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In this paper, the author applies the mechanical model of Murray and Oster
(1984) for epithelial morphogenesis to the behaviour of an epithelial sheet after a
section of the sheet has been removed. In a radially symmetric geometry,
approximate solution of the resulting equation is an interesting problem in
perturbation theory. A leading-order approximation using three matched rescal-
ings is obtained, and it is shown that these are the only rescalings that will match
to leading order. This approximation is then improved by deriving the leading-
order correction, which requires the introduction of  logarithmic terms to
complete the matching process. The resulting uniformly valid composite expan-
sion is a good approximation to the solution of the model equations for
biologically relevant parameter values.

1. Biological background

ContinuuM mechanochemical models for deformation of epithelial sheets, first
proposed by Murray & Oster (1984), are now well established; Murray (1989)
gives an in-depth review of mechanical models for morphogenesis. The model of
Murray & Oster (1984) treats the epithelial sheet as a viscoelastic continuum,
with the cellular contraction forces controlled by the concentration of free
calcium. We amend this model to investigate the deformation of an epithelial
sheet in the absence of chemical control, which is not relevant here since we are
only interested in the equilibrium state. We envisage a section of the sheet being
removed, and we want to find the new equilibrium configuration, assuming the
response to be purely mechanical. Biologically, it is the variation of intracellular
actin density near the free edge that is of interest.
At equilibrium, the stress tensor in the cell sheet is given by

6=G(Ee+TIV-ul)+ 1GI (1.1)
[ e [ S——
elastic active
stress contraction

stress

where u(r) is the displacement of the material point initially at r, the strain tensor
e¢=3(Vu + Vu"), G(r) is the density of intracellular actin filaments at the material
point initially at r, E and I' are positive constants, and I is the unit tensor. The
traction stress per filament, 7, is in general a function of V - u. The standard form
(1.1) is discussed in detail in Oster (1984), Murray & Oster (1984), and Murray
(1989); there is no viscous contribution because we are considering the equi-
librium situation.
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At equilibrium, these elastic and traction forces balance the elastic restoring
forces that arise from attachment to the substratum. Following Murray & Oster
(1984) again, we model these forces by AGu, where the positive constant A
reflects the strength of the attachments. The term is proportional to G since most
of the intracellular actin filaments terminate at, or close to, a region of adhesion
to the substratum (Alberts et al., 1989: Chap. 11). Thus the equation to be solved
for the new equilibrium configuration is

V-06-AGu=0, (1.2)

with ¢ as in (1.1). We treat the sheet as infinite, which is valid provided the
section removed is small compared with the whole sheet. Thus the boundary
conditions are u(~) =0, and ¢ - A = 0 at the free edge, where # is the unit vector
normal to this edge. For the relationship between G and u, we assume that the
total amount of filamentous actin in a given region of cytogel remains constant as
that region is deformed, so that G(1+ V - u) = k, a constant.

Biological applications of this amended model will be presented in detail
elsewhere (Sherratt, Lewis, Martin, & Murray, in preparation). Here we
investigate a mathematical problem arising from the model when applied to the
removal of a circular section of the epithelial sheet, in the case when 7 is taken to
be a constant, as, for example, in Murray & Oster (1984). We nondimensionalize
(1.2) by setting

r
-’ t-I’

__r -
F=-, T=
a

where a is the radius of the section removed, r = |r|, and u = |u|: the problem is
radially symmetric. We assume that 7>I. Substituting these into (1.2) and
omitting the overbars for notational simplicity, we have the dimensionless
equation

w' u_ Aru(l+u/r+u')

T T Eu+(E-Dr (1.3)
with boundary conditions
1) = — MT_“_) -
wy=-(T—) w9 =0, (1.4)

where a prime denotes d/dr. In biological applications, we are interested in the
possibility of actin aggregation at the free edge, in which case G(r) has a sharp
peak at r = 1. Numerical investigation of the solution for a range of values of E,
A, and T shows that for such a peak, E — 1 must be small and positive: Fig. 1
shows the solution u(r) and the corresponding G(r) for E=1-03, A=4, and
T=20. In the remaining sections, we look for a uniformly valid analytic
approximation to the solution of (1.3) subject to (1.4) using perturbation theory,
with € = E —1 the small parameter. Such methods are clearly surveyed in the
book by Kevorkian & Cole (1985).
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FI1G. 1. (a) The numerical solution of (1.3) subject to (1.4), with E=1-03, A=4, and T =20. The
equation is solved using Newton iteration and deferred correction, with the leading-order composite
solution (3.5) as the initial approximation. (b) The corresponding solution for x~'G(r)=
(1+ V-u)~". This latter solution has a sharp peak at » = 1, the free edge.
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2. Singular perturbation problem

