cells
and fibronectin, a major component of the extracellular matrix, have been shown to
enhance cell adhesion to the matrix. Consequently, in addition to the chemotactic
response of the endothelial cells to the TAF, there is a complementary haptotactic
response to the fibronectin present within the extracellular matrix (Bowersox and
Sorgente, 1982).

Initially, the sprouts arising from the parent vessel grow in an essentially parallel
manner. However, once the finger-like capillary sprouts have reached a certain
distance from the parent vessel, they are seen to incline toward each other (Paweletz
and Knierim, 1989), leading to numerous tip-to-tip and tip-to-sprout fusions known
as anastomoses. Such anastomoses result in the fusing of the finger-like sprouts
into a network of poorly perfused loops or arcades. Following this process of
anastomosis, the first signs of circulation can be recognized and from the primary
loops, new buds and sprouts emerge repeating the angiogenic sequence of events
and providing for the further extension of the new capillary bed. The production of
new capillary sprouts from the sprout-tips is often referred to as sprout branching,
and as the sprouts approach the tumour, their branching dramatically increases until
the tumour is eventually penetrated, resulting in vascularization (Muthukkaruppan
et al., 1982; Itoh et al., 2000).

During the vascular phase of growth, the tumour is highly regulated by the cap-
illary network around it. Nutrients are supplied to the tumour via this network,
and it provides the initial route for invading cancer cells to escape from the pri-
mary tumour and form metastases. Moreover, it is through the vascular network
that chemotherapeutic drugs will be delivered to the tumour. All of these processes
depend crucially on the blood flow within the vascular network, which is therefore
a central regulator of the vascular phase of tumour development. Although much is
known about the physical structure of the capillary network, which has been stud-
ied in detail both experimentally [see, for example,Paweletz and Knierim(1989),
for a review] and theoretically [see, for example,Anderson and Chaplain(1998),
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and references therein], attempts to study the blood flow within the vasculature sur-
rounding solid tumours (and also, by implication, the drug supply to the tumours)
are relatively few. Consequently, the main focus of this paper is to address the topic
of modelling flow through tumour-induced capillary networks.

Tumour-induced angiogenesis provides the crucial link between the avascular
phase of solid tumour growth and the more harmful vascular phase, wherein the
tumour invades the surrounding host tissue and blood system (Chaplain, 1996).
However, these apparently insidious features of tumour-induced angiogenesis are
now being used in new treatments of cancer and the clinical importance of angio-
genesis as a prognostic tool is now well-recognised (Harriset al., 1994; Bikfalvi ,
1995; Ellis and Fidler, 1995; Gasparini, 1995; Gasparini and Harris, 1995; Norton,
1995). Anti-angiogenesis strategies are also being developed as potentially pow-
erful, noninvasive weapons against the spread of cancer (Herblin and Gross, 1994;
Harriset al., 1996; Harris, 1997).

Partial differential equation modelling was first applied to tumour-induced angio-
genesis byBalding and McElwain(1985) and then developed byChaplain and
Sleeman(1990), who studied concentration profiles of tumour angiogenic fac-
tors (TAFs), andChaplain and Stuart(1993). More recent work has shown that
the structure and morphology of the capillaries and the network also depend cru-
cially on the interactions between the endothelial cells and local gradients of extra-
cellular matrix components (Orme and Chaplain, 1996; Anderson and Chaplain,
1998; Holmes and Sleeman, 2000; Levine et al., 2001). Although these contin-
uum models are capable of capturing certain important features of angiogenesis,
such as average sprout density, average vessel growth rates and network expansion
rates, they are limited because they cannot reproduce the morphology of branched,
connected networks at the level of detail required for the flow simulations.

In order to capture the fine-scale detail of these inter-connected networks, it is
necessary to use some form of discrete modelling technique i.e., one that operates
at the level of single endothelial cells. There have been several approaches using
spatially discrete representations e.g.,Stokes and Lauffenburger(1991), Nekka
et al. (1996), Anderson and Chaplain(1998) andGödde and Kurz(2001). In this
paper we will utilize the approach ofAnderson and Chaplain(1998) in order to gen-
erate our theoretical capillary networks, and details of the model are given in Sec-
tion 2.1 [see alsoAndersonet al. (1997)]. The main advantage of using this tech-
nique is the ability to follow the motion of individual endothelial cells at the capil-
lary tips (where migration occurs) and to enable one to include important processes
at the individual cell level such as proliferation, branching and loop formation. The
mathematical model focussed on three key variables involved in tumour-induced
angiogenesis; namely, endothelial cells, TAFs and fibronectin, each of which has
a crucial role to play. The principal aim of this paper is to extend the work of
Anderson and Chaplain(1998) by incorporating flow through the network (e.g.,
blood, chemotherapy drugs) and to consider the implications for tumour growth
and chemotherapy treatment strategies.
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The layout of the remainder of the paper is as follows. Before modelling flow
through the capillary networks, we first briefly summarize the model ofAnderson
and Chaplain(1998), which we will use to generate our theoretical network struc-
tures. In the first instance, using conservation laws and a continuum approach,
we will derive a system of coupled nonlinear partial differential equations mod-
elling the initial migratory (chemokinetic/chemotactic) response of the endothe-
lial cells to TAF, production of fibronectin and degradation of matrix components
(fibronectin), and the haptotactic response of the endothelial cells to components
of the extracellular matrix (specifically fibronectin). From a discretized form of
these partial differential equations, a discrete (biased random walk) model will be
derived enabling the paths of individual endothelial cells located at the sprout-tips,
and hence the individual capillary sprouts, to be followed. The processes of sprout
branching, anastomosis (loop formation) and cell proliferation will be incorporated
in this discrete biased random walk model. Having generated realistic capillary net-
work structures, we will then turn our attention to the main focus of the paper—to
examine the flow of various fluids (blood, drugs) through these structures and con-
sider the implications for nutrient delivery to tumours and chemotherapy strategies.

