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Abstract The destabilising effects of a time delay in mathematical models are well
known. However, delays are not necessarily destabilising. In this paper, we explore an
example of a biological system where a time delay can be both stabilising and desta-
bilising. This example is a host–pathogen model, incorporating density-dependent
prophylaxis (DDP). DDP describes when individual hosts invest more in immunity
when population densities are high, due to the increased risk of infection in crowded
conditions. In this system, as the delay length increases, there are a finite number of
switches between stable and unstable behaviour. These stability switches are demon-
strated and characterised using a combination of numerical methods and analysis.

Keywords Time delay · Density-dependent prophylaxis · Stability switches ·
Population cycles · Disease modelling
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1 Introduction

Time delays are an inherent feature of many biological systems, ranging from cell
biology to ecology. In many cases the importance of delays lies in their ability to
destabilise equilibria. For instance in physiology, increased time delays can lead to
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‘dynamical diseases’ such as hematopoiesis and Cheyne–Stokes respiration, in which
physiological quantities that are constant in healthy individuals become oscillatory
(Mackey and Milton 1987; Fowler and Kalamangalam 2000; Colijn and Mackey
2005). Similarly, the population cycles in Nicholson’s classic blowfly experiment are
due to time delays associated with development (Nicholson 1954; Gurney et al. 1980;
Berezansky et al. 2010).

Mathematical theory shows that time delays are not necessarily destabilising: the
introduction of a time delay can stabilise an otherwise unstable equilibrium. More-
over in some cases there can be multiple switches between stability and instability as
the delay length is increased (Mufti 1964; Lee and Hsu 1969; Mahaffy 1982; Cooke
and van den Driessche 1986; Kuang 1993). However, there are relatively few spe-
cific examples of such behaviour. May (1973) described a population model with
three stability regions as the time delay increases. Hastings (1983) analysed stability
of models of age-dependent predation, and found numerically that any finite num-
ber of switches is possible. Multiple stability switches as the delay increases were
also reported by Xiao et al. (2009), who extended a host–free-living pathogen model
framework by including delayed host self-regulation. Here we demonstrate a new ex-
ample of the phenomenon, and present a detailed mathematical study, which enables
us to make detailed predictions such as the number of stability switches as a function
of model parameters.

In this paper, we show and describe multiple stability switching as delay length
increases in a host–pathogen system including density-dependent prophylaxis. The
maintenance of mechanisms that allow hosts to resist pathogen infection can be
costly. For instance, mounting an immune response could involve damaging autoim-
mune effects (e.g. Råberg et al. 1998). In addition, immune function may be traded
off with other traits, such as the ability to compete (Kraaijeveld and Godfray 1997);
when immunity levels are high, less resources are available to be allocated elsewhere.
Therefore, individuals will benefit from tailoring their allocation of resources to im-
munity in order to match the perceived risk of exposure to disease. In many cases
transmission of pathogens is positively density-dependent (Anderson and May 1979;
Ryder et al. 2005, 2007), so that the probability of infection increases with host pop-
ulation density. In such cases there is likely to be a selective advantage to individuals
that increase their investment in immunity in response to increasing population den-
sity. This phenomenon is termed density-dependent prophylaxis (DDP) (Wilson and
Reeson 1998).

DDP has been experimentally demonstrated in a number of insect species. For
example, larvae of both the Oriental armyworm Mythimna separata and the African
armyworm Spodoptera exempta show increased viral resistance when reared at high
population densities (Kunimi and Yamada 1990; Reeson et al. 1998). Mealworm bee-
tles (Tenebrio molitor) reared under crowded conditions show more resistance to a
generalist entomopathogenic fungus than those reared singly (Barnes and Siva-Jothy
2000). A similar response has been demonstrated in the desert locust Schistocerca
gregaria (Wilson et al. 2002). Furthermore, a study on adult bumble-bee workers
(Bombus terrestris) concluded that there is rapid plasticity in immunity levels depen-
dent on social context (Ruiz-González et al. 2009). This demonstration of DDP in
adults suggests that it may be a widespread phenomenon, and considerably broadens
its potential significance.
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There is a time delay in the onset of DDP, representing the time between the
change in population density and the subsequent phenotypic change in the level of
resistance. In a previous paper (Reynolds et al. 2011) we have shown that short time
delays can stabilise an otherwise unstable equilibrium, therefore reducing the extent
of the parameter region giving population cycles. In this paper, we show that increas-
ing the length of the time delay gives multiple switches in stability, resulting in a
complex dependence of the population dynamics on demographic parameters. Our
host–pathogen model incorporating DDP is introduced in Sect. 2. Next the popula-
tion dynamical behaviour of the model is explained and illustrated, in Sect. 3. We
provide some details in Sect. 4 of the continuation method used to produce the sta-
bility boundary curves. Section 5 is an analysis of the observed switches in stability.