We begin by attempting to solve equation (1.3) subject to (1.4) when € =0.
This is a linear problem which integrates immediately to give

u' —u(Ar — 1/r) = 3Ar* + constant.

The integrating factor here is r exp (—3Ar?), which gives the general solution of
(1.3) as

A B
u= 7 - %r + —r—exp [%A(rz - l)],

where A and B are constants of integration. This solution does not satisfy
u() =0 for any values of A and B; thus the perturbation € #0 is singular.
Imposing the condition in (1.4) at r =1 gives

u=§(%—r) +§{AT+A—1+GXP BAC? - DI} @

This solution is plotted in Fig. 2 for a range of values of B.

We look for a rescaling that will capture the behaviour of the solution of (1.3)
subject to (1.4) for large r. Such a rescaling has the general form 7= fi(e)r,
it =u/v(e), with fi(e)=0(1), ¥(e)=0(1), and iv =0(1) as €—0. Here, as
usual, the notation f(€)=O(1) includes the case f(€)=o0(1); the condition
¥ = 0(1) ensures that we do have a genuine rescaling. This gives

d’a 1da a a da
Az(a';'z“ ;a;—ﬁ)[ﬁf'(l + €)a + €] = lfﬁ[l + ﬁf’(;i—g)]

Thus [t’i]e=0 =0. Similarly all terms in any asymptotic expansion for & are zero.

150
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Fic. 2. The solution (2.1) of equation (1.3), for cight evenly spaced values of the constant of
integration B, between 0-0023 and 0-0155. The parameter values are A =4 and T =20.
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Therefore we have to introduce a layer rescaling to give a solution intermediate
between this zero solution at large r and the regular solution (1.3) near r = 1. The
general form of the variables in such a layer is

r* =(r — R)/u(e), u*=u/v(e),

where u(€)=o0(1) and v(e)=0(1) as €—>0. Here r =R is the centre of the
layer. Substituting into (1.3) gives, to leading order,

d’u* _ u’ARu*
dr*2 vu*+€R’

2.2)

There are then a number of possibilities, according to the orders chosen for u and
v:

(a) u®*~ v~ e. This is discussed in detail below.

(b) w*~v>e. Then d’u*/dr*’=AR to leading order; the parabolic layer
solution cannot match the zero solution to the right of the layer.

(c) wp*~e>v. Here to leading order d’u*/dr**= Au*, which implies u*x
exp (—Atr*) since u*(«) =0. This exponential solution cannot be matched
to the left of the layer.

(d) p*>vand p?>>> e. In this case all terms in any asymptotic expansion for u*
are zero.

(e) p*«<vor p*«<e. Here d*u*/dr**=0 to leading order; the linear solution
cannot match the zero solution to the right of the layer.

Thus the only rescaling that can give an appropriate layer solution is (a),
namely u* = u/€ and r* = (r — R)/ €. Multiplying (2.2) by du*/dr*, integrating,
and imposing u* =0 at r* = shows that the leading-order term in the layer
solution is then

usg=RH(C- r*(ZA)"’) where H(§) = fg [6—log(1+ t’))]_i de.

Here C is a constant of integration.

3. Matching to leading order

Matching to the right of the layer is guaranteed by the boundary condition at
r* =, For matching to the left of the layer we use an intermediate variable
r,=(r—R)/n(e), with e!«n(€)«1, and consider the behaviour of the
left-hand and layer solutions as € — 0 with r, fixed. Then r— R and r* — —. But
ug— +o as r*— —, and, as shown in Appendix 1,

H(E)=2E '+ k+0(1) as E— +o; (3.1)
the constant k is defined in Appendix 1. Thus

2
+o(r*) asr*— —om, 3.2)

* __ 1 * 4
Uo le(r + (21)%
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Matching to leading order therefore requires