2. THE M ATHEMATICAL M ODEL OF NETWORK GROWTH

In this section we give a brief description of the mathematical model ofAnderson
and Chaplain(1998). This is based upon the experimental system ofMuthukkarup-
panet al.(1982), whereby a small solid tumour or fragment of tumour was implan-
ted in the cornea of a test animal close to the limbal vessels of the eye—these ves-
sels are lined with endothelial cells. We denote the endothelial cell density per
unit area byn, the TAF concentration byc and the fibronectin concentration by
f . For the migration of the endothelial cells we assume: (i) that there is a small
amount of random motion (which may be dependent on the underlying TAF con-
centration i.e., chemokinesis); (ii) that cells respond chemotactically to gradients
of TAF; and (iii) that cells respond haptotactically to gradients of fibronectin in
the matrix. Proliferation of the cells is incorporated at the individual level via
the discrete model described in the next section. For the TAF, we assume that
a (quasi) steady state distribution already exists in the matrix (the TAF having
initially been secreted by the tumour cells) thereby providing an initial concen-
tration gradient to which the endothelial cells can respond. As the endothelial
cells migrate through the tissue, there is some binding of the TAF to the cells
and we model this with a simple uptake function−ηnc. Fibronectin exists in the
matrix in bound form and therefore there is no diffusion term in the fibronectin
equation. Endothelial cells are known to produce fibronectin as they migrate and
we assume this is at a rateβn. The endothelial cells also degrade the matrix as
they migrate and this is brought about by the cells secreting matrix-degrading
enzymes such as matrix-metallo-proteases (MMPs) and urokinase plasminogen
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activator (uPA). The complete degradation process is rather complicated involving
bound and unbound, active and inactive forms of the enzymes. However, the degra-
dation is a tightly regulated and highly localized process restricted to the immediate
pericellular environment (Paweletz and Knierim, 1989; Matrisian, 1992; Alberts
et al., 1994; Andreasenet al., 1997; Pepper, 2001) and therefore we make the sim-
plifying assumption that the endothelial cells degrade the matrix (fibronectin) upon
contact. We include a simple degradation term,−γ n f , in the fibronectin equation
to reflect this fact [a slightly more detailed treatment of modelling the action of
matrix degrading enzymes may be found inPerumpananiet al. (1996); Anderson
et al. (2000); Levine et al. (2001)]. With these modelling assumptions the full
(nondimensional) system of equations becomes:

∂n

∂t
=

chemokinesis︷ ︸︸ ︷
D∇ · (d(c)∇n) −

chemotaxis︷ ︸︸ ︷
χ∇ · (g(c)n∇c) −

haptotaxis︷ ︸︸ ︷
ρ∇ · (n∇ f ),

∂c

∂t
= −

uptake︷︸︸︷
ηnc,

∂ f

∂t
=

synthesis︷︸︸︷
βn −

degradation︷︸︸︷
γ n f . (1)

The (nondimensional) equations are taken to hold on a two-dimensional (2D)
domain, the unit square[0, 1] × [0, 1], with no-flux boundary conditions. Appro-
priate initial conditions are imposed forn, c, and f . All parameter values have
been estimated, as far as possible, from available experimental data (Anderson
and Chaplain, 1998) with the unit of length taken to be 2.5 mm and the unit of
time taken to be 1.5 days. The key (nondimensional) motility parameters have
been estimated asD = 0.00035,χ = 0.38 andρ = 0.34. Full details of the
initial conditions used, the nondimensionalization process, and references to the
experimental results can be found inAnderson and Chaplain(1998). In the sim-
ulations carried out in the following sections we took as a chemotaxis function
g(c) = 1/(1+ c). Finally we took the chemokinesis functiond(c) to be a constant
[i.e.,d(c) = 1, simple cell random motility, with coefficientD]. This is in line with
recent work bySchoret al.(2002) using a three-dimensional (3D) collagen gel cell
migration assay (a sandwich assay) and the well-known cytokine TGF-β. Results
here show that although all three isoforms of TGF-β (i.e., TGF-β1, TGF-β2 and
TGF-β3) do indeed stimulate fibroblast migration and endothelial cell migration in
the 3D collagen gel in a chemokinetic manner, the actual quantitative effect on cell
migration over and above that observed in the control experiments is minimal. The
data show that constant random motility of the cells is an excellent approximation
over four orders of magnitude of cytokine concentration. We note that previous
cell migration experiments carried out in a 3D collagen gel (Schoret al., 1999)
with a different cytokine (platelet derived growth factor, PDGF) and fibroblasts
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Figure 1. Movement probabilities for an individual endothelial cell generated from the
model of Anderson and Chaplain(see text for details). The current endothelial cell is
located at position(l , m) and has the chance to move to one of the four orthogonal neigh-
bours (filled circles) with a probability ofP1, P2, P3, P4 or remain stationary with a
probability P0.

show that PDGF does elicit a larger chemokinetic response in the cells. However
we estimate that the maximum effect of this is to increase the parameterD 10-fold
to around 0.003 which still means that the taxis components in the cell migra-
tion dominate [simulations performed using this value ofD in the discrete model
generated capillary networks that were very similar in structure to those shown in
Fig. 2(a) and (b)].

