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a b s t r a c t

In this paper we consider a simple continuous model to describe cell invasion, incorporating the effects

of both cell–cell adhesion and cell–matrix adhesion, along with cell growth and proteolysis by cells of

the surrounding extracellular matrix (ECM). We demonstrate that the model is capable of supporting

both noninvasive and invasive tumour growth according to the relative strength of cell–cell to cell–

matrix adhesion. Specifically, for sufficiently strong cell–matrix adhesion and/or sufficiently weak cell–

cell adhesion, degradation of the surrounding ECM accompanied by cell–matrix adhesion pulls the cells

into the surrounding ECM. We investigate the criticality of matrix heterogeneity on shaping invasion,

demonstrating that a highly heterogeneous ECM can result in a ‘‘fingering’’ of the invasive front, echoing

observations in real-life invasion processes ranging from malignant tumour growth to neural crest

migration during embryonic development.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The adhesive attachments that link cells to their surroundings
are fundamental in forming and maintaining the structure and
function of tissues. Correspondingly, perturbations to their normal
behaviour can lead to a wide variety of pathologies, ranging from
heart defects to neurological disorders. Cellular adhesion is
classified into two principle forms, cell–cell adhesion and cell–

matrix adhesion, the former defining the direct binding between
cells, and the latter the attachment of cells to the surrounding ECM
(Steinberg, 2007). Control of adhesion and, in turn, cell position-
ing, is determined by the expression of various transmembrane
molecules, the cell adhesion molecules (CAMs), which allow
communication between extracellular and intracellular signalling
pathways. Cell–cell adhesion is typically mediated by the cadherin
family of CAMs (Cavallaro and Christofori, 2004), the prototype
being the epithelial cell–cell adhesion molecule E-cadherin, which
zips cells together through a protein–protein coupling of extra-
cellular domains. Cell–matrix adhesion is mainly regulated via the
integrins, the extracellular domains of which anchor to ligands in
the ECM (Berrier and Yamada, 2007).

Cell invasion occurs in a number of biological processes, notably
embryonic development (for example, the wave of cell migration
away from the neural crest to form, amongst others, components of

the peripheral nervous system) and cancer. The transition from a
noninvasive and compact tumour to an invasive one capable of
generating metastases is pivotal for prognosis, and the profile of the
invasive front provides a crucial diagnostic indicator: sharp and
uniform fronts generally imply noninvasive tumours while diffuse
and/or wavy fronts tend to indicate invasiveness. Indeed, fractal
dimension algorithms have been applied to tumour boundaries to
provide a quantitative measure of malignancy (Landini and Rippin,
1996; Abu-Eid and Landini, 2006).

Invasion can either occur ‘‘individually’’, where cells migrate as
individuals to form a diffuse/indistinct tumour-host interface, or
‘‘collectively’’ in which groups of cells invade while maintaining
tight cellular contacts (e.g. see Friedl and Wolf, 2003; Yilmaz et al.,
2007; Friedl and Gilmour, 2009). Particular invasion patterns in
the latter class include tumour ‘‘fingers’’: strands of tumour cells
that project out from the main tumour mass, occasionally
breaking free to form ‘‘clusters’’. Notably, these collective forms
of invasion are characterised by the expression of both cell–cell
adhesion molecules that hold cells together, and cell–matrix
adhesion molecules that facilitate the invasion. Nonuniform
patterns of invasion have also been observed during neural crest
migration, where cells migrate out in ‘‘streams’’ and ‘‘chains’’, see
for example Kulesa and Fraser (1998), Young et al. (2004), and
Kasemeier-Kulesa et al. (2005).

Fundamental to many developmental instances of invasion,
including neural crest migration and gastrulation, is the tightly
regulated epithelial–mesenchymal transition of cells, involving a
reconfiguration of their molecular repertoire such that the tight
E-cadherin bonds joining it to its neighbours are dissolved while
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various pro-migratory processes, including cell–matrix binding,
matrix degradation and cellular protrusions, are upregulated. For
tumours of epithelial type, progression into an invasive phenotype
also shares certain elements of the epithelial–mesenchymal transi-
tion, albeit in uncontrolled fashion (see Yilmaz and Christofori,
2009 for a recent review). A drop in E-cadherin expression
frequently correlates with increased tumour malignancy while
forced expression of E-cadherin in cultures can reverse the invasive
transformation, giving noninvasive phenotypes (e.g. see Christofori,
2003; Cavallaro and Christofori, 2004; Yilmaz and Christofori,
2009). Recent focus has been paid to a ‘‘cadherin switch’’ (Wheelock
et al., 2008), in which loss of E-cadherin is further accompanied by
gain in the mesenchymal CAM N-cadherin, and the cell subse-
quently loses its affinity for its epithelial neighbours.