% [#(R) + nry#(R) + in*ri@g(R) + O(n*)]

€AR (nr, k—C\? net + 8(e)
25(e) (?’L(zx)? +°( () )

as €—>0, where 8(¢) is an intermediate scaling for the dependent variable, with
€ K6 K1, and &, is the leading-order solution (2.1) near r = 1, which has been
expanded in a Taylor series about r =R; as previously, a prime denotes d/dr.
This matching requirement holds provided the following conditions are satisfied:

(1)  @(R) = @1g(R) = 0. This implies that
B{MT +1)—1+exp[JAMR*-1)]} =4(R*-1) (3.3)
AB exp [3A(R*—1)] =1. (3.9
These give transcendental equations for B and R with unique real positive
solutions, which can easily be found numerically. for given values of A and
T. k
(ii) #(R)=AR. Simplifying the expression for #j(R) using (3.3) and (3.4) gives
this result.
(i) n*<«é.
(iv) €¥n/d=0Q). If we further specify €¥n « 8, then C is not determined by

the leading-order matching. However, the absence of an €! term in the
expansion near r = 1 (see below) requires that C = k.

Thus we have obtained matched asymptotic expansions to leading order for the
solution of (1.3) subject to (1.4). We obtain a composite expansion in the usual
way:

@o(r) + eug(r*) —3AR(r —R)* (r<R),
ucompO(r ) = *f %k
eus(r*) (r>R).
Figure 3 shows iy, €ug, Ucompo, and the numerical solution of (1.3) subject to

(1.4), plotted against r, for € = 0-03 and 0-003. The difference between Ucompo and
iy decreases to zero as r decreases below 1.

(3.5)

4. Higher-order corrections

The leading-order composite solution differs significantly from the numerical
solution of (1.3) subject to (1.4) for biologically relevant parameter values such as
€ =0-03. We now consider higher-order corrections to the leading-order ap-
proximation obtained above. The full equation for u* contains el terms, so that
the first-order correction to ug is O(e?). Substituting u* = ug + €*u’ in the full
equation for u* and equating coefficients of €* gives

du} AR? _Aug (u(;‘r* Rdus‘) 1 dud

—_— u*_
dr** (ud+R)?* ' ul+R\ui+R = dr*

R dr*’
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FiG. 3. Plots of the regular solution i(r), the leading-order layer solution eug(r*), the leading-order
composite solution, égmgo(r), and the numerical solution of (1.3) subject to (1.4), against r, for (a)
€ =003 and (b) €=0-003, with A=4 and T =20. The numerical solutions were obtained using
Newton iteration and deferred correction, with gope0(r) as the initial approximation. To indicate the

layer regions, the lines 7 = R and r = R + €} are drawn.
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Now ug(r*) is monotonically decreasing, so we can use u; as the independent
variable; this is feasible since dug/dr* and d’u¢/dr** are known functions of ug.
We then have

* 2 * * 2
L[ o d’uf Ruj duj R .
Y _y (1+ )] Ly -
2R [R 8 dud? " uf +Rdui  (ui+RP
u; [ ugr* +Rdu3]_idu3
usg+Rlu+R dr*

AR dr*’ “.1)

where

du«‘f-_{ z[u_é‘_ ( u_«?)]}* . _k—H(/R)
o 2AR R log 1+R. and r*= Zh) ,

subject to uy =0 at u;=0. Solution of this equation using the method of
undetermined coefficients is discussed in Appendix 2. For the purposes of
matching, it is the behaviour of uf as ug—  that is of interest, and we show in
Appendix 2 that, in this limit,

ntd
+1R?2A)% )( R ) log ul + Urult+ O(log? ud),
4.2)

ul = —3Q2AR) g + ( (zi)‘

where U7 is a constant of integration.
Consider now higher-order correctlons to i,. Substituting u = @@, + €2i, in (1 3)
and (1.4), and equating coefficients of €3, gives

s B BB ) .
i 2= Ar r+u1 4.3)

subject to i@;(1) = —Ti,(1)/(T + 1). This can be solved in the same way as (2.1)
was obtained, giving

= =§r_’ (AT + A—1+exp [3A(2-1)]},

where B, is a constant of integration. Now matching even to O(e?) clearly
requires &,(R) =0, so that B, =0 and thus &, =0.