The results of the numerical simulations of the above system showed interest-
ing spatio-temporal dynamics and demonstrated two important aspects of capillary
network formation: (i) in agreement with previous models, (Stokes and Lauffen-
burger, 1991; Chaplain and Stuart, 1993) a sufficiently strong chemotactic response
is necessary for the initial outgrowth of the capillary network; (ii) interactions
between endothelial cells and the extracellular matrix are very important for the
successful development of the network. Full details can be found inAnderson
and Chaplain(1998). In summary, the continuum model captured the important
(large-scale) qualitative features of capillary network growth. However, important
processes on a smaller scale, such as sprout branching, localized endothelial cell
proliferation, are not captured. In order to achieve this (and to proceed with the
subsequent flow simulation) we require to develop a model applicable at the level
of a single endothelial cell. This may be carried out by a number of different tech-
niques (e.g., stochastic differential equations, cellular automata, diffusion limited
aggregation). However we follow the method developed byAnderson and Chap-
lain (1998) and this is explained fully in the next section.
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Vasculature 1 (Linear TAF Source)   Vasculature 2 (Circular TAF Source)

  
      (a)         (b) 

Figure 2. Vascular networks generated by the model of Anderson and Chaplain (see text
for details). In (a) the vasculature is responding to a linear source of tumour cells placed
along the lower (horizontal) boundary, while in (b) the response is to a small circular
tumour located midway along the lower boundary. In both cases the parent vessel lies
along the upper (horizontal) boundary. These vasculatures are then used to generate the
flow networks used in the flow simulations (see Figs3 and4 for details).

2.1. The discrete mathematical model.Having defined the continuum model
via system (1) of partial differential equations (PDEs), we now formulate the dis-
crete model which involves using a discretized form of the PDEs. Essentially we
generate a biased random walk model which governs the movement of individ-
ual endothelial cells at the capillary sprout tips. We assume that all cells within
the capillary sprout are contiguous (Paweletz and Knierim, 1989) and therefore
tracking the path of an individual tip cell defines the shape of the whole sprout.
We first discretize (1) using the standard Euler finite difference approximation
(Mitchell and Griffiths, 1980). This involves approximating the continuous 2D
domain[0, 1] × [0, 1] in the usual way as a grid of discrete points (mesh sizeh),
and time (t) by discrete increments (magnitudek). The full discretized system and
all other related details are given inAnderson and Chaplain(1998). For clarity of
exposition, we present the form of the discrete endothelial cell equation:

nq+1
l ,m = nq

l ,mP0 + nq
l+1,mP1 + nq

l−1,mP2 + nq
l ,m+1P3 + nq

l ,m−1P4 (2)

where the subscripts specify the location on the grid and the superscripts the time
steps. That isx = lh, y = mh and t = qk wherel , m, k, q andh are positive
parameters.

For our discrete model, we use the five coefficientsP0 to P4 from (2) to generate
the motion of an individual endothelial cell. These coefficients can be thought of as
being proportional to the probabilities of the endothelial cell being stationary (P0)
or moving left (P1), right (P2), up (P3) or down (P4) (see Fig.1 for a schematic
diagram). The exact forms ofP0 to P4 involve functions of the fibronectin and TAF
concentrations in a local neighbourhood of the individual endothelial cell i.e., the
motion of individual cells is governed by the local interactions between the cells
and their surrounding milieu. Once again full details can be found inAnderson and
Chaplain(1998).
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      (a)            (b) 

Figure 3. Schematic diagram showing construction of the vascular network; (a) the lattice
template onto which the vascular pattern generated by the discrete mathematical model
is mapped, (b) schematic section of the mapped vasculature showing how blood flows in,
through and out of the network along the various network bond elements (arrows indicate
flow direction).

Before proceeding to the simulation section, where we describe how we generate
the capillary networks, first we briefly discuss the manner in which we explicitly
incorporate the processes of branching, anastomosis and cell proliferation into the
discrete model.

2.2. Rules for branching, anastomosis and cell proliferation.We will assume
that the generation of new sprouts (branching) occurs only from existing sprout-tips
and that the newly formed sprouts are unlikely to branch immediately. We assume
that each sprout-tip has a probability,Pb, of generating a new sprout (branching)
and that this probability is dependent on the local TAF concentration. The simple
rule used is that as the TAF concentration increases the probability of generating
new sprouts (branching) increases.

Anastomosis, the formation of loops by capillary sprouts, is another very impor-
tant feature of angiogenesis, which can be captured explicitly by the discrete model.
During capillary sprout growth, it is observed that neighbouring sprouts come near
to each other at their leading tips and then may fuse together to develop loops. Tip
cells are also seen to fuse with the sides of capillary sprouts (Paweletz and Knierim,
1989). In our discrete model as the sprouts progress towards the tumour, driven by
the movement probabilities of (2) at each time step of the simulation, the endothe-
lial cells at the sprout-tips can move to any of the four orthogonal neighbours on the
discrete grid. If upon one of these moves another sprout is encountered, then anas-
tomosis can occur and a loop is formed. We assume that as a result of a tip-to-tip
anastomosis, one of the original sprouts continues to grow (the choice of which is
purely random) and the other fuses to form the loop (Paweletz and Knierim, 1989).
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Figure 4. Illustration of how the mapping technique is used to construct a vascular flow
network: (a) shows a theoretical network generated by the discrete mathematical model,
while (b) shows the corresponding flow network.

Endothelial cell doubling time has been estimated at 18 h (Williams, 1987) and
we model the process of cell division in the discrete model by assuming that some
of the cells behind the sprout-tip divide (into two daughter cells) every 18 h. We
assume that this has the effect of increasing the length of a sprout by approximately
one cell length every 18 h. Owing to the inherent randomness of the discrete model,
proliferation will occur asynchronously in separate sprouts, as is observed experi-
mentally (Paweletz and Knierim, 1989).

2.3. Simulation process for the discrete model.Each time step of the simulation
process involves solving the discrete form of system (1) numerically to generate the
five coefficientsP0 to P4. Probability ranges are then computed by summing the
coefficients to produce five ranges,R0 = 0 to P0 and

Rj =

j −1∑
i =0

Pi to
j∑

i =0

Pi where j = 1–4.

We then generate a random number between 0 and 1 and, depending upon the range
in which this number falls, the individual endothelial cell under consideration will
either remain stationary (R0) or move left (R1), right (R2), up (R3) or down (R4).
The larger a particular range, the greater the probability that the corresponding
coefficient will be selected. Each endothelial cell is therefore restricted to move
to one of its four orthogonal neighbouring grid points or remain stationary at each
time step.

