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Cellular chemotaxis and chemokinesis play important roles in many biolegical pro-
cesses. Most continuum mathematical models for these regulatory mechanisms are
based on the model of Keller & Segel (1971, b), in which cells respond directly to
the local concentration of extracellular chemical. We have developed a new model
which reflects the receptor-based mechanisms underlying chemical control of cell
motion, Our model consists of three coupled partial differential equations, and we
use the Boyden chamber (millipore) assay to compare it with a simpler model based
on the Keller-Segel approach. The predictions of our model capture the key qualita-
tive features of the experimental data, whereas the simpler model only does so when
appropriate functional forms are chosen for the dependence of the transpori
coefficients on chemical concentration. Using experimental data on the variation of
receptor kinetic parameters with temperature, we use our model to predict the effect
of decreasing the temperature on both the “leading front” and “migrated cell”
measurements taken from Boyden chamber assays. Our results show that changes in
the kinetic parameters play a key role in controliing the temperature dependence of
cell chemotaxis and chemokinesis. ’

Biological Background and Previous Models

Chemical regulation of cell movement is important in a wide range of biological
processes, and its roles in the immune response, developmental control, and the
aggregation of cellular slime moulds are particularly well documented. The current
terminology in the subject was established by Keller er afl. (1977). They defined
chemokinesis as “a reaction by which the speed or frequency of locomotion and/or
the frequency and magnitude of turning of cells or organisms moving at random is
determined by substances in the environment”, whereas chemotaxis was “a reaction
by which the direction of locomotion of cells or organisms is determined by sub-
stances in their environment”, Although there is still debate in the literature on some
finer points of the interpretation of these definitions (Bignold, 1988a; Wilkinson,
19884, b), the terms are now in widespread use.

The available experimental evidence, which is reviewed in detail by Devreotes &
Zigmond (1988), suggests that chemotaxis and chemokinesis occur in eukaryotic cells
via the binding of regulatory chemicals to receptors on the cell surface; the number
and location of bound receptors modulates pseudopod extension and thus cefl motion
(Zigmond, 1989). The systems that have been studied in most detail are the response
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of polymorphonuclear leukocytes to N-formylated peptides and of Dictyostelium
discoideumn amoebae to cyclic AMP. The mechanisms in the two cases are remarkably
similar. The receptor-chemical complex is rapidly internalized in intracellular ves-
icles, and once inside the cell it dissociates, to vield free intracellular chemical and
receptor, Experiments and modelling by Zigmond et al. (1982) suggest that in at
least the leukocyte-peptide system, the intracellular chemical is partitioned into two
pools, with a proportion of the chemical degraded and released, and the remainder
kept in a long-term “‘storage pool”. In some instances, the internalized receptors
appear to be recycled back to the cell surface (Suflivan & Zigmond, 1980; Van
Haarstert, 1987); moreover, in the presence of extracellular regulatory chemical,
additional receptors (up to 30-fold) can be released to the cell surface from an
intracellular pool {Fletcher & Gallin 1980 Janssens & Van Driel, 1984, Zimmerli er
al., 1986).

A number of mathematical models have been proposed for chemlcally modulated
cell movement. The oldest and most widely used is the continuum model of Keller
& Segel (19714, b). They take the cell flux J, to be directly dependent on the local
extracellular chemical cohcentration, via the expression

J.= —Dc)Vn+ yc)nVec M 6}

Chemokinesis Chemotaxis and
chemokinesis

where 7 and ¢ are the local cell density and chemical concentration, respectively, and
the transport coefficients D (¢} and y,(c) are strictly positive for alt c. Since variations
in ¢ affect both the magnitude and direction of the second term, this term represents
a combination of chemotaxis and chemokinesis effects, under the definitions of Keller
et al. (1977). This model was originally applied by Keller & Segel-(1971a, b) to
bacterial movement, but has more recently been used with considerable success in a
wide range of cellular and whole organism applications, The Keller-Sege! approach
takes no account of the role of receptor kinetics in the cellular response to chemo-
tactic and chemokinetic factors: indeed, these kinetics were very poorly understood
when the model was formulated. More recently, Segel (1976) incorporated receptor
kinetics into the model when applied to bacterial movement. His model consists of
nine coupled partial differential equations, and a simplification reducing the system
to six equations is considered in a second paper (Segel, 1977). Subsequent experi-
mental work on receptor modification in bacteria is reflected in the models of Gold-
beter & Koshland (1982) and Segel et al. (1986). However, this work has little
relevance to eukaryotic cells, since the receptor-based mechanisms responsible for
chemotaxis are quite different in the two cell types. In particular, eukaryotic cells
respond to spatial gradients in the chemoatiractant, while bacteria can only modify
the length of time they spend moving in a particular direction, in response to a
temporal gradient of chemical concentration.