Expansion into the surrounding environment requires interac-
tions with the ECM, determined by the integrin family of CAMs
(Berrier and Yamada, 2007). The focal adhesions created through
integrin-ECM binding provide anchoring points, and the combina-
tion of their formation at the leading edge with detachment at the
rear propels the cell forward through the matrix (e.g. Friedl and
Wolf, 2009). Subsequently, the nature of the ECM plays a
significant role in directing migration: cells preferentially migrate
towards more adhesive (ligand dense) regions of the matrix, a
process termed haptotaxis (Lo et al., 2000), or along the long
strands of individual collagen fibres, known as contact guidance

(Dunn and Heath, 1976; Manwaring et al., 2004).
Mesenchymal migration through the ECM also requires its

structural modification via proteolytic degradation and, in addi-
tion to their mechanical role, focal adhesions provide sites for the
recruitment of matrix proteases such as MMPs where they can act
to cleave fibres directly to the fore of the cell, a process termed
pericellular proteolysis (Friedl and Wolf, 2009). The result is
tunnels through the matrix along paths of cell migration,
providing potential paths of least resistance through which further
expansion can take place.

While the above events—loss of cell–cell adhesion, gain in cell–
matrix adhesion, proteolytic action—are often described as
separate processes, the interlocking nature of cell signalling
pathways inevitably precludes such simplicity. Invariably, a
signalling molecule known to modify one aspect will directly
impinge on another. For example, the Snail genes appear to play
‘‘master controller’’ roles with their downstream targets including
a wide range of components important for invasion, including
repression of E-cadherin expression and induction of various pro-
migratory factors such as integrins and MMPs (e.g. Nieto, 2009).
A plethora of reviews exist on the various intracellular and
extracellular signalling modulators of adhesion and their role in
epithelial–mesenchymal transition and tumour invasion, for
example see Yilmaz and Christofori (2009).

1.1. Modelling adhesion in invasion processes

There is a significant literature on the mathematical modelling of
adhesion in the context of cancer invasion. Most early work in this
area involved the incorporation of adhesion via a surface tension on
the tumour boundary (Byrne and Chaplain, 1996; Chaplain, 1996;
Cristini et al., 2003; Frieboes et al., 2006, 2007; Friedman, 2007;
Macklin and Lowengrub, 2007). This representation of adhesion is
indirect: there is no explicit modelling of cell–cell or cell–matrix
contact. Direct representations of adhesion were first considered in
the context of individual cell-based models (Turner and Sherratt,
2002; Turner et al., 2004; Grygierzec et al., 2004). In recent years, this
modelling approach has been developed significantly by Anderson
and coworkers, in a series of sophisticated studies into the ways in
which changes in cell–cell and cell–matrix adhesion interact with

other aspects of the invasive phenotype (Anderson et al., 2006, 2009;
Ramis-Conde et al., 2008; Poplawski et al., 2009).

Individual cell-based models lend themselves naturally to the
inclusion of adhesive effects because cell boundaries are repre-
sented explicitly. In contrast, it is more difficult to include adhesion
explicitly in continuum models. For cell–matrix adhesion Mallet
and Pettet (2006) included integrins as a model variable, with cells
moving up gradients of active integrin density; their work is
effectively a more precise version of phenomenological models for
haptotaxis (e.g. Marchant et al., 2001; Landman et al., 2008).
However, this approach does not extend in any natural way to cell–
cell adhesion, and it is only very recently (Gerisch and Chaplain,
2008; Kim et al., 2009; Sherratt et al., 2009) that this has been
incorporated into continuum models for cancer invasion, via an
integro-partial differential equation formulation that was devel-
oped initially by Armstrong et al. (2006) in the context of cell
sorting, and that also forms the basis for the present study.

1.2. Outline

In this paper we develop (Section 2) a minimal model for cellular
invasion within a matrix environment. We demonstrate (Section 3) its
ability to predict either non-invasive or invasive growth, according to
the relative strengths of cell–cell and cell–matrix adhesion, and the
potentially significant role that the local ECM structure may play on
the rate and form of invasion. For a ‘‘sufficiently variable’’ ECM
environment, we show (Section 4) that the model can generate a
highly variable front, similar to the various nonuniform processes of
invasion described above. We conclude with a brief discussion and
consider some potential future extensions.

2. Model derivation

We consider a minimal model for invasion in which a
population of proliferating cells, nðx,tÞ, is deposited into an ECM
environment, mðx,tÞ. It is assumed that cells form adhesive
attachments both to other cells (cell–cell adhesion) and the
surrounding matrix (cell–matrix adhesion), and that the force
generated through this binding drives cell movement. To model
these within a continuous framework we extend the integro-PDE
approach developed in Armstrong et al. (2006) (see also Sekimura
et al., 1999; Gerisch and Chaplain, 2008; Sherratt et al., 2009; Kim
et al., 2009; Gerisch and Painter, 2010) and study the generic cell
density equation

nðx,tÞt ¼ Dnr
2n

zfflfflfflffl}|fflfflfflffl{random motility

�r � fnðx,tÞ

Z
V

r

jr j
Oðjr jÞf ðnðxþrÞ,mðxþrÞÞdr

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Adhesive movement

þ gð�Þ
z}|{Cell kinetics

: ð1Þ

In the above representation, ðr=jr jÞOðjr jÞf ðuðxþrÞ,mðxþrÞÞ defines
the local force exerted on cells at x through cell–cell/cell–matrix
binding at xþr , formulated through splitting it into three
components:

1. the direction of the force, r=jr j;
2. the dependency of the force magnitude on the distance from x,

Oðjr jÞ;
3. the dependency of the force magnitude on the adhesivity at

xþr , f ðnðxþrÞ,mðxþrÞÞ.