2 The Model

The host–pathogen model framework used by Reynolds et al. (2011) to represent
DDP is as follows:

dH

dt
= rH

(
1 − H

K

)
− αY , (1)

dY

dt
= β0

(
1 − p

HT

K

)
W(H − Y) − (α + b)Y , (2)

dW

dt
= λY − μW, (3)

where HT := H(t −T ). This is based on an extension of Anderson and May’s (1981)
Model G, with self-regulation of the host (Bowers et al. 1993). Here H is the total
host population density, within which Y is the density of infected (and infectious)
individuals, and X the density of susceptible individuals, such that H = X + Y . W is
the density of free-living stages of the pathogen population. Throughout this study,
we use the differential equation for total host density H , but alternatively one could
use the equation for susceptible host density X:

dX

dt
= (r + b)(X + Y) − bX − r

(X + Y)2

K
− β0

(
1 − p

HT

K

)
WX; (4)

then the model in terms of X, Y and W consists of Eqs. (2), (3) and (4). The model
assumes that host self-regulation acts on birth rate and that both susceptible and in-
fected hosts can die naturally. Susceptible hosts may become infected through contact
with free-living infective stages of the pathogen, and then experience additional mor-
tality due to the disease. Infected hosts release infective stages at a constant rate, and
these stages are lost through natural decay. Note that this system is confined to the set
0 ≤ H ≤ K,0 ≤ Y ≤ H,0 ≤ W ≤ (λ/μ)Y .

The parameters in the model are all positive. Parameter r is the intrinsic rate of
net increase of the host (birth rate minus the natural host death rate b), K is the host
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carrying capacity and α is the rate of disease-induced mortality. The term

β0

(
1 − p

HT

K

)

gives the transmission coefficient of the disease. Here β0 is the transmission coef-
ficient of the disease when there is no DDP; p is a measure of the strength of the
prophylactic effect (specifically, a proportion, taking a value between 0 and 1); and
T is the time delay in the onset of DDP, i.e. the delay between the change in density
and the subsequent phenotypic change in resistance level. Note that as H ≤ K , the
transmission coefficient function is always non-negative. Parameter λ is the rate at
which an infected host produces infective stages of the pathogen. Finally, μ is the
decay rate of the infective stages of the pathogen.

3 Population Dynamics

The model (1)–(3) has three steady states: the trivial state (H = 0, Y = 0, W = 0),
which is always unstable since we assume r > 0, the disease-free state (H = K ,
Y = 0, W = 0) and an infected state (H ∗, Y ∗, W ∗) where

Y ∗ = r

α
H ∗

(
1 − H ∗

K

)
,

W ∗ = λ

μ
Y ∗

and H ∗ is a solution to the cubic equation

(
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(
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)
− (

H ∗)2
(

r

αK
+ pr

αK
− p

K

)
+ H ∗

(
r

α
− 1

)
+ μ(α + b)

λβ0
= 0. (5)

It should be noted that the solution for H ∗ may not be unique. Equation (5) always
has one negative root, which is not ecologically relevant. The two roots that remain
can both be complex, in which case there is pathogen extinction. Otherwise there
are two positive, real roots. In most cases, one is less than K and one is greater
than K , the latter not being relevant. For some parameters, both roots can be greater
than K , so neither is relevant: in this case pathogen extinction occurs. There are
also parameter sets for which both roots are less than K and so both are potentially
relevant to ecological applications. However, in such cases the larger root corresponds
to a steady state that is always unstable. We focus on the smaller of the two roots when
this case arises. (This matter is discussed in more detail in Reynolds et al. (2011).)