Since the main focus of the current study is the incorporation of blood flow
through vascular networks, use of the discrete model was restricted to the genera-
tion of two structurally different capillary networks. The first network was gener-
ated in response to a linear concentration profile of TAFs arising from a line source
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of tumour cells or, equivalently a large solid tumour [see Fig.2(a)]. The second
network was generated in response to a radially symmetric concentration profile
of TAF arising from a small circular tumour [see Fig.2(b)]. Both simulations
were carried out on a 100× 100 grid which is a discretization of the unit square
[0, 1] × [0, 1] [this is equivalent to a dimensional domain of length 2.5 mm, the
average distance of a tumour implant from the limbal vessels in the corneal experi-
ments ofMuthukkaruppanet al.(1982)], with a space step ofh = 0.01 (equivalent
to a dimensional distance of 25µm). No flux boundary conditions were imposed
on the square grid, restricting the endothelial cells to within the grid.

It is evident from Fig.2 that different source (tumour) geometries lead to vastly
different vascular structures and network connectedness (anastomoses density).
We will find that such differences play a crucial role in determining the efficacy
of drug delivery to the tumour once flow has been incorporated into the model. In
the following section we will describe how we incorporate flow through a capillary
network which has been generated from our discrete mathematical model.

3. MODELLING FLOW THROUGH VASCULAR NETWORKS

In this section we focus on the main aim of this paper, which is to model and
examine flow through vascular networks surrounding solid tumours. Examina-
tion of any photomicrograph relating to vascularization immediately demonstrates
why the modelling of fluid flow through a vascular network is such a challeng-
ing task. Fluid mechanical issues notwithstanding, the underlying network topol-
ogy is itself rather complex, consisting of tortuous interconnected blood vessels
embedded within a host tissue. Whilst there appear to have been comparatively
few attempts to model flow through realisticvascularstructures (reviewed later),
a large amount of related researchhasbeen carried out in the (seemingly uncon-
nected) field of petroleum engineering. As its etymology suggests, petroleum is
usually found trapped within the interstices of a rock, and as the rock structures
themselves generally consist of interconnected pore ensembles (cf. capillaries) set
within a solid matrix (cf. host tissue), the link between hydrocarbon flow through
pore systems and flow through vascular networks becomes clear.

A fully interconnected network was first used byFatt (1956) in the context
of oil and water flow through reservoir rock and, although the 2D lattice used
was extremely small (200–400 elements), the novelty of the approach encour-
aged great interest in the subject. Improvements on this early model were soon
forthcoming (Rose, 1957; Dodd and Kiel, 1959) and a substantial literature relat-
ing to pore-scale modelling now exists [seeDullien (1992), for an overview].
Indeed, the recent advent of high speed computing has lead to the design and
implementation of systems containing hundreds of thousands of pore elements
and facilitated the production of statistically meaningful 3D simulations
(McDougall and Sorbie, 1997).
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Related research in the field of microcirculatory blood perfusion has only emer-
ged relatively recently [seeSchmid-Schonbein(1999), for a review] and mod-
elling attempts tend to fall into two broad categories: biomechanical properties
of blood/blood vessels, and flow-induced evolution of microvascular networks.
Studies associated with the former include; nonNewtonian effects and haemat-
ocrit correlations (Sutton and Schmid-Schonbein, 1994), application of Reynolds
lubrication theory to blood flow through nonuniform capillaries (Secomb and Hsu,
1996), and modelling of viscoelastic vessel compliance (Price and Skalak, 1995).
Studies of flow in microvascular networks have focussed primarily upon structural
adaptations of arterial and venous trees (Honda and Yoshizato, 1997; Prieset al.,
1998; Gödde and Kurz, 2001), and haematocrit evolution during network perfu-
sion (Schmid-Schonbeinet al., 1980; Levin et al., 1986; Prieset al., 1990). More
recently, studies dealing with blood perfusionwithin tumours have been reported
(Baishet al., 1996, 1997). The first of these papers utilized an invasion percolation
model (Wilkinson and Willemsen, 1983) to construct a small (32×32) artificial 2D
network that had the same fractal dimension as a vasculature observed in a murine
dorsal skinfold chamber preparation. The model was used to help explain why
tumour vascular resistance is found to be higher than that observed in normal vas-
culature; tumour oxygenation was also examined. The second paper in the series
took a less sophisticated approach to examine transmural coupling in tumours—a
regular square network and a pair of countercurrent cylinders were used to model
various aspects of fluid exchange between the microcirculation and tumour inter-
stitium.

In this paper, we examine a rather different aspect of the microcirculation—
we attempt to study blood flow within the vasculaturesurroundingsolid tumours
(and also, by implication, the drug supplyto the tumours). Moreover, in contrast
to some other approaches, we generate vascular networks using models that are
firmly underpinned by the governing biological processes (chemokinesis, chemo-
taxis, and haptotaxis)—hence our flow networks are firmly grounded in physical
reality.

3.1. Network model design.In its most general form, a network flow model may
be considered in three space dimensions (indeed, such networks are regularly used
in the petroleum engineering context). However, in order to be consistent with
the theoretical networks generated via the discrete model of the previous section
[Fig. 2(a) and (b)], the flow simulations reported here are restricted to 2D lattice
networks ofbond elements—these can be thought of as being straight, rigid cylin-
drical capillaries that join adjacent nodes (junctions), although the constraints of
rigidity and cylindrical geometry can easily be relaxed (Fig.3). Each capillary
element forming part of the microvasculature is assigned a radius drawn from an
input probability distribution function (PDF). Now, for a single capillary element
(joining nodesi and j ) of radiusRi j and lengthL i j , the elemental flow rate in the
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capillary is assumed to follow Poiseuille’s law:

Qi j =
π R4

i j 1Pi j

8µL i j
(3)

whereµ is the fluid viscosity and1Pi j = (Pi − Pj ) is the pressure drop across
the element from nodei to node j . Whilst this is clearly an approximation, it
forms a useful starting point for the development of more sophisticated models at
a later date. At each node, denoted by the indexi , a number of capillary elements
come together and (assuming incompressible flow) mass conservation means that
the sum of all flows at each nodal point must add up to zero, i.e.,

j =4∑
j =1

Qi j = 0 (4)

where thej index refers to the four adjacent sites on the 2D lattice. Prescribed
pressures are set at sites that are connected to the inflow or outflow faces of the
network (in this case at either end of the parent vessel) and these values form
part of the boundary conditions for the problem. Application of equation (4) to
the whole network of nodes leads to a sparse set of linear pressure equations, the
simultaneous solution of which can then be used to calculate elemental flows. In
order to apply this model formulation to flow through the vascular networks shown
in Fig. 2(a) and (b), the following procedure was adopted:

(i) to be consistent with the theoretical networks generated via the discrete
model, the actual flow networks used are obtained by mapping the theoret-
ical networks generated via the discrete model, shown in Fig.2(a) and (b),
onto the 2D lattice template shown in Fig.3(a). An example mapping is
shown in Fig.4;

(ii) the pressure solution and flow calculations are restricted to the vascular net-
works themselves, i.e., flow only occurs through the bond elements which
are capillaries [as shown in Fig.3(b)]. Template elements corresponding
to nonvascularized tissue [shown dotted in Fig.3(b)] have no flow through
them;

(iii) the uppermost row of bond elements are all assigned the same radius (either
10 or 20µm) and represent the parent vessel. The global network pressure
drop is applied across this capillary vessel only (i.e., in a direction perpen-
dicular to the general direction of vascular growth);

(iv) bond elements corresponding to vascular capillaries are assigned radii from
narrow uniform distribution functions [ranges considered were (2, 2.01), (4,
4.01), and (6, 6.01)µm];

(v) the lower boundary is taken to represent the outer surface of the tumour.
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After applying the procedure for a given vascular architecture, and prescribed pres-
sure drop across the parent vessel, the flow field is then calculated by assuming
that the capillary network is initially full of pure blood. This gives us the ele-
mental bond flows required for further analysis—in particular, for modelling the
flow of chemotherapy drugs through the vascular networks. In the next section, we
describe the algorithm developed to facilitate this.

3.2. Chemotherapeutic drug flow modelling.As a first attempt towards mod-
elling the flow of chemotherapy drugs through tumour-induced vascular networks,
an algorithm was developed to track concentration profiles of an injected tracer as
follows. Having solved for the nodal pressures and elemental flows, a chemother-
apy drug at concentrationCmax was injected into the upstream end of the parent
vessel. At each time step, the following procedure was adopted:

(i) the total amount of drug flowing into each node was calculated;
(ii) perfect mixing was assumed at each node and new drug concentrations were

calculated for all outflow bonds based upon nodal values.

Care had to be taken to ensure that mass conservation was satisfied at all times—
too large a time step could result in a mass of drug flowing into a node in excess of
that available in the associated capillary element (i.e., too large a time step could
lead to cases whereQi j 1t > π R2

i j L i j ci j ). The time step chosen for the simulation
was subsequently calculated from:

1t = M I N

{
πr 2

i j L i j

Qi j

}
(5)

considered over the whole network of capillaries. Preliminary simulations imposed
a no-flow boundary condition at the tumour surface (this corresponds to the lower-
most boundary in the figures). In the simulations described later, however, the
boundary condition was modified to allow drug uptake by the tumour and we
assumed that any drug coming within 40µm of this boundary was immediately
removed from the system. The flow simulations were used to compare the drug
delivery to the tumour via the two standard treatment regimes of continuous infu-
sion and a one-off, bolus injection.

The most restrictive approximations of the flow model were the following: (i) the
blood was considered to be a Newtonian fluid; (ii) the blood vessels were modelled
as static, impermeable cylindrical capillaries; and (iii) no reaction kinetics were
included in the drug uptake function. Each of these issues has been the subject of
recent modelling work at the scale of a single capillary (Armitsteadet al., 1996;
Dutta and Tarbell, 1996; Pedley and Luo, 1998; Fister and Panetta, 2000) and in
future work we will incorporate these effects into our interconnected network flow
model.



Flow Through Vascular Networks 687

Table 1. Base case physiological input data.

Base case parameter Value

µbase(Pa.s) 4× 10−3

1Pbase(Pa) 800
Rc,base(µm) 4
Rpv,base(µm) 10

Table 2. Dimensionless input parameters used for chemotherapy modelling.

Base run Run 1 Run 2 Run 3 Run 4

µ∗ 1 0.25 2 1 1
R∗

c 1 1 1 0.5 1.5

Although we cannot directly compare our simulations with experimental results,
since to our knowledge no such data exist for drug flow in micro-vascular networks,
we do base the parameters for the model on actual physiological data.

3.3. Input data for flow simulations. In total, four suites of flow simulations
were undertaken. The first suite focussed upon continuous drug infusion into vas-
culature 1 (linear TAF source). The second suite corresponded to continuous infu-
sion into vasculature 2 (circular TAF source), whilst for suites 3 and 4, continu-
ous infusion into each vascular network was replaced by a one-off bolus injection.
Base case physiological input data corresponding to blood viscosity (µbase), pres-
sure drop across the parent vessel (1Pbase), capillary radii (Rc,base), and radius
of the parent vessel (Rpv,base) are presented in Table1. Relevant dimensionless
parameters were constructed as follows:

R∗

c =
Rc

Rc,base
µ∗

=
µ

µbase
t∗

=
t(

8µbaseL2

R2
pv,base1Pbase

)
whereL corresponds to the length of the parent vessel (2.5 mm) and the denomi-
nator in the definition oft∗ represents the time taken for blood to flow from inlet
to outlet along the parent vessel. Sensitivities to mean capillary radius and blood
viscosity were considered and the five sets of dimensionless parameter values used
are summarized in Table2. We note that the tabulated parameter values are in
keeping with experimental data and physiological observations [see, for example,
Levick (1998)].