For uniqueness we specify
R

VOðjr jÞdr ¼ jV j. In practice, adhesivity
undoubtedly depends on a number of factors, including the
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composition of receptor–receptor/receptor–ligand bindings and
physical properties of the substrate. Above we simply assume that
this relates to cell and matrix densities at xþr . The total force
exerted at x sums all local forces over a volume V, minimally
representing the mean cell volume but in practice likely to be of
the order of several cell diameters due to their capacity to deform
and extend protrusions. We assume that this region is symme-
trical about the cell centre and take V to be either the interval
[�R,R] (in 1D), the circle of radius R (in 2D) or the sphere of radius
R (in 3D). Herein we refer to V (R) as the sensing region (radius),
since it reflects the volume over which cells can detect their
neighbours. The parameter f relates the force generated to
movement of the cells and depends on factors such as the
viscosity of the medium. The above framework can easily be
extended to include additional movement cues (e.g. chemoattrac-
tants). However to focus on cell–cell and cell–matrix adhesion we
ignore these, and for the same reason we shall generally assume
Dn¼0.

To describe f we adapt the choice of Armstrong et al. (2006) and
consider

f ðn,mÞ ¼ ðanþbmÞ½1�n=k3�m=k4�,

where a and b respectively define the strengths of cell–cell and
cell–matrix adhesion while the notation [z]¼max(z,0). This choice
reflects an approximately linear increase in force magnitude at
low cell and matrix (combined) densities, and a decrease at higher
densities; intuitively, the former assumes that increased densities
correspond to a greater likelihood of forming bonds while the
latter assumes a resistance against moving into dense regions. For
n/k3+m/k4¼1 the force is zero, and k3, k4 can be interpreted as
crowding parameters. In the absence of suitable experimental
data, we assume OðrÞ ¼ constantð ¼ 1Þ; alternative choices for O
would be to decrease with r due to a diminished likelihood of
forming bonds with distance: investigations into other forms are
described in Sherratt et al. (2009).

We note that the above implies that a matrix gradient across
the sampling radius can generate directional cell motility and
hence describes ‘‘haptotaxis’’ (Lo et al., 2000). A number of
previous models have represented haptotaxis through terms of the
form �b½nmx�x (for example, see Perumpanani et al., 1996;
Chaplain and Lolas, 2005; Mallet and Pettet, 2006; Gerisch and
Chaplain, 2008), however we do not consider this simplification
here for two key reasons. Firstly, our model describes movement
through adhesive binding and, given that cell–cell bounds are
formed over some sensing radius, it is appropriate that cell–matrix
bonds develop over the same range as for cell–cell adhesion.
Secondly, our work will investigate model behaviour across
parameter space and equivalent formulations for cell–cell and
cell–matrix interactions admit direct comparison between the
parameters a and b.

To describe cell growth we simply adopt a logistic growth form

gðnÞ ¼ k1ð1�n=k2Þ,

where k1 describes the growth rate and k2 is the ‘‘carrying
capacity’’. Note that the carrying capacity is considered to be
distinct from the crowding parameters above: the latter describe
restricted movement into highly dense tissue regions while the
former defines population-limited cell growth, for example as a
result of nutrient depletion or cell–cell mediated contact inhibi-
tion. It is worth noting that for a nutrient-rich environment (i.e.
large k2), the tissue density may also impact on cell growth and
g(n) could therefore additionally depend on the matrix density. For
the present paper we ignore such scenarios: preliminary investi-
gations with other forms for g appear to yield comparable results,
but a full investigation is left for future work. Cell proliferation
may also depend on cell and matrix densities across the sensing

region of a cell, rather than at its centre; this possibility has been
considered previously by Szymanska et al. (2009), but we neglect
it here in order to focus on adhesive effects.