Our study focuses on the assessment of the stability of the non-trivial steady state
(H ∗, Y ∗,W ∗). For certain parameter values this infected state is unstable, and then
one expects population cycles of host and pathogen to occur (Anderson and May
1981; Bowers et al. 1993; White et al. 1996). We explore the population dynamical
consequences of increasing the delay term (T ) in the model. The complex structure
of the parameter space giving cycles for long delays is described and discussed.
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Fig. 1 Stability boundary curves for different T values, for a fixed p (p = 0.2), showing that increasing
the delay is not consistently stabilising. Delay values are T = 0 : 0.25 : 2.75, and an increasing T is repre-
sented by a change in colour from red to black (or from pale gray to black). As the delay increases, firstly
the cycling parameter region diminishes, and then it expands. The stability boundary curves depicted here,
and in the other figures in this study, are produced using a numerical continuation method, as described
in Sect. 4. The other parameter values, which are the same for all figures in this paper, are: r = 1, K = 1,
β0 = 0.0001, μ = 3 and b = 3.3

In Reynolds et al. (2011) the implications of DDP were explored for the popu-
lation dynamics of a host–pathogen system. The delay was found to be critical in
determining whether DDP is stabilising or destabilising. In that study, attention was
restricted to relatively short delays. In this paper, we explore the dynamical effects
of extending the delay beyond this. We find that complex and interesting patterns of
dynamical behaviour occur in parameter space with this lengthened delay.

Reynolds et al. (2011) found that increasing the delay reduces the region in param-
eter space where the solutions are cyclic, and thus stabilises the system. However,
with longer delays, increasing the delay is not always stabilising (Fig. 1). An in-
crease in the delay can lead to an expansion of the parameter region where solutions
are cyclic. Therefore, an increase in the delay can destabilise the dynamics.

To illustrate this behaviour more clearly, we look at λ–T parameter space, with
a fixed value of α. Figure 2 shows that for p = 0.2 (black solid line), the boundary
between the stable and unstable regions oscillates as the delay increases. As the delay
increases, its effect changes between being stabilising and destabilising. In addition,
comparison of the p = 0 line (dashed) with the p = 0.2 curve shows that the effect
of DDP alternates between being stabilising and destabilising as the delay changes.

The pattern becomes more complex as the strength of the prophylactic response
(p) increases (Fig. 2); the oscillatory pattern of the stability curves becomes more
irregular, and there are increasingly elongated extensions of the lower part of the
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Fig. 2 Stability boundary curves for p = 0.2 (black), p = 0.4 (dark grey) and p = 0.6 (pale grey) in λ–T

parameter space. The curve for p = 0 (dashed) is also shown for comparison. Below the lines, there are
no cycles; above the lines, there are cycles. In this figure, α = 15.5; the other parameters are as in Fig. 1.
Note that the oscillations in the stability boundary are not periodic. These curves are produced using a
numerical continuation method (described in Sect. 4) and confirmed through theoretical analysis (Sect. 5)

stability boundary. The population dynamics of the system become more complicated
with a longer delay and with a stronger prophylactic response.

Next we look at α–T parameter space, with fixed λ. The results depend on the
value of λ. For relatively large λ, the stability boundaries are as shown in Fig. 3(a):
there are two boundary curves, with cycles occurring for parameters lying between
the curves. In this figure, λ = 5 × 107. If extended, the stability boundary curves of
Fig. 1 would cross the line λ = 5 × 107 twice. These two crossings correspond to
the two stability boundary curves in Fig. 3(a). In contrast, for relatively small λ, the
boundaries are as shown in Fig. 3(b), with a series of distinct regions in parameter
space in which cycles are generated. The value of λ here is 0.8 × 107. To understand
this behaviour, one can observe that in Fig. 1, some stability boundary curves cross
the line λ = 0.8 × 107, while others do not. So for some delays, there are no cycles
for any value of α.