Throughout each simulation, data was collected corresponding to the total mass
of drug in the vascular network (M∗), the drug concentration in blood emerging
from the downstream end of the parent vessel (C∗) and the total mass taken up by
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the tumour (MT∗). These dimensionless variables are defined as follows:

M∗
=

Total drug mass in capillaries

Drug mass in parent vessel whenc = Cmax
(6)

MT∗
=

Total drug mass taken up by tumour

Drug mass in parent vessel whenc = Cmax
(7)

C∗
=

Drug concentration in outlet bond

Cmax
. (8)

3.4. Simulation results.

3.4.1. Continuous infusion into vasculature 1(linear TAF source). The first
set of results corresponds to continuous drug infusion into vascular network 1
shown in Fig.2, which was generated by a linear source of TAF. A chemother-
apy drug of concentrationCmax is fed into the parent vessel att∗

= 0. Sequential
drug concentration profiles for the base case simulation are shown in Fig.5. In this,
and all subsequent images, the five colours represent different drug concentrations
c(x, y, t) as follows:

Dark blue — 0.0 ≤ c(x, y, t)/Cmax < 0.001;

Light blue — 0.001≤ c(x, y, t)/Cmax < 0.1;

White — 0.1 ≤ c(x, y, t)/Cmax < 0.5;

Pink — 0.5 ≤ c(x, y, t)/Cmax < 0.9;

Red — 0.9 ≤ c(x, y, t)/Cmax ≤ 1.0,

whereCmax corresponds to the maximum (input) drug concentration. Note that the
entire vasculature was assumed to have been flowing ‘clean’ blood att∗ < 0, after
which the drug was introduced into the left-hand side of the parent vessel.

Figure5 shows the simulation results for continuous infusion into vasculature 1
enabling us to monitor the flow of drug from the parent vessel to the tumour. The
magnitude of the flow into successive downstream capillary branches decreases as
the upstream supply diminishes. This effect is evident in branches 1 and 2, which
supply drugto the tumour [Fig.5(a)–(c)]. Moving further downstream, however,
the vascular network is such that blood flow in the capillaries begins to flowfrom
the tumour towards the parent vessel. Hence, instead of supplying drug to the
tumour, branches 3–5 actuallyremovedrug from the capillary network [Fig.5(d)–
(i)], thereby reducing its efficacy. Indeed, for this set of input data, 420 s (t∗

= 168)
of continuous infusion is required for a drug concentration of 0.1%Cmax to reach
the tumour.
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            (a)           (b)         (c)

            (d)          (e)       (f)

            (g)          (h)       (i)

 
 

       
     

 

       

Figure 5. Snapshots in time of the drug concentration as it flows from the parent vessel
into the vascular network (vasculature 1) under continuous infusion for times (a)t∗ = 2.4;
(b) t∗ = 7.2; (c) t∗ = 12; (d) t∗ = 24; (e) t∗ = 36; (f) t∗ = 72; (g) t∗ = 168;
(h) t∗ = 360; (i)t∗ = 624. The various colours correspond to different drug concentrations
(see text for details). This represents the base case simulation with mean capillary radius
R∗

c = 1 and viscosityµ∗
= 1.

We now examine the effect of blood viscosity upon drug delivery and uptake
by the tumour. The simulation results shown in Fig.6 demonstrate that the drug
reaches the tumour sooner when the blood viscosity is decreased. This may be
inferred from the inverse relationship between elemental flow and fluid viscos-
ity, coupled with the linear nature of the pressure equations. A similar effect is
observed by increasing the global pressure drop across the parent vessel (results
not shown). The qualitative form of the profiles of drug mass and tumour uptake
shown in Fig.6 are typical of all cases. The total drug mass increases initially as
the vasculature fills, and reaches a steady state as the vasculature becomes satu-
rated with drug. Conversely, the drug delivered to the tumour is small initially, and
begins to increase at a constant rate as the vasculature fills.

We next examine the effect of changing the mean capillary radius of vasculature 1
and how this affects drug delivery. Figure7 shows the results of drug delivery into
capillaries with a mean radius of 6µm (R∗

c = 1.5), 4 µm (R∗

c = 1) and 2µm
(R∗

c = 0.5). As the radius decreases the flow rate and, consequently, drug uptake
by the tumour decreases. Hence for narrower capillaries infusion would have to
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Figure 6. Plots of the total drug mass in the vasculature and the mass uptake by the tumour
for three different values of viscosity under continuous infusion of drug into vasculature 1
with R∗

c = 1. (a) Total drug mass (M∗) in vasculature; (b) mass uptake (MT∗) by tumour.
µ∗

= 2 (N, lower curve),µ∗
= 1 (�, middle curve),µ∗

= 0.25 (�, upper curve).

continue for many hours/days before significant tumour uptake could occur. How-
ever, as Fig.7 shows, this effect is nonlinear due to the relationships between bond
radius, bond volume, bond conductivity and the connectedness of the network.
This means that the effect of variations in capillary radii cannot simply be inferred
from the base case simulation (as could be done for blood viscosity and parent
vessel pressure drop earlier).

We have also considered the effect of varying the radius of the parent vessel.
Increasing the radius to 20µm, twice that used in the base case, gives results that
are similar to the base case. The fact that the pressure drop across the parent vessel
was the same in both cases (800 Pa), coupled with the fact that the ratio of capillary
flow to parent vessel flow scales as〈rcap〉

4/R4
pv, means that the pressure solution

is largely unaffected by varying the radius of the parent vessel within reasonable
limits. Hence, the actual volume of blood flowing through the parent vessel per unit
time would appear to be less important than the associated pressure drop across it.