For many cell types, expansion and invasion of an ECM
environment in vivo requires the dissolution of matrix to create
the space into which cells can migrate (Friedl and Wolf, 2009).
Invading cells produce a wide variety of proteolytic enzymes (e.g.
MMPs) which are either recruited to cell–matrix adhesion sites,
localising proteolysis to the cell–matrix interface (pericellular
proteolysis), or secreted into the extracellular milieu where they
act on matrix at a distance. In certain cases, regeneration of the
ECM may also occur via the synthesis and assembly of new matrix
components, but here we assume that no regeneration occurs on
the timescales considered. In principle, adhesive interactions
between the cells and matrix may deform the matrix structure,
however we assume such effects are negligible in comparison to
matrix degradation. While cell–matrix interactions have been
modelled in detail by a number of authors (e.g. Chaplain and Lolas,
2005; Mallet and Pettet, 2006; MacArthur et al., 2005; Gerisch and
Chaplain, 2008), our focus is on the regulation of cell-invasion
through the relative levels of cell–cell and cell–matrix adhesion
and we adopt the relatively simple scheme proposed by
Perumpanani et al. (1996):

mðx,tÞt ¼�k5pm, ð2Þ

pðx,tÞt ¼Dpr
2pþk6nm�k7p, ð3Þ

where pðx,tÞ describes the concentration of proteolytic enzymes.
The model is further simplified by assuming that proteolytic
secretion/action occurs directly at the cell–matrix interface
(pericellular proteolysis, Dp¼0) and that production/decay time-
scales for the protease are much shorter than those associated
with invasion, e.g. Mignatti and Rifkin (1993). This same quasi-
steady state assumption was made by Perumpanani et al. (1996)
and yields p¼(k6/k7)nm. In order to focus on adhesion-driven
movement we set Dn¼0, and our equations are then reduced to
the cell and matrix density equations

nt ¼ k1n 1�
n

k2

� �zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{Proliferation

�r � fn

Z
V

r

jr j
ðanðxþrÞþbmðxþrÞÞ 1�

nðxþrÞ

k3
�

mðxþrÞ

k4

� �
dr

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Adhesive movement

mt ¼�ðk5k6=k7Þnm2|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Proteolysis

:

Substituting

n� ¼
n

k2
, m� ¼

k3m

k2k4
, t� ¼ k1t, x� ¼

x

R
,

a� ¼
ak2

2f
k1k3R

, b� ¼
bk4k2

2f
k1k2

3R
, K ¼

k3

k2
, g¼

k5k6k2
2k4

k1k7k3

into the above (and dropping the *s for notational convenience)
generates the nondimensional model

nt ¼ nð1�nÞ�r � n

Z
V

r

jr j
ðanðxþrÞþbmðxþrÞÞ½K�nðxþrÞ�mðxþrÞ�dr

� �
,

ð4aÞ

mt ¼�gnm2, ð4bÞ

where the new sensing region V is either the interval [�1,1]
(in 1D) or the unit circle/sphere (in 2/3D). Assuming that a cell can
sense across a region of several cell diameters via elongation and
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protrusion, a length of 1 in the dimensionless model can be
estimated as approximately 50mm.

n(x,t) and m(x,t) are non-dimensional tumour cell and matrix
densities at position x and time t. The parameters a, b, g and K are
henceforth referred to as the cell–cell adhesion strength ðaÞ, the
cell–matrix adhesion strength ðbÞ, the matrix degradation rate ðgÞ
and the crowding capacity (K), although we note that in reality
these are non-dimensional parameters that incorporate further
information. In the next sections we perform numerical simula-
tions to investigate the potential for these parameters to impact
on the rate and mode of invasion.

3. Exploration into dynamics of the invasive front

Numerous experimental studies have linked an increased
tendency to invade with altered adhesive properties for various
cancer cell types. In this section we explore the impact of varying
ratios of adhesive coefficients in the model (4) on the cohesivity
and/or infiltration of the cells.

We begin by considering a 1D geometry (xA ½0,L�, where Lb1,
the sampling range) that describes the profile of the cell front. Our
initial set-up considers a deposition of cells within a uniform
matrix environment as follows:

nðx,0Þ ¼
n0 if xrLi,

0 otherwise,

(
ð5aÞ

mðx,0Þ ¼m0: ð5bÞ

We use reflective boundary conditions at x¼0, corresponding to
this point being the centre of an initial cell mass, with zero-flux
boundary conditions at x¼L. In practice this latter condition is of
limited significance since we stop our simulations before the
invasion approaches the boundary.

3.1. Impact of adhesive coefficients on invasion/non-invasion

Numerical simulations imply that the behaviour of the model is
divided into two principle classes according to the sizes of b and a:
for boa, ‘‘noninvasive’’ growth occurs, Fig. 1 (top row), in which

proliferation drives cellular expansion towards the population
carrying capacity, yet no expansion outside the initial deposition
occurs. For b4a, Fig. 1 (middle row), we observe ‘‘invasive’’
growth, in which the population rapidly grows and expands from
its initial range to eventually fill the entire domain. Further
increases in b result in faster expansion, e.g. Fig. 1 (bottom row).