At the single cell level, Tranquillo and coworkers have developed a detailed stoch-
astic model for the motion of a single leukocyte in the presence of chemoattractants
{Tranquillo & Lauffenburger, 1987; Tranquillo et al., 1988; Tranquillo, 1990). This
model applies exclusively to a single cell, but in an attempt to combine single cell



CHEMICAL CONTROL OF CELL MOVEMENT 25

and cell population models, Rivero et al. (1989) proposed a continuum model in
which the transport coefficients are related to the parameters of a simple stochastic
model for the movement of an individual cell. Yet another approach is used by
Lauffenburger and coworkers (Fisher & Lauffenburger, 1987; Charnick & Lauflen-
burger, 1990; Charnick ef af., 1991) who take cell-cell encounters to be determined
by a random walk that is biased owing to chemotaxis.

Modelling the Boyden Chamber Assay

The Boyden chamber assay is a relatively simple in vitro system which enables
chemotactic and chemokinetic effects to be tested quantitatively. The assay was
developed by Boyden (1962}, and its subsequent use is reviewed by Bignold (19885).
It consists of two wells separated by a thin filter whose porosity enables cells to ¢crawl
actively through, but prevents passive falling of cells under gravity between the upper
and lower wells (Fig. 1). The lower well is filled with a solution of the chemical under -
test, and the filter is placed on top of this well; the pores of the filter rapidly fill with
the chemical solution, owing to capillary action. The upper well is then filled with a
suspension of the cells under test, and the cells rapidly settle onto the top of the
filter. The system is left for a given length of time (about an hour), during which the
cells crawl through the filter in response to the concentration gradient in the regula-
tory chemical. Having passed through the filter, the cells rapidly spread across the
lower surface of the filter, and at the end of the given time period, the number of
cells on the lower surface of the filter is counted. An alternative approach, first
suggested by Zigmond & Hirsch (1973), is to use a thicker filter, and measure the
distance travelled by the leading cell front in the given time period. To distinguish
between chemotaxis and chemokinesis, the experiment is ofien repeated with the cells
in the upper well suspended in a solution of the chemical under test. A chemical
gradient will then only arise owing to cellular degradation of active chemical.

We begin by applying a model based on that of Keller & Segel (19714, d) to
chemically controlled cell movement in the Boyden chamber assay. Previously,
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Fic. 1. A diagrammatic representation of the Boyden chamber assay. The upper and lower wells have
height &y, and Ay, respectively, and the filter has thickness a. Both wells and filter have cross-sectional
area A. We.take x to be distance measured vertically, with x =0 the lower surface of the filter.
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Lauffenburger & Zigmond (1981} and Lauffenburger ef al. (1988) have solved the
diffusion equation to predict the chemical concentration as a function of time in the
filter and wells of the Boyden chamber, and Buettner et a/. (19894, b) have applied
the Keller—Segel approach to leukocyte movement in the Boyden chamber assay. We
will compare the model predictions with the typical experimental data of Harvath &
Aksamit (1984) to estimate the transport coefficients in the model. Harvath & Aksa-
mit (1984) studied the motile response of human neutrophils to concentration gradi-
ents of the peptide N-formyl-methionyl-leucyl-phenylalanine (FMLP), which has
important implications for the inflammatory response to injury; their results are
illustrated in Fig. 2. The qualitative feature of bell-shaped dose-response curves has
been found in Boyden chamber studies for a range of chemicals and cell types, in a
variety of Boyden chambers (see Bignold, 19885 for references).
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FiG. 2. The experimental results of Harvath & Aksamit (1984) on the movement of human neutrophils
through a Boyden chamber in response to gradients of FMLP. The number of cells on the lower surface
of the filter after 60 min is plotted against the initial concentration of FMLP in the lower. well, ¢,. For
clarity, these concentrations are plotted on a logarithmic scale. The dimensions of the chamber were, in
the notation of Fig. 1, h;=3125mm, hy=6-25mm, a=10 pm and 4 =7 mm?, and 25000 cells were
initially added to the upper well, suspended in Hank's balanced salt solution; the peptide was also in -
solution with Hank's balanced salt solution, The filters were polycarbonate, free of polyvinylpyrrolidone,
with 5 um pores. The chambers were incubated for 60 min at 37°C in humidified air with 5% CO;. The
fikers were then removed and stained with Diff-Quik, and the cells on the lower surface of the filter were
counted. The data points (#) denote the mean experimental result, and the error bars represent the
standard deviation of the means. (—FMLP added to upper well only; - - — FMLP added to both
wells). '

Following Keller & Segel (19714, b), we use the representation (1) for chemically
controlled cell flux, and our model consists of two partial differential equations:

on_2\p -2 de

Py [Dn(C) ax] P |:xn(c)n ax] (22)
2

b _p< (2b)

o Cox
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where n(x, 1) and ¢(x, t) are the local cell density and chemical concentration, respec-
tively, x is distance measured vertically, and { is time. The first of these is a conserva-
tion equation for cells, while the second is simply the diffusion equation. The
dependence of the transport coefficients D, and y, on ¢ will be estimated using the
data of Harvath & Aksamit (1984). We take x =0 as the lower surface of the filter,
and neglect any horizontal variations, which is a reasonable approximation, since
the cross-sectional diameter of the chamber is very much larger than the thickness
of the filter. The chemical diffuses throughout the upper and lower wells and the
filter, so that ¢ is defined on —h; < x <hy+a (notation as in Fig. 1), with zero flux
boundary conditions at the endpoints. We assume that the diffusion of FMLP is
unaffected by the presence of the filter, since its molecules are many orders of magni-
tude smaller than the pores of the filter, which have a diameter of 5 pm.

Cell movement is restricted to the filter region of the chamber, so that # is defined
only on 0<x<aq. Thus we solve eqn (2a) on [0, a] and eqn (2b} on [— k., hy+a].
The cells on the upper and lower surfaces of the filter occupy a layer of thickness
one cell diameter, L say, which for human neutrophils is about 9 um (Lentz, 1971;
Tatsuo & Kobayashi, 1972). The accumulation of cells on the lower surface occurs
at rate —J, 4, where J, is given by (1), J, is negative since the cell flux is in the
direction of decreasing x. Cell conservation and the continuity of » therefore imply
that the appropriate boundary condition at x=0 is dn/ot=—J,/L, and similarly
dn/ét=J,/L at x=a. The appropriate initial conditions are ¢=¢; on ~h.<x<a,
c=cyon a<x<hy+a, and n=0on 0<x<a with n=ny=Ny/(L . A) at x=a; here
¢y and ¢; are the initial concentrations of chemical in the upper and lower wells,
respectively, and Ny is the number of cells initially added to the upper well. Given
the short duration of the experiment, we neglect any effects of cell division. We also
neglect any degradation of chemical by the cells; Lauffenburger er al. (1988) hhve
suggested including a degradation term dependent on » and ¢ in (2b) when applied
to the Boyden chamber assay, but we postpone inclusion of such a term until the
development of our new model, which is based on the receptor mechanisms respon-
sible for this degradation.

The value of the chemical diffusion coeﬂic:ent D, can be estimated theoretlcally
A straightforward calculation using kinetic theory and Stokes’ law for viscous drag
implies that the diffusion coefficient of a solute in aqueous solution is given by

1/3

kT |4=N,

Dtheor = [—A] (3)
6rn L3Mv

(Barrow, 1981; Berg & Von Hippel, 1985). Here & is the Boltzmann constant, T is
the absolute temperature, 1 is the viscosity of water at temperature T, v is the specific
volume of the solute, M is the molecular weight of the solute, and N, is the Avogadro
constant. This formula gives the value D, = 73 x 10~® cm? sec~! for FMLP at 37°C;
a similar estimate was made by Lauffenburger & Zigmond (1981).

With this estimate for D,, we can use the data of Harvath & Aksamit (1984) to
predict the dependence of the transport coefficients D, and x, on the concentration
¢ of FMLP. To do this, we set X,=0 and fit the model predictions of the value of
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F1G. 3. The variation of the transport coefficients (a) D {c) and (b) x.{c) of human neutrophils with the
concentration ¢ of FMLP, as predicted by the model (2) and the data of Harvath & Aksamit {1984), which
is illustrated in Fig. 2. The remaining parameter D, is calculated theoretically using (3). Equation (2) was
solved analytically using Fourier transforms, under the approximation hy = hy = co (recall that hy, h; > a).
Equation {2a) was then solved numerically using a semi-implicit finite difference scheme, and the solutions
for different values of ¢y and ¢; were used to estimate D (c} and y{c), as discussed in the text. In the case
¢y =0, we neg]ect variations in D, and , across the filter, since at times greater than 2 min after the
expetiment, ¢ varies by less than I% across the filter, while D, and y, do not vary too rapidly with ¢. For
clarity, we plot ¢ and , on logarithmic scales.

n(x=0, t=1hr) to the data in the casec cy=c,, so that ¢(x,t)=¢;; this determines
D,{c). The data for ¢;,=0 can then be used to determine x,(c). These estimated
variations in the transport coefficients are illustrated in Fig. 3, and a typical model
solution is shown in Fig. 4. From this approach, it is clear that the Boyden chamber
assay provides a straightforward way of obtaining quantitative estimates for the
cellular transport coefficients in a model based on the Keller-Segel flux (1). However,

10k
08
06+
Q
04
02
05 04 06 08 10—k, 0 hy
x x

FIG. 4. The solution fot n(x, £} and ¢(x, £) of (2) when ¢cy=0 and cz=10"" M. We plot the solutions
as functions of x at time intervals of 3 min for # and 6 min for ¢. The parameters D,(c) and x.(c) are as
in Fig. 3, and the chemical diffusion coefficient D, is estimated theoretically using (3). The solution was
determined as in Fig. 3. (a] n(x, t) in filier; (b) c(x, £) in filter and wells.
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the assay also highlights the necessity of externally specifying the parameter varia-
tions illustrated in Fig. 3 before a model based on (1) can be applied to a biological
system. These parameter variations are in fact determined by the receptor kinetics
conirolling cell-chemical interactions, and in the remainder of this study we develop
a new model which incorporates these receptor kinetics.

Receptor Kinetics and a New Model

The interaction between the receptors for a movement regulating chernical on the
surface of a eukaryotic cell and the molecules of that chemical can be reasonably
represented by the following simple scheme:

Extracellular = Receptors on *= Bound receptor— * Internalized receptor—
chemical  the cell surface %, chemical complex chemical complex

{Sullivan & Zigmond, 1980; Zigmond et al., 1982; Omann ef al., 1987). Here &k, k,
and k; are, respectively, the rate constants for the processes of association, dissocia-
tion and internalization of the receptor-chemical complex on the cell surface. In the
absence of spatial variations, the law of mass action then implies

dc

= —kyu—kqcR 4
o Kati—kac (4a)
—3!: =k,cR—ksu—ku. _ (4b)

Here ¢(r, ), R(r, £) and u(r, 1) are the concentrations of extracellular chemical, free
receptors and bound receptors per unit volume at position r and time ¢; the dynamics
of Rir,t) are discussed below. Following Zigmond (1981), we assume that the
chemotactic effect of the chemical is a result of differences in the number of bound
receptors on opposite sides of a cell, while chemokinesis occurs as a response to the
total number of bound receptors. We therefore take the local cell flux to be given by

== D(p)Vn +  xnVp (5)
—_ L
Random migration Chemotaxis

and chemokinesis  and chemokinesis

where n(r, ) is the local cell density and p(r, £) is the number of moles of bound
receptor per cell. The second term in (5) is dependent both on the magnitude and
direction of Vp, and thus represents a combination of chemotaxis and chemokinesis
under the definitions of Keller et al. (1977), which were discussed in the Introduction.
Moderate concentrations of FMLP have a positive chemokinetic effect on human
neutrophils. However, a large number of studies, including that of Harvath & Aksa-
mit (1984), whose results are illustrated in Fig. 2, have found a reduction in random
motility at high peptide concentrations. We therefore take D(p) to be an inverted
parabola, with the form D(p)= Do+ D,p— D,p°, where Dy, D| and D, are positive
‘constants.
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Movement of receptors in space occurs only via passive convection with the cells,
so that the flux of bound receptors at any point is given by pJ,. Substituting these
expressions for spatial flux into (4) gives '

Z=v.J, 6
ot “
de 2

5= DVPetkau—kie R (6b)
ou ; |
5= =V (Pl HhucR—kau—ku, (6c)

whereas in the previous section, D, is the diffusion coefficient of the extracellular
chemical. The relationship between p and u is discussed below. The dynamics of R,
the number of free receptors per unit volume, depends on the processes of intracellu-
lar recycling of receptors and release of receptors from an intracellular pool, as
discussed in the Introduction. Though only partially understood, these processes are
known to be extremely complex, and have been modelled in detail by a number of
previous authors. In particular, Zigmond er al. (1982) investigated the kinetics of
intracellular processing of peptide receptors on leukocytes. Despite a number of
simplifications, their model consists of seven coupled non-linear differential equa-
tions. In common with other, less specific models of receptor processing (Gex-Fabry
& Delisi, 1984; Linderman & Lauffenburger, 1989), these equations address only the
intracellular kinetics, and make no reference to the effects on cell movement. There
is also an extensive literature on the mathematical modelling of intercellular commu-
nication by cyclic AMP waves in D. discoideum (Martiel & Goldbeter, 1987; Monk &
Othmer, 1989; Tyson & Murray, 1989). Again, these are complex models which take
no account of cell movement. Moreover, the quantitative data available on the rates
at which receptor recycling and release occur are extremely limited. -

Therefore, rather than adding a large number of additional equations and
unknown parameters to (6) in an attempt to take R as a dependent variable of the
model, we assume that the total number of receptors (bound or free) on the cell
surface is an increasing function of the number of bound receptors. That is, we
assume that R+u=nIf(p), where the constant I" is the total number of moles of
(free) receptors on a cell in the absence of any chemical, and f{0)=1. We require
f{p) to be an increasing function, and in the absence of detailed experimental data,
we take it to be linear, so that f{p)=1+ Bp. The parameter f is determined by the
constraint of a finite supply of receptors in the intracellular pool, so that there is a
maximum number of receptors, pmax say, that can be expressed on the cell surface.
This maximum level of expression will only be attained in the limit as all these
receptors become occupled 50 that P =T'(1+ BPmar).

With this expression for R(r, 1), (6) is a system of three coupled partial dlﬁ'erentla]
equations for four dependent variables, namely cell density n(r, £), extracellular
chemical concentration ¢(r, ), bound receptor concentration per unit volume u(r, £},
and the number of moles of bound receptor per cell p(r, r). However, we have the
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additional relation that when n#0, p=u/n; when n=0, p is undefined. Therefore,
when n#0,

o not n ot

= Vo Thee(1+ Bp) —kcp— (katk)p N
n

using (6a) and (6¢). Henceforth, we take n, ¢ and p as the dependent variables. The
model can also be expressed in terms of #, ¢ and », but the resulting conservation
equation for ¥ contains a backwards diffusion term, which results in unbounded
numerical solutions.

We now consider applying this model to the Boyden chamber assay. As in the case
of the simple model (2) discussed in the previous section, the variable ¢ is defined in
both the wells and the filter, that is —h; <x < hy+a in the notation of Fig, 1, while
n is defined only within the filter, 0 <x<a. In the case of a simple linear diffusion
equation, it is well known that sharp fronts cannot exist within the domain of solu-
tion. Similar arguments for our system show that the inequality »(x, ¢} >0 holds on
0<x<a for all £>0, so that p is defined on 0<x <a for all £> 0. Therefore eqn (6)
applies on the whole of 0 < x<a for all +>0. In the well regions, the concentration
of chemical c satisfies the diffusion equation, dc/dt = D,d%c/a%; we require continuity
of chemical flux, dc/dx, at the ends x=0 and x =g of the filter, with dc/dx=0 at x=
--hy, hy+a. As in the previous section, we take the boundary conditions satisfied
by the cell density to be on/dt= —J, /L at x=0and dn/0t=J,/L at x=a. The number
of bound receptors on the lower surface of the filter increases during the experiment,
owing to convective accumulation and kinetic changes, and a straightforward calcula-
tion shows that dp/dt=Tk,c(1+ Bp)—k.cp—(ks+k)p at x=0, a. Comparing this
with (7) implies that dp/8x=0 at the two endpoints.

Parameter Values and Non-dimensionalization

In our discussion of the simple mode! (2), we established the dimenstonal param-
eter values D,=7-3x% 10" %cm?*sec™ and L=9 um. We will determine the values of .
the transport coefficients Dy, D,, D, and y by comparing the model predictions with
the data of Harvath & Aksamit (1984), but we must first obtain estimates for the
parameters k,, k4, k;, Fand pmax, which reflect the number and kinetics of the FMLP
receptors on the neutrophil surface. The kinetics have been studied in detail by
several authors, and are highly temperature dependent : for example, internalization
is essentially blocked at 4°C. We base our parameters on the data of Sklar e al.
(1984), who found appropriate values for the rate constants at 37°C to be k,=
10°M ™" min™', k;=0-24 min"' and k,=0-35 min™"; the binding kinetics are therefore
quite fast compared to the time scale of cell movement in this case. Their study also
revealed complexities in the Kinetics, notably a variation in the rates of dissociation
and internalization according to the duration of binding, but we neglect such com-
plications. For I" and p,.x, recall that I is the number of moles of (free) receptor
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on the cell surface in the absence of chemical, while pp.x is the upper limit on the
total number of moles of receptor (free or bound) on the cell surface, owing to the
finite nature of the intracellular pool of receptors. Measurements of the total number
of FMLP receptors