3.4.2. Continuous infusion into vasculature 2(circular TAF source). Figure8
shows the flow profile for continuous drug infusion into vasculature 2 [shown in
Fig. 2(b)], which is generated by a circular source of TAF. Again, the upstream
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Figure 7. Plots of the total drug mass in the vasculature and the mass uptake by the tumour
for three different values of mean capillary radius under continuous infusion of drug into
vasculature 1 withµ∗

= 1. (a) Total drug mass (M∗) in vasculature; (b) mass uptake
(MT∗) by tumour. R∗

c = 0.5 (N, lower curve),R∗
c = 1 (�, middle curve),R∗

c = 1.5 (�,
upper curve).

branches on the parent blood vessel have blood flowing towards the tumour, while
flow is away from the tumour in branches further downstream. In comparison to
vasculature 1, considered earlier, this network has a much higher degree of con-
nectedness (anastamosis density), and in particular, capillary branches form loops
much nearer to the parent vessel. These effects arise because the circular geome-
try tends to focus the growing capillaries, and has significant implications for the
resulting blood flow. The large number of interconnections significantly reduce the
bulk flow, with a consequent reduction in drug delivery to the tumour. This is quan-
tified in Fig. 9, where drug delivery to the tumour via the two vascular networks
is compared: the two cases differ by several orders of magnitude. Sensitivities to
blood viscosity (Fig.10) and mean capillary radius (Fig.11) are similar to those
described earlier. Comparison of Figs6 and10, or Figs7 and11, is instructive:
compared to vasculature 1, the capillaries in vasculature 2 contain almost as much
drug. However the amount of the drug actually taken up by the tumour is much
larger in vasculature 1. This is because almost all of the drug in vasculature 2 is in
capillaries far from the tumour, with very little blood flow near the tumour itself.
These results emphasize the importance of the capillary network structure.
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Figure 8. Snapshots in time of the drug concentration as it flows from the parent vessel
into the vascular network (vasculature 2) under continuous infusion for times (a)t∗ = 2.4;
(b) t∗ = 7.2; (c) t∗ = 12; (d) t∗ = 24; (e) t∗ = 36; (f) t∗ = 72; (g) t∗ = 168;
(h) t∗ = 360; (i)t∗ = 624. The various colours correspond to different drug concentrations
(see text for details). This represents the base case simulation with mean capillary radius
R∗

c = 1 and viscosityµ∗
= 1 (cf. Fig.5).

3.4.3. Bolus injection into vasculature 1(linear TAF source). In contrast to
the continuous infusion results discussed earlier, the third suite of simulations fol-
lowed the dispersion of a bolus injection of chemotherapy drug into vasculature 1,
delivered att∗

= 0 and lasting 30 s (t∗
= 12). Figure12 shows the corresponding

concentration profiles.
Whilst the overall structure of the advancing drug fronts correspond precisely to

those depicted in the continuous infusion runs, there is now an additional effect that
merits closer examination. Post-injection, the re-invasion of pure blood into the
vascular network leads to dilution of the drug. This may have serious consequences
for chemotherapy strategies—for example, if successful treatment depends upon a
threshold drug concentration reaching the tumour, then this may not be possible
under certain circumstances.

One additional variable may also play an important role in determining the effi-
cacy of a chemotherapy treatment, namely the duration of the bolus injection itself.
In order to investigate this issue, a base-case simulation was repeated using an
injection time of only 3 s (t∗

= 1.2). The reduced injection period meant that
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Figure 9. Comparison of drug delivery in vasculature 1 with drug delivery in vasculature 2
under continuous infusion withR∗

c = 1 andµ∗
= 1 (base case). (a) Total drug mass (M∗)

in both vasculatures; (b) mass uptake (MT∗) by tumour in both vasculatures. Vasculature 1
(�, upper curve), vasculature 2 (�, lower curve).

dilution had an even more dramatic effect, with very little of the drug reaching the
tumour (not illustrated).

3.4.4. Bolus injection into vasculature 2(circular TAF source). For vascu-
lature 2, the results for bolus injection of drug are even more striking (Fig.13).
The large number of interconnections between capillaries—even quite far from the
tumour—means that there is very little flow in the lower part of the network, and
the bolus of drug essentially bypasses the tumour. This is emphasized by com-
parison of drug delivery via the two vasculatures for the bolus injection case, in
Fig. 14.

4. DISCUSSION

Mathematical modelling of tumour-induced angiogenesis has been a very active
research area in recent years. This has lead to a detailed understanding of the way
in which the migration of endothelial cells is guided and governed by gradients of
angiogenic chemicals (TAFs) and extracellular matrix components and how these
combine to generate the vascular networks seen around solid tumours. Building on
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Figure 10. Plots of the total drug mass in the vasculature and the mass uptake by the tumour
for three different values of viscosity under continuous infusion of drug into vasculature 2
with R∗

c = 1. (a) Total drug mass (M∗) in vasculature; (b) mass uptake (MT∗) by tumour.
µ∗

= 2 (N, lower curve),µ∗
= 1 (�, middle curve),µ∗

= 0.25 (�, upper curve).

this previous work, we have considered, for the first time, flow through the vascular
network and subsequently the way in which the structure of the vascular network
affects the flow within it. This has implications for the delivery of chemotherapeu-
tic drugs to the tumour. In order to achieve this we have adapted computational
techniques normally used to simulate the flow of oil and water through intercon-
nected networks of pore spaces found in rock structures. Using this approach,
we have been able to simulate flow through vascular networks generated from a
mathematical model (Anderson and Chaplain, 1998). In particular, we considered
two network structures differing in connectedness and examined how the networks
alter the flow of chemotherapeutic drug delivery to the tumour. In order to exam-
ine the effects of different drug delivery regimes on drug uptake by the tumour,
we simulated a continuous infusion regime and a bolus injection regime. We also
considered the effects of varying key flow parameters and capillary radii on drug
uptake.

The two network structures we considered are shown in Fig.2(a) and (b) and rep-
resent capillary networks which have grown in response to two tumours of different
size, one larger than the other i.e., vasculature 1 [large linear tumour, Fig.2(a)] and
vasculature 2 [small circular tumour, Fig.2(b)].
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Figure 11. Plots of the total drug mass in the vasculature and the mass uptake by the tumour
for three different values of mean capillary radius under continuous infusion of drug into
vasculature 2 withµ∗

= 1. (a) Total drug mass (M∗) in vasculature; (b) mass uptake
(MT*) by tumour. R∗

c = 0.5 (N, lower curve),R∗
c = 1 (�, middle curve),R∗

c = 1.5
(�, upper curve).

For both vasculatures we examined the effects of varying blood viscosity, pres-
sure drop across the parent vessel and mean capillary radii (both in the parent vessel
and in the vasculature itself). The relationship between these parameters is given
by equation (3) governing the flow rate (Qi j ) in the i j th capillary element (joining
nodesi and j ): as is expected from this equation, decreasing the blood viscosity
(µ) led to an increase in flow rate and consequently an increase in drug uptake by
the tumour (see Figs6 and10for results). Similar results were obtained by varying
the pressure drop across the parent vessel (1P), i.e., increasing the pressure drop
led to an increase in drug uptake by the tumour (results not shown).

Increasing the capillary radii of the two vasculatures also produced an increase in
the flow rate and consequently an increase in drug uptake by the tumour. However,
as Figs7 and11show, this effect is nonlinear due to the relationships between bond
radius, bond volume, bond conductivity and the connectedness of the network.
Variation in the radius of the parent vessel had little effect on the results.

For both vasculatures we examined two different drug delivery regimes, either
a continuous infusion or a bolus injection. The results showed that there are two
important factors in determining how much drug reaches the tumour: (i) the vascu-
lar structure and (ii) the particular mode of delivery. These results were quantified
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Figure 12. Snapshots in time of the drug concentration as it flows from the parent vessel
into the vascular network (vasculature 1) under a bolus injection for times (a)t∗ = 2.4;
(b) t∗ = 7.2; (c) t∗ = 12; (d) t∗ = 24; (e) t∗ = 36; (f) t∗ = 72; (g) t∗ = 168;
(h) t∗ = 360; (i)t∗ = 624. The various colours correspond to different drug concentrations
(see text for details). This represents the base case simulation with mean capillary radius
R∗

c = 1 and viscosityµ∗
= 1.

and summarized in Figs9 and14 where we see that, although thetotal massof
drug within each vasculature is similar under all delivery regimes, vasculature 1
permits a far greaterdrug uptakeby the tumour. This is because almost all of the
drug in vasculature 2 is in capillaries far from the tumour, with very little blood
flow near the tumour to deliver the drug.

If we consider drug delivery to the vascular network via bolus injection, there is
an additional effect that merits closer examination. Post-injection, the re-invasion
of pure blood into the vascular network leads to dilution of the drug. We also
found that the duration of the bolus injection affects the level of drug dilution This
has serious implications for chemotherapy strategies. For example, if successful
treatment depends upon a threshold drug concentration reaching the tumour, then
this may not be possible under certain circumstances.

The key result of our work is that the highly interconnected vascular structures
around a tumour cause relatively low rates of drug delivery to the tumour itself,
with the vast majority of drug simply by-passing the tumour and returning to the
parent vessel. This is most pronounced for the dense capillary network generated
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Figure 13. Snapshots in time of the drug concentration as it flows from the parent vessel
into the vascular network (vasculature 2) under a bolus injection for times (a)t∗ = 2.4;
(b) t∗ = 7.2; (c) t∗ = 12; (d) t∗ = 24; (e) t∗ = 36; (f) t∗ = 72; (g) t∗ = 168;
(h) t∗ = 360; (i)t∗ = 624. The various colours correspond to different drug concentrations
(see text for details). This represents the base case simulation with mean capillary radius
R∗

c = 1 and viscosityµ∗
= 1.

by a small circular tumour implant (vasculature 2). Here, our simulation of a bolus
injection of drug shows that it entirely by-passes the tumour. These results have
important implications for chemotherapy strategies, suggesting that the structure of
the vasculature around the tumour should be considered when planning chemother-
apy, which is not current practice. Clearly our model has the potential to predict
patient specific chemotherapeutic strategies i.e., appropriate drug dosage and deliv-
ery time.

The model could also be used to study the actual nutrient supply (e.g., of blood-
borne oxygen) to the tumour via the vascular network and could be readily adapted
to investigate flow from the tumour to the main blood vessel (e.g., of waste prod-
ucts, certain soluble growth factors and tumour cells themselves). Additional nat-
ural extensions to model include: (i) correlating blood viscosity withhaematocrit
(the percentage of blood volume comprising red blood cells), capillary radius, and
shear rate; (ii) modelling blood capillaries as collapsible, permeable tubes instead
of rigid, impermeable cylinders; and (iii) including reaction kinetics into the drug
uptake function.
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Figure 14. Comparison of drug delivery in vasculature 1 with drug delivery in vasculature 2
under a bolus injection withR∗

c = 1 andµ∗
= 1 (base case). (a) Total drug mass (M∗) in

both vasculatures; (b) mass uptake (MT∗) by tumour in both vasculatures. Vasculature 1
(�, upper curve), vasculature 2 (�, lower curve).

Of course, the most immediate extension of the model will be to model flow pro-
cesses in 3D vasculatures. Preliminary results ofChaplain and Anderson(1999)
in generating 3D vasculatures in a 2 mm cube of tissue suggest that the number of
anastomoses (loops) formed is reduced when compared with equivalent 2D simula-
tion results. The loops also form closer to the tumour. If we extrapolate the 2D flow
results of this paper, this would indicate that flow to the tumour in a 3D network
might actually increase. However, given the inherent nonlinearities involved, until
more extensive modelling and flow simulations are carried out in 3D, this remains
an interesting conjecture.
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