Under invasive growth, cell and matrix profiles appear to evolve
into formal travelling-waves (i.e. constant speed and shape) and, in
Fig. 2, we calculate the wavespeed for various ða,bÞ pairs: while there
is some dependence on the magnitudes of a and b, the rate of
invasion appears to predominantly depend on the difference b�a.
The ability for a continuous model to exhibit non-invasive growth is
unusual and can be attributed to an absence of the diffusive type
terms often used to model a ‘‘random’’ component to cell motion.
While the merits of including such terms is debatable—here our
general assumption is that cells only move under the forces
generated by adhesion—exploratory numerical simulations
incorporating a Fickian type diffusion term indicate that solutions
always generate invasive growth, regardless of the size of the
diffusion coefficient. Despite this, the same general principles apply:
larger cell–matrix than cell–cell adhesion generates a faster rate of
invasion. We note that noninvasive growth can be generated in
models including random motility of cells; it occurs via other means,
for example through an ECM regrowth term, see Gerisch and
Chaplain (2008).

3.2. Dependency of invasion on matrix density

The above results clearly corroborate established hypotheses
on the importance of adhesion to cancer invasion: upregulated
cell–matrix adhesion and/or downregulated cell–cell adhesion
corresponds to a greater propensity for invasion. Similarly,
migration of cells out from the neural crest requires a carefully
regulated epithelial–mesenchymal transition, during which down-
regulation of cell–cell adhesion is accompanied by an upregulation
in cell–matrix interactions.

Intuitively, this suggests that the adhesivity/density of the
matrix can play a pivotal role on the rate of invasion and we now
explore this in greater detail. We first consider the impact of
matrix density on the wavespeed by considering the rate of
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Fig. 1. Non-invasive/invasive growth depends on the cell–cell:cell–matrix adhesive strength ratio. Rows plot cell density, n, (solid) and matrix density, m (dashed line) for

various ða,bÞ pairs: Top row, ða,bÞ ¼ ð0:5,0:25Þ; Middle row, ða,bÞ ¼ ð0:5,1:0Þ; Bottom row, ða,bÞ ¼ ð0:5,2:0Þ. Other parameters set at g¼ 1, K¼2, m0¼1, n0¼0.1, Li¼4 and

L¼40 (plots truncated at x¼25 for clarity of presentation). The advection–reaction equations were solved numerically using a simplistic Method of Lines approach. Briefly,

adhesive terms are discretised in conservative form via first order upwinding on a uniform mesh (with grid spacing Dx). The integral inside the advection term is calculated

via direct summation. The resulting ODEs were discretised using an explicit trapezoidal scheme. We refer to Hundsdorfer and Verwer (2003) for more information on these

methods. In the above simulations, we set Dx¼ 0:1.
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invasion for varying uniform initial matrix densities (in the range
[0,K]) and fixed ða,bÞ pairs. Fig. 3(a) summarises the results. At low
and medium matrix densities, invasive speed increases with
matrix density. Here, the increase in matrix density combined
with proteolysis creates large front-back differences in the
strength of cell–matrix coupling, pulling cells forward. Yet, at
higher matrix densities, the impeded movement into the tight
matrix structure slows the rate of infiltration. This same trend is

observed at all investigated parameter sets for which b4a (for
aob, cell–cell adhesion dominates and no invasion takes place),
although the maximum invasion speed clearly changes according
to b�a, as described in Section 3.1. We note further that at each
ða,bÞ pair, critical matrix densities exist below/above which no
invasion takes place (i.e. zero wavespeed). For larger b�a, these
critical values are pushed towards more extreme initial matrix
densities and define locations for which the ‘‘pull-forward’’ of cell–
matrix adhesion is counterbalanced by the ‘‘pull-back’’ of cell–cell
adhesion: under zero cell–cell adhesion, we observe invasion for
all values b40 and m0A ð0,KÞ (see Fig. 3(a), right hand panel).

Expanding this further, we explore the invasion of cells into a
heterogeneous ECM environment: in vivo, the density and structure
of the ECM varies greatly both within and between tissues (e.g. see
Wolf et al., 2009). To examine the impact of a heterogeneous
matrix, we consider invasion of cells into the smoothly varying
initial matrix distribution mðx,0Þ ¼ 0:5þ 0:5cosðpx=LÞ. Fig. 3(b)
summarise the results from simulations conducted at three distinct
(a,b) pairs. In correspondence with the results above, invasive
speed varies with the position of the cell front along the x-axis and,
in turn, the local matrix density. As the local matrix density drops
below a critical value, invasion is halted, although the location at
which this occurs depends on the magnitude of cell–matrix to cell–
cell adhesion: for comparitively large cell–matrix adhesion, the cell
front is able to propagate most of the way along the axis before
coming to a halt. We note that similar behaviour is observed with
other forms of the initial matrix density profile.
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Fig. 3. Top row: wavespeeds calculated for various different initial matrix densities, m0, and distinct ða,bÞ pairs: (left) wavespeeds for a¼ 0:5 and b¼ 0:5 (dotted line/circles),

b¼ 1:0 (dot-dash/stars) and b¼ 2:0 (solid/squares). (Right) wavespeeds for a¼ 0:0 and b¼ 0:5 (dotted line/circles), b¼ 1:0 (dot-dash/stars) and b¼ 2:0 (solid/squares).