We therefore look for an O(e€) correction to i,. Substituting u = ity + €il, in
(1.3) and (1.4), and equating coefficients of €, gives

1 1 7]
r Ug r

subject to iiy(1) = —[Tiiz(l) + @o(1)]/(T + 1). This equation can again be solved
using the method of undetermined coefficients (the homogeneous equation has
linearly independent solutlons 1/rand e *'z/r) This gives

l+).TB

ﬁz(r)=7{AT+A—1+exp[ I -1)) -

ABe—il r2 2B CXP [%l(u - 1)] +D+ u(eih _ eibz) du
2r J, 2Bexp[3A(u—-1)]+D -u ’
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where D =1+2B(AT +A—1) and B, is a constant of integration. Straightfor-
ward expansion shows that, as r— R™, with { =r — R,

i1, =2R log |{| + U, + GAR® - 6)C log |&| + U1 & + O(Llog |£]),  (4.4)

where T, is an outstanding constant of integration, the value of which determines
B, and thus the constant U, ;.

5. Intermediate terms

Comparison of the expansions. (4.2), (4.4), and the leading-order expansions in
Section 3 indicates that a number of terms remain unmatched at the left of the
layer, even to O(e}). We found that, in order to complete the process of
matching, it was necessary to introduce logarithmic terms between the leading
and higher-order terms found previously, in both the left-hand and layer
solutions. Specifically, we introduce a term € log € ii,(r) in the left-hand solution
and a term €? log € u}(r*) in the layer solution.

Substituting u = i, + € log € &, in (1.3) and (1.4) and equating coefficients of
€ log € shows that &, satisfies the same equation (4.3) and boundary condition as
i,. Thus

i, = % {AT +A—1+exp 3202 -]} 5.1)

where B, is a constant of integration.
The equation satisfied by u; is obtained in the same way; using ug as the
independent variable, as in Section 4, gives

ug ( u{,")] d’u? uy du; Ru}
=2 _ 142
2R[R log R

subject to uz =0 at ug =0. This equation can be solved by direct integration;
applying the boundary condition at ug =0 gives u; = C,[ug/R —log (1 + ug/R)J},
where C, is a constant of integration. Thus, as uj — o,

Ce

ut= Rl ugt+ o(us? log ug). (5.2)

We can now consider matching the amended left-hand and layer solutions: as in
Section 3, matching to the right of the layer is trivially satisfied. Using (4.2),
(4.4), (5.2), and the leading-order expansions in Section 3, and expanding (5.1) in
a Taylor series about r = R, we find that the condition for matching to O(e?) is

U.(R?+1)

%E’(,’(R)n3r3, + 0(7]4) + 0(6 lOg €+ R(T—l)-

1
€15(¢) log € + O(n?
etd(e) ( nr,€ log € + O(n“e log €)

+2Re log |nr,| + Uz + (3AR* — 6)enr,, log |nr, | + U, 1enr, + O(en?log 11))
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6( )[ZR log +R(2+log A)+0( ) C,(*‘A)( )eiloge
+0<€_l$g_n)+ll2R2(n%ﬂ) EI+(2},R2—6)1]I' log 1{_

+ eéur(%m)%(%) + O(e} log? n)] +o(l) (5.3)

as €—>0, where U,=B,{AT +A—1+exp [3A(R>-1)]}/R. Here we have ob-
tained higher-order terms in the behaviour of ug as r*— —, using the expansion
of H™'(§) for large & which is discussed in Appendix 1. Simplifying the
expression for @g(R), using (3.3) and (3.4), shows that @@y(R) = A?’R% Thus the
matching condition determines the outstanding constants of integration, as
follows:

l'](— '_R (72—R(2+10g A) \
Ut =0, ,(2/AR)3, e=—(Q/A)M3AR* -3 - (R* + 1)/(R* - 1)].

We then have matching to 0(65) provided that the fBllowmg conditions are
satisfied by d(€) and 7n(e) as €e—0:

(a) n*=o0(etd), (b) n’etloge=0(d), (c) n*etlog n =o0(d),
(d) e=0(nd), (e) ellogelogn=o0(nd), (f) €log®n=o0(d).

Trivially (d) = (f). Moreover n > €}, so that log 1 = O(log €); thus (b)=> (c) and
(d)=> (). Also, 6> € > € log? €, and multiplying (a) by this result nnphes (b).

Thus, for matching to O(e?), it is necessary and sufficient that n*<< €6 and
€ < 0n. These conditions can be portrayed graphically if we consider only orders
of magnitude that are powers of €: intermediate orders involving logarithms need
not concern us. Thus, we write § = O,(€”) and 7 = O,(e?), where, as usual, the
notation f = O,(g) means that f = O(g) and f # o(g). The two conditions are then

>p+3 and p+qg<1. We also require g <3; the conditions #*><« & and
€in = O(6) for leading-order matching are implied by (a) and (d). The (p, q)
domain such that these conditions are satisfied is illustrated in Fig. 4(a). For
matching to O(€), the corresponding conditions are 4g>p +1 and p + g <3,
and the (p, q) domain in this case is illustrated in Fig. 4(b). The corresponding
(p, q) domain exists, so that matching is possible, to any order that is > €.

We obtain a higher-order composite expansion as in Section 3, giving

( fig(r) + € log € ii (r) + €iiy(r) + eud(r*) + €t log e ui(r*)
+ el (r*) — 3ARE? — 1A’R?*E* + Relog €
2
Ueompr () = 4. + (22 )Ce log € —2Re log |E| — R(2 + log 3A)e
+€(6—3AR)Clog || - €0y, 8 (r<R),
Leug(r*) + etlog eus(r*) + eluf(r*) (r>R),
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FiG. 4. The domain of orders of magnitude of 8 and 7 for the matching condition (5.3) to be satisfied.
We are considering only orders of magnitude that are powers of €, with 6 = O,(€”) and 1 = O,(¢7).
The shaded region is the (p, ¢) domain such that the matching condition is satisfied, (a) for matching
to O(e}), and (b) for matching to O(e).
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FiG. 5. Plots of the leading-order composite solution u q,(r), the higher-order composite solution
Ucomp1(r), and the numerical solution of (1.3) subject to (1.4), against 7, for € =0-03, A =4, and
T =20. The numerical solution was obtained using Newton iteration and deferred correction, with
Ucompo() as the initial approximation. To indicate the layer regions, the lines 7 =R and r = R + €} are
drawn.

where {=r— R. Figure 5 shows uUcomp1, Ucompo, and the numerical solution of
(1.3) subject to (1.4), plotted against 7, for € = 0-03. The higher-order corrections
dramatically improve the quality of the composite solution as an approximation to
the exact solution.

6. Conclusions

We have used the mechanical model of Murray & Oster (1984) for epithelial
morphogenesis to derive an equation modelling the behaviour of an epithelial
sheet after a section of the sheet has been removed, and we have investigated this
equation using singular perturbation theory. We have shown that matching to
even leading order specifies a unique combination of three rescalings. Further, we
have derived a composite expansion that is uniformly valid to O(€), which
provides a good analytic approximation to the solution for parameter values such
that the model equation captures the interesting behaviour of actin aggregation at
the free edge of the epithelial sheet. The biological implications of the model
solutions will be discussed in detail elsewhere (Sherratt, Lewis, Martin, &
Murray, in preparation).

This problem is of particular note because the interesting mathematical
behaviour occurs in an intermediate layer whose location does not appear,
superficially, to have any special significance in either the equation or the
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FiG. 6. Numerical solutions of (1.3) as an initial value problem, with u(1)=uy,, and u(l)=
(1+2x 10'3)u.,vp, and u'(1) = ~(Tup,,+ T+1)/(1 + € + T). Here uy,, is the initial value giving
u() = 0. The solutions were obtained using a Runge—Kutta—Merson method. The parameter values
are € =0-03, T =20, and A = 4, and, to indicate the layer regions, the lines r =R and r = R * €} are
drawn.

numerical solution. However, the importance of this layer region is evidenced by
our attempts to solve the equation numerically using shooting methods. This
method of numerical solution becomes increasingly difficult as E— 1% because
solutions with small differences in the values of u(1), though initially close
together, begin to diverge considerably in the layer region, as illustrated in Fig. 6.
Moreover, divergence also occurs in this region when perturbations are made to
the solution at any point 7 <R — €%. Initially we could not understand why these
perturbed solutions always diverged very rapidly at approximately the same
position, but the layer structure of the equation provides an intuitive explanation
for the phenomenon. Thus our application of singular perturbation theory has
given considerable insight into the behaviour of the solution of (1.3) subject to
(1.4), in addition to providing a good analytic approximation to this solution.

Appendix 1

Here we investigate the behaviour of the functions H(&) and H™ (&) as E— o;
recall that

13
H(E) = L [6 —log (1 + 6)]* d.

We begin by proving the result (3.1), that H(E) = 2&% + k + o(1) as £— %, where
k is a constant. Expanding the integrand as a power series in ¥ = £ 'log (1 + &)
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shows that, for sufficiently large &,

TR ETA 2R

31 351 )
22! 223!

GEH®-281=1E Y 0g 1+ 5)(1+3

<§‘ilog(1+§)(1+§zp+—3-§—l— 2+---)

=& og (1+5)(1- )7L
Now, for & sufficiently large, log (1 + &) < &%, so that

d 1 - -
gl H® - 28 <E -,
But, for & sufficiently large, £% — 1> £3-% for any small B, so that
FlHEO-28 <5

We now fix 8 <1} and integrate this inequality between w and €, where w is
sufficiently large and Q > . This gives

. -1

H(Q)-2Q<—+D,<D,, -

B—i
where D, is a constant depending on . Thus, for  sufficiently large,
H(Q) - 20} is bounded above by D,; further it increases monotonically for
Q> 0. Thus H(L) — 28 tends to a finite limit as 2— . The value of this limit,
k say, is simply

k=-2+ f ) ([0 —log 1 + 8)]"t— 674} de,

and numerical 1ntegrat10n shows that k = 0-898996. Termwise mtegratlon of the
above series expansnon for (d/dE)[H(E) 2E%] suggests that H(E) — 2&% — k has
the form —E tlog £ — 284+ O(E ¥ log? &) as E— =, and this is confirmed by
numerical integration. It therefore follows that, in this limit,

H(E)=28 +k —Etlog € — 281+ O(E 1 1og? £). (A.1)

From (3.1), it is clear that, to leading order, H '(x) =1(x — k)* as x—> o,
Substituting H~'(x) =3(x —k)*>+ y(x) into (A.1) and expanding for large x
implies that

k

log*x +y*+y logx)]

2
[y 2logx —2(1 —log2) +— e

x=x+ +O(
x

-k
so that, as x — »,

H™'(x)=3%(x —k)*+2logx +2(1 —log2) — 2k/x + o(x7Y).
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Appendix 2

Here we derive the expansion (4.2) of uj for large uj. The function
uj(ug) is defined by (4.1), and the corresponding homogeneous equation can be
integrated directly, giving linearly independent solutions

) =4~ 10g 1+,

) =[S 1o (1+ %) 1w,

where I(8) = [§[0 —log (1+ 6)]"1d6. The inhomogeneous equation can thus be
solved using the method of undetermined coefficients, giving the general solution
of (4.1) as

it = -tog (1+F)]
(1 F@ ez - [ 1@F@ s + P+ o1am), By

where F(ug/R) is the right-hand side of (4.1), and P and Q are constants of
integration. The function F is integrable near zero, since straightforward series
expanswn shows that, as €—0, F(§)=&/A+ O(&? log £). Now, as u0—>0
uf = —4QBRug™'+5)+0(1), and thus the boundary condition at u}=0
requires that Q =0. ¥

For the purposes of matching, it is the behaviour of uf as uj —  that is of
interest. Expanding for large & gives

F(§) = REGIY-28! + £} log & + (6/(AR?) + 2)E4] + O(& " 1og* £),
I(E)F(§) =
RGN -2LE + 4+ LE Hlog & + L(6/(AR?) + 2)E™ - 4(3/(AR?) + H)E™!]
+0(5t1og? &),

where L, =lim._... I(§). Here we have used the expansion of H(E) for large £,
which is discussed in Appendix 1. Integrating termwise and substituting into (B.1)
suggests that, as ug — o,

]
uf = -1AR) g + ((2/1) + 1R2(2}.)§)( R ) logug + Utugt+ O(log? ud),

where the constant U7 is dependent on the outstanding constant of integration P.
This is the result (4.2), and the expansion is confirmed by numerical integration.
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