It can be seen from Fig. 2 that for certain values of λ there are multiple stability
switches as the time delay increases. These are illustrated by the simulations shown in
Fig. 4; as the delay increases, the long-term dynamical behaviour alternates between
non-cyclic and cyclic. There are also stability switches for certain values of α as the
delay increases (Figs. 3(a) and (b)).
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Fig. 3 (a) Stability boundary curves for p = 0.2 in α–T parameter space, for ‘large’ λ. In this figure,
λ = 5 × 107. There are two curves, and cycles are generated for parameters lying between them. Note
that for clarity, a log scale is used for the vertical axis. (b) Stability boundary curves for p = 0.2 in α–T

parameter space, for ‘small’ λ. In this figure, λ = 0.8 × 107. In this case, the curves form ‘islands’, and
cycles are generated for parameters within these islands

4 Continuation Method

The numerical technique used to determine the stability boundaries presented in this
paper involves tracking when roots of the characteristic equation cross the imaginary
axis. If all characteristic roots have negative real parts, then the equilibrium is stable;
if the real part is non-negative for any characteristic root, then the equilibrium is
unstable.

When there is no delay, we can find the boundary in parameter space dividing
stable and unstable behaviours by consideration of the Routh–Hurwitz stability cri-
teria. (With the characteristic equation in the form z3 + Az2 + Bz + C = 0, cycles
occur when AB − C < 0; this partitions parameter space.) However, when there is
a delay the characteristic equation has an infinite number of roots (eigenvalues) and
so can no longer be solved algebraically. Instead, we use a point on the stability
curve for T = 0 as a starting point for numerical continuation, tracking the pass-
ing of eigenvalues across the imaginary axis. This enables us to trace the stability
boundary curves through parameter space. Numerical continuation can be performed
in any of the parameters p, T , α or λ; a combination is required to produce the var-
ious figures presented in this study. Switching beween parameters allows curves to
be produced that are not monotonic in any one parameter. As an example, Fig. 3(b)
is produced by parameter continuation in α and T . In this case, the curve is not
always monotonic in T , and as a result, numerical continuation via increasing T

will fail. When this occurs, we switch to numerical continuation in α in order to
continue the curve. Although we have written our own numerical code, we com-
ment that there are software packages that are able to trace stability boundaries for
delay differential equations, for example DDE-BIFTOOL (Engelborghs et al. 2002;
http://twr.cs.kuleuven.be/research/software/delay/ddebiftool.shtml).

http://twr.cs.kuleuven.be/research/software/delay/ddebiftool.shtml
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Fig. 4 Numerical simulations of Eqs. (1)–(3) to illustrate the stability switches as the delay T increases.
Times series are shown for five different values of T . All other parameter values are the same for all plots,
and are as follows: r = 1, K = 1, α = 15.5, b = 3.3, μ = 3, λ = 1 × 107, p = 0.2 and β0 = 0.0001. The
large time dynamical behaviour alternates between cyclic and non-cyclic. These simulations are produced
by Matlab (http://www.mathworks.co.uk) using the delay differential equation solver dde23, which is
based on an explicit Runge–Kutta (2,3) pair. Solutions are shown after running for 400 time units to
ensure decay of transients

http://www.mathworks.co.uk
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5 Analysis of Stability Switching

General mathematical theory of stability switching in delay differential equations is
presented in Kuang’s (1993) book, which summarises the work of various previous
authors including Mufti (1964) and Cooke and van den Driessche (1986). We now ap-
ply this theory to the system (1)–(3). We do not attempt a general survey of behaviour
across the entire parameter space: rather, our more modest objective is to show that
our numerical results can be confirmed and explained analytically for typical param-
eters. In particular, we will use as an example case the change in stability with T for
λ = 0.6 × 107 and p = 0.4, with other parameters as in Fig. 2.

The characteristic equation of (1)–(3) is

C0 + C1E + C2E
2 + E3 − α(μ + E)Υ e−T E = 0 (6)

where Υ , C0, C1 and C2 depend on the model parameters as follows:

Υ = β0p

K
W ∗(H ∗ − Y ∗),

C0 = αμΓ + r

(
2H ∗

K
− 1

)(
Γ μ + αμ + bμ − λΓ (H ∗ − Y ∗)

W ∗

)
,

C1 = r

(
2H ∗

K
− 1

)
(μ + Γ + α + b) + Γ α + Γ μ + αμ + bμ − λΓ (H ∗ − Y ∗)

W ∗ ,

C2 = r

(
2H ∗

K
− 1

)
+ μ + Γ + α + b,

Γ = β0

(
1 − p

K
H ∗

)
W ∗.

We use the term “stable” to mean that ReE < 0 for all eigenvalues E. One special
case that we exclude from the outset is C0 = αμΥ . This would imply that E = 0 is a
solution of (6) for all T , so that the steady state is never stable.

At a stability change, an eigenvalue E has zero real part. Setting E = iω (with ω

real) and equating real and imaginary parts of Eq. (6) gives

C0 − C2ω
2 = Υ α

[
μ cos(T ω) + ω sin(T ω)

] = Υ α

√
μ2 + ω2 cos(φ − ωT ), (7)

C1ω − ω3 = Υ α
[
ω cos(T ω) − μ sin(T ω)

] = Υ α

√
μ2 + ω2 sin(φ − ωT ) (8)

where φ is defined by μ√
μ2+ω2

= cosφ, ω√
μ2+ω2

= sinφ, φ ∈ [0,2π). The sys-

tem (7), (8) constitutes two real equations for the two unknowns ω and T , as func-
tions of the various model parameters. An important preliminary observation is that
given any solution (ω∗, T ∗), (−ω∗, T ∗) is also a solution. Moreover, our assumption
C0 �= αμΥ means that ω = 0 does not satisfy (7), (8). Therefore at a stability change
two eigenvalues (a complex conjugate pair) cross the imaginary axis. Henceforth we
assume ω > 0 without loss of generality.
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Following the standard approach (e.g. Murray 2002, §1.4–1.5), we eliminate T

from (7), (8), giving a cubic equation for ω2:

(
C0 − C2ω

2)2 + ω2(C1 − ω2)2 = Υ 2α2(μ2 + ω2). (9)

This can have between zero and three real positive roots for ω. For our example case
there are two real positive roots, ω = ω1 ≡ 1.485 and ω = ω2 ≡ 1.547, and for the
various other biologically realistic parameter sets that we have investigated there are
also two distinct real positive roots. For any given root ω, (7) implies that

T = 1

ω
cos−1

(
μ√

μ2 + ω2

)
− 1

ω
cos−1

(
C0 − C2ω

2

Υ α
√

μ2 + ω2

)
. (10)

Since cos−1 is multi-valued, it follows that for each real value of ω, the corresponding
eigenvalue crosses the imaginary axis an infinite number of times as T increases. The
difference in T between each crossing is


T = 2π/ω. (11)

In order to determine the type of stability change (if any) that occur when an
eigenvalue pair crosses the imaginary axis, it is necessary to investigate whether the
pair is crossing from the left hand half of the complex plane into the right hand half, or
vice versa. A condition for this was derived by Cooke and van den Driessche (1986)
and is also given in Kuang’s (1993) book. Since both references are a little obscure
(especially, Kuang’s book is currently out of print), we give a brief summary of the
argument. We begin by writing the characteristic equation (6) as

P(E) + Q(E)e−ET = 0; (12)

here P(E) = C0 + C1E + C2E
2 + E3 and Q(E) = −α(μ + E)Υ . We seek to cal-

culate

S = sign

(
d

dT

(
ReE(T )

)∣∣∣∣
E=iω

)
= sign

[
Re

(
dE(T )

dT

∣∣∣∣
E=iω

)]
.

Differentiating (12) with respect to T yields

dE

dT
= EQ(E)

P ′(E)eET + Q′(E) − T Q(E)
=

(
− P ′(E)

EP (E)
+ Q′(E)

EQ(E)
− T

E

)−1

(13)

using (12). Hence

S = sign

(
Re

(
dE

dT

)−1∣∣∣∣
E=iω

)

= sign Re

[
− P ′(iω)

iωP(iω)
+ Q′(iω)

iωQ(iω)
− T

iω

]
= sign Im

[
Q′(iω)

Q(iω)
− P ′(iω)

P (iω)

]
(14)

since T and ω are real and positive.
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In terms of the notation used for (12), Eq. (9) is 0 = |P(iω)|2 − |Q(iω)|2 ≡ F(ω).
Since our interest in S is only for values of ω that satisfy (9), it follows that

S = sign Im

[
Q′(iω)Q(iω)

Q(iω)Q(iω)
− P ′(iω)P (iω)

P (iω)P (iω)

]

= sign Im
[
Q′(iω)Q(iω) − P ′(iω)P (iω)

]

where overbars denote complex conjugation. Writing F(ω) = P(iω)P (iω) −
Q(iω)Q(iω) and differentiating then yields

S = sign
[
F ′(ω)

]
. (15)

This result has two key implications. Firstly, S is independent of the delay value,
depending only on ω. We have already commented that for all of the biologically
realistic parameter sets we have considered, (9) or equivalently F(ω) = 0 has two
simple real roots. The second key implication of (15) is that since F ′(ω) must have
an opposite sign at these two roots, one of them corresponds to a complex conjugate
pair of eigenvalues crossing the imaginary axis from left to right, while the other
corresponds to a crossing from right to left.

To demonstrate these results we consider our example case: λ = 0.6 × 107,
p = 0.4, and the other parameters as in Fig. 2. Our discussion is illustrated in Fig. 5.
For T = 0, there are three eigenvalues: one negative and a complex conjugate pair
with negative real parts; the infected steady state is stable. As mentioned previously,
Eq. (9) has two real positive roots: ω1 = 1.485 and ω2 = 1.547 (correct to three deci-
mal places). Moreover, F ′(ω1) < 0 and F ′(ω2) > 0, so that ω1 and ω2 correspond to
crossings of the imaginary axis from right to left, and from left to right, respectively.
As the delay increases from zero, the steady state (which is stable at T = 0) will
become unstable at the smallest positive solution of (10) for ω = ω2, say T = T2,1.
At this value of T there is a crossing of the imaginary axis by an eigenvalue pair
corresponding to ω2. As T is increased further, an eigenvalue pair corresponding to
ω1 crosses the imaginary axis, into the left hand half plane, at T1,1 say. Now for
T ∈ (T2,1, T1,1) there is only one pair of eigenvalues in the right hand half plane.
Therefore the steady state becomes stable at T = T1,1. There is another switch to
instability at T2,2, the second smallest positive solution of (10) with ω = ω2, and a
switch back to stability at T1,2. An eigenvalue pair crosses into the right hand half
of the complex plane at each switch to instability, and then crosses back into the left
hand half plane at the next switch to stability.

This pattern of alternating stability switches does not continue indefinitely: it is fi-
nite. The key to understanding this is formula (11), which implies that 
T1 = 4.231 >


T2 = 4.062. Here 
Ti is the difference in delay values at which there is a stability
switch corresponding to ωi , so that Ti,j+1 − Ti,j = 
Ti for all j (i = 1,2). There-
fore as T is continually increased, there will eventually be two consecutive stability
switches corresponding to ω = ω2, with no switch corresponding to ω = ω1 between
them. At the second of these switches there is already an eigenvalue pair in the right
hand half plane, and therefore it is joined by a second eigenvalue pair. The pattern
of eigenvalue pair crossings of the imaginary axis at T1,j and T2,j does continue, but
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Fig. 5 An example of a stability boundary curve to demonstrate properties of the stability switches. The
case shown is for p = 0.4. For λ = 0.6 × 107, there are stability switches between unstable (cycles) and
stable (no cycles). The switches from unstable to stable correspond to a crossing of a pair of eigenvalues
across the imaginary axis from right to left. The value of ω for these switches is ω1 = 1.485. The switches
from stable to unstable correspond to a crossing of a pair of eigenvalues from left to right. The value of
ω for these switches is ω2 = 1.547. From (11), the difference in T between crossings of the imaginary
axis with ω = ω1 is 
T1 = 2π/ω1 = 4.231. Similarly, for ω2, the difference is 
T2 = 2π/ω2 = 4.062.
These analytical predictions agree with measurements on the numerically calculated stability boundary
illustrated in this figure. Since ω1 < ω2, 
T1 > 
T2, and therefore as T increases, there will eventually
be two consecutive switches with ω2. For values of the delay above this, the dynamics will be unstable, as
there will always be eigenvalues with positive real part. The other parameter values are as in Fig. 2

now they correspond to an alternation between one and two eigenvalue pairs in the
right hand half plane; they are not associated with a change in stability, and the steady
state remains unstable.

This underlying behaviour causes the shapes of the stability boundaries shown in
Fig. 2. The values of ω1 and ω2 depend on λ and other parameters. Figure 6 shows
the regions in λ–T parameter space where the dynamics is stable for a fixed value
of p (p = 0.6). Values of ω1 and ω2 become further apart as parameter p increases,
implying that there will be fewer stability switches before the dynamics become per-
manently unstable. This total number of stability switches is parameter dependent,
and can be calculated by comparing the sequences T1,j and T2,j . For instance, Fig. 7
illustrates the dependence on λ of the number of switches, for p = 0.6 and for other
parameter values as in Fig. 2.

6 Discussion

In this paper, we have examined the dynamical effects of increasing the length of
a time delay in a host–pathogen model incorporating density-dependent prophylaxis
(DDP). DDP is the phenomenon of individuals investing more in disease resistance
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Fig. 6 Regions of different dynamical behaviour in λ–T parameter space for p = 0.6. The boundary
curve is colour coded according to the direction in which the eigenvalue pair crosses the imaginary axis:
blue (or dashed gray) corresponds to a crossing from left to right; red (or black) corresponds to a crossing
from right to left. The shading shows where the dynamics is stable (no cycles) and the non-shaded regions
are where the dynamics is unstable (cyclic). In this figure, α = 15.5 with the other parameter values as in
Fig. 1

Fig. 7 The number of stability switches that occur as the time delay increases depends on the value of
parameter λ, the rate at which an infected host produces infective stages of the pathogen. In this figure,
p = 0.6 and α = 15.5, while the other parameter values are as in Fig. 1

when population densities are high, due to the increased infection potential. Our re-
sults provide a rare example of a system of equations with a real-world application in
which there are multiple switches between stable (non-cyclic) and unstable (cyclic)
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dynamics as the time delay increases. We have demonstrated this in numerical simu-
lations, and we have shown that our numerics agree with analytical theory on stabil-
ity switching. An important implication of this theory is that the number of switches
is finite, with the dynamics eventually becoming unstable. The number of stability
switches that occur can be calculated and is dependent on parameters. A consequence
of this behaviour is that the regions of stability in parameter space have a complex
structure, of the type that we have illustrated via simulation and numerical continua-
tion.

Our findings are consistent with those of Xiao et al. (2009), who find a finite
number of stability switches as the delay in host self-regulation increases in a host–
pathogen model framework. In this study, we have explained in detail how such sta-
bility switches occur and we also have calculated the number of switches for our
particular model.

It is useful to consider the length of the time delay relative to the average host life
span, which is 1/b. In a previous study, looking at delays shorter than the average host
life span, it was concluded that the effect of DDP on the population dynamics was
critically dependent on the delay value (Reynolds et al. 2011). In addition, increasing
the delay was found to be stabilising, i.e. it reduced the region in parameter space
where solutions were cyclic. In this paper, we find that with longer delays, an increase
in the delay can be both destabilising and stabilising.

Many of the delays considered in this paper exceed 1/b, and therefore correspond
to delays spanning generations. This is possible because the environment experienced
by a mother can affect the susceptibility of her offspring to disease. For example, in
the invertebrate species Daphnia magna there is evidence that offspring produced by
mothers in crowded conditions are less susceptible to parasites compared to those
produced under good conditions (Mitchell and Read 2005).

Our findings highlight the complex interaction between a time delay and popula-
tion dynamics, with consequent implications for disease dynamics. The stability of
this system is critically dependent on the time delay in DDP. There is potential here
for empirical investigation: a laboratory experiment designed to estimate this delay
for a real system would be highly informative, with an insect species and appropri-
ate virus probably being the most feasible system. Empirical estimation of the de-
lay parameter would enable testable predictions of population dynamics. This would
significantly inform the debate on the role of pathogens in driving host population
cycles.
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