Bottom row: plots showing the invasion of cells (top row) into the spatially varying matrix (bottom row), with mðx,0Þ ¼ 0:5þ0:5cosðpx=LÞ. In each frame, cell/matrix densities

are plotted at increments of 10 between t ¼ 0 and 200. (Left) ða,bÞ ¼ ð0:5,0:5Þ, (Centre) ða,bÞ ¼ ð0:5,1:0Þ, (Right) ða,bÞ ¼ ð0:5,2:0Þ. Other parameters are set at L¼30, Li¼1.0,

n0¼0.1, g¼ 1, K¼2.0. Numerical details as in Fig. 1. (a) Invasion speed under varying initial matrix density and (b) invasion into heterogeneous matrix.
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4. Exploration into the shape of the invasive interface

As described earlier, the shape of the tumour-host boundary is
an important diagnostic indicator: straight/sharp boundaries
generally imply noninvasive tumours while diffuse/ragged bound-
aries are considered hallmarks of invasiveness. Specific examples
of the latter include the so-named ‘‘tumour fingers’’, ‘‘indian-
chains’’ and ‘‘clusters’’, in which protrusions of tumour cells
extend and/or break free from the main tumour mass (Friedl and
Wolf, 2008). Various hypotheses have been touted for the
development of such patterns, including the invasion of cells into
an inhomogeneous host environment (e.g. see Anderson, 2005;
Anderson et al., 2006; Gerisch and Chaplain, 2008). Nonuniform
invasion is also observed during neural crest invasion. Here, time
lapse imaging has revealed the formation of ‘‘streams’’ as the cells
migrate out to pattern the peripheral nervous system (e.g. see
Kulesa and Fraser, 1998; Young et al., 2004; Kasemeier-Kulesa
et al., 2005). Once again, variation in the local environment is
believed to play a crucial role in directing these pathways.

We use the continuous framework here to investigate in detail
the role of environmental heterogeneity in regulating the shape of
the invasive boundary. For computational simplicity, we restrict to a
two-dimensional rectangular domain ðx,yÞA ½0,Lx� � ½0,Ly� that de-
scribes a slice through the invasion front. Boundary conditions are as
indicated in Fig. 4(a). We consider an initially quasi-1D deposition of
cells adjacent to the bottom border of the domain as follows:

nðx,y,0Þ ¼
n0 if xrLi,

0 otherwise:

(

We note that investigations with different initial cell distributions
suggest that they have relatively little impact on the general
properties of the system. To determine the effect of matrix
heterogeneity on invasion, we consider a variety of ECM
distributions, as illustrated in Figs. 4(b)–(e):

� Alternating stripes of high/low matrix density, arranged parallel
to the cell/ECM interface, mðx,y,0Þ ¼m0þm1cosð2pkxx=LxÞ,
Fig. 4(b);
� Alternating stripes of high/low matrix density, arranged

perpendicular to the cell/ECM interface, mðx,y,0Þ ¼m0þ

m1cosð2pkyy=LyÞ, cf Fig. 4(c).
� Alternating spots of low/high density, arranged in checker-

board fashion, mðx,y,0Þ ¼m0þm1cosð2pkxx=LxÞcosð2pkyy=LyÞ,
Fig. 4(d);
� randomly varying matrix, Fig. 4(e).

The time consuming nature of 2D simulations limits the
capacity to perform full-scale parameter analyses and we there-
fore restrict our attention to a ‘‘typical’’ invasive parameter set,
ða,b,g,KÞ ¼ ð0:5,1:0,1:0,2:0Þ: limited numerical simulations with
other invasive parameter sets (i.e. b4a) indicate qualitatively
similar behaviour. For the three regular ECM distributions,
Figs. 4(b)–(d), we set an average initial matrix density m0¼0.5
and classify matrix heterogeneities according to both their
perturbation from m0 (using m1¼0.1,0.3,0.5) and coarseness (or
wavelength, using kx, ky¼1,2).

When the matrix is arranged in stripes running parallel to the
initial cell front, we observe equivalent behaviour to the 1D
investigations in Fig. 3(b). Thus, a uniform front is generated that
invades into the ECM with speed changing according to the
variation in matrix density along the x-axis. If the matrix density
drops below the critical value, as demonstrated in Fig. 3(a), the
invasion process is halted.

However, for stripes arranged perpendicularly to the initial cell
front, matrix density varies with position along the front. As such,
the speed of invasion varies and the result is growing ‘‘fingers’’
that project out along the lines of higher initial matrix density
(Fig. 5) with the thickness of the projections correlating with the
wavelength of the imposed matrix variation. If the matrix density
drops to sufficiently low values, no invasion occurs into those
areas. For an initial checkerboard-style matrix as in Fig. 4(d), we
also observe nonuniform invasion into the matrix, although
fingers will now expand and shrink to reflect the locally varying
matrix density (Fig. 6). Once again, no invasion takes place into
areas in which the matrix density is sufficiently low, leaving non-
occupied ‘‘holes’’ as the cell population expands. These results
reveal a critical relationship between the form of the invasive front
and the local ECM structure.

We conclude this investigation by exploring the impact of more
realistic, randomised initial matrix densities (as illustrated in
Fig. 4(e)). The timecourse of one such simulation is plotted in
Fig. 7, revealing a highly variable invasion front that changes
considerably over both space and time: for example, by t¼50 we
see that some parts of the tumour front have invaded about twice
as far as others. We note that the degree of this variation is
transient, depending strongly on the specific matrix heterogeneity.

To explore how distinct measures of matrix heterogeneity
differentially impact on the front, we consider invasion into
random initial matrix that varies with respect to both perturbation
from the mean level (m0¼0.5) and its coarseness (i.e. the average
wavelength in the initial heterogeneity). Fig. 8 plots the calculated
cell distributions at t¼40. Our simulations indicate that both
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Fig. 4. (a) Schematic showing the set-up for the 2D invasion model. Cells are deposited within a narrow strip adjacent to the x¼0 boundary. Surrounding region (cross-

hatched area) contains matrix only, with the initially imposed matrix heterogeneity varying according to the forms described in (b)–(e) (see text for further details).
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factors are critical for generating heterogeneous invasion fronts.
Under relatively low perturbations (left-most columns), any
variation in the invasion speed along the y-axis is minimal and
the front is relatively smooth in nature. Increasing the
perturbations (left to right columns) leads to greater variations
in invasion speed and correspondingly, a more jagged front. Note
that ‘‘holes’’ can be observed if the matrix density drops to
critically low levels in a sufficiently large pocket of matrix. Similar
observations derive from an investigation into the impact of
matrix coarseness on the front: for finely varying matrix (i.e. low
wavelength/coarseness) (Fig. 8, top row), any variation in the
matrix is of shorter wavelength than the sensing radius of cells
and the integral effectively smooths out this heterogeneity. The
subsequent invasion takes place with a more or less uniform front.
Increasing the coarseness (top to bottom rows) results in greater

differences in the invasive speed and correspondingly, a more
variable tumour front.

5. Discussion

In the course of this paper we have expanded on our earlier
continuous-level modelling (e.g. see Armstrong et al., 2006;
Sherratt et al., 2009; Gerisch and Painter, 2010) to develop a
relatively simple model for studying cellular invasion that
incorporates cell–cell adhesion, cell–matrix adhesion and proteo-
lytic degradation of a surrounding extracellular matrix. Under
sufficiently strong cell–matrix adhesion and/or sufficiently weak
cell–cell adhesion, we observe the expansion of a cell population
as it degrades and invades the surrounding ECM environment.

Fig. 5. ‘‘Fingers’’ generated through invasion of cells into an initial matrix in which matrix density varies along the invasion front. For each subfigure (a)–(f), plots represent

matrix density (top) and cell density (bottom) plotted on the rectangular domain ðx,yÞA ½0,20� � ½0,10� at the fixed time t¼40 for the following initial matrix distributions:

(a) m0¼0.5, m1¼0.1, ky¼1; (b) m0¼0.5, m1¼0.3, ky¼1; (c) m0¼0.5, m1¼0.5, ky¼1; (d) m0¼0.5, m1¼0.1, ky¼2; (e) m0¼0.5, m1¼0.3, ky¼2; (f) m0¼0.5, m1¼0.5, ky¼2.

Model parameters are set as described in the text, ða,b,g,KÞ ¼ ð0:5,1:0,1:0,2:0Þ, with n0¼0.1 and Li¼1. The 2D model was solved numerically in conservative form using a

method of lines approach similar to that described for the 1D numerics, with the 2D domain discretised onto a uniform grid of spacing Dx¼Dy¼ 0:2. The advective

component is approximated via first order upwinding, with the 2D integral inside the advective term approximated as described in Armstrong et al. (2009). We note that a

number of more efficient numerical methods have been developed for systems similar to (4), see Gerisch and Chaplain (2008), Gerisch and Painter (2010), and Gerisch

(2010) for details, although such schemes would require–modification for the boundary conditions specified here.
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The structure and heterogeneity of the matrix plays a significant
role in shaping the dynamics: highly heterogeneous and variable
ECM can lead to ‘‘fingering’’ at the invasive front. These results
echo similar findings by others in both hybrid discrete-continuous
(e.g. Anderson, 2005; Anderson et al., 2006) and fully continuous
models (e.g. Gerisch and Chaplain, 2008). Significantly, under
confocal microscopy techniques Wolf et al. (2009) reveal that
within the same tissue, in vivo collagen scaffolds cover a range
between low and high density networks with highly variable pore
size. Note that for a sufficiently homogeneous matrix, our model
predicts that invasion can occur with a smooth front (Fig. 8 top
rows): invasion is not necessarily synonymous with a jagged
appearance of the front.

In its current form, the model is intentionally simplistic to
facilitate an initial study into the impact of adhesion and matrix
degradation on the form of invasion. As such, the present results
are qualitative rather than quantitative and a number of further
extensions to the model would be required before applying it to
specific systems. For example, the manner in which cells interact
with the matrix is significantly more complex than in the toy

model described here. We note that a number of authors have
developed more detailed models to describe cell–matrix interac-
tions (e.g. Chaplain and Lolas, 2005; Mallet and Pettet, 2006;
MacArthur et al., 2005; Gerisch and Chaplain, 2008) and it would
be of interest to examine how they can be incorporated and
extended within the current framework. For example, certain
environmental factors are known to modulate multiple processes
associated with invasion and the incorporation of this detail
within the model may provide insight into ambiguities associated
with their capacity to facilitate or impede invasion.

The live imaging of migrating cells in vivo indicates that
proteolysis is a highly focussed process, capable of significantly
reordering matrix alignment. Proteolysis at the front of the cell is
accompanied by the remodelling of matrix fibres at the rear to
create a locally aligned trail of fibres along the path of cell
migration (e.g. Friedl and Wolf, 2009). Such trails may provide a
guidance cue to the cells (contact guidance) and detailed
modelling by a number of authors using both discrete (e.g. Dallon
et al., 1999; McDougall et al., 2006) and continuous approaches
(e.g. Dallon and Sherratt, 2000; Hillen, 2006; Painter, 2009)

Fig. 6. Invasion of cells into a ‘‘checkerboard’’ matrix. For each subfigure (a)–(f), plots represent matrix density (top) and cell density (bottom) plotted on the rectangular

domain ðx,yÞA ½0,20� � ½0,10� at the fixed time t¼40 for the following initial matrix distributions: (a) m0¼0.5, m1¼0.1, ky¼kx¼1; (b) m0¼0.5, m1¼0.3, ky¼kx¼1;

(c) m0¼0.5, m1¼0.5, ky¼kx¼1; (d) m0¼0.5, m1¼0.1, ky¼kx¼2; (e) m0¼0.5, m1¼0.3, ky¼kx¼2; (f) m0¼0.5, m1¼0.5, ky¼kx¼2. Other model details as for Fig. 5.
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indicate that it forms a powerful mechanism for generating
‘‘cellular highways’’, i.e. paths in the matrix along which cells
preferentially migrate. An interesting exploration would be to

investigate whether the addition of adhesive interactions within
such models either enhances or diminishes the capacity of cells to
generate heterogeneous patterns of invasion.

Fig. 7. Time evolution of a cell invasion front into a ‘‘randomised’’ matrix structure. Cell (n) and matrix (m) densities are plotted at the various times shown, using a

grayscale indicator (black indicating zero density and white representing a density of 1). Other model details as for Fig. 5.

Fig. 8. Cell invasion into various randomised initial matrices. Cell distributions plotted at t¼40 as density maps (white representing a density of 1, black representing a

density of zero). Other model details as for Fig. 5.
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The focus of our work has been on the invasive properties of a
single cell population, exploring how its specific adhesive proper-
ties alter its capacity to invade. In reference to tumour growth,
therefore, the framework here is most suitably applied to the
in vitro deposition of specific cell lines within a suitable collagen
matrix (e.g. Tranquillo, 1999; Shreiber et al., 2003; Baba et al.,
2004). In vivo, tumour growth occurs within a far more
complicated environment: for example, a tumour may develop
within a surrounding healthy population while the surrounding
matrix will also include a variety of other cell types (e.g.
fibroblasts). Interactions between tumour cells and healthy cells
have previously been modelled within a reaction–diffusion frame-
work (e.g. Sherratt and Nowak, 1992; Gatenby, 1995; Sherratt and
Chaplain, 2001; Painter and Sherratt, 2003; Smallbone et al.,
2008), and our model provides a way of including the potential
adhesive interactions between the tumour and healthy cells in
such studies. In a similar vein, another potential extension of the
model would be to explore pathways to malignancy via the
addition of mutated subpopulations with distinct adhesive,
proteolytic and proliferative properties. Differential adhesion in
distinct cell types is a powerful mechanism for the patterning of
cell populations, a process known as cell sorting (e.g. Foty and
Steinberg, 2004; Steinberg, 2007) and it would be of interest to
determine how such processes contribute to the rearrangement
and invasion of tumours.

The application to neural crest cell invasion is another area for
consideration. Following their emergence along the dorsal neural
tube, neural crest cells migrate away to pattern various structures
including components of the peripheral nervous system. Migra-
tion occurs in a highly structured fashion, with cells following
stereotypical pathways and often forming collective ‘‘streams’’ and
‘‘chains’’ (Kulesa and Fraser, 1998; Young et al., 2004; Kasemeier-
Kulesa et al., 2005) through a combination of signals within the
neural tube, cell–cell contacts, and spatial variation in the
extracellular distribution of attractive and repulsive cues (e.g.
Young et al., 2004; Kasemeier-Kulesa et al., 2008). Our framework,
while currently focusing on attractive/adhesive interactions, could
easily be adapted to add additional processes such as repulsion to
investigate their contribution to the invasive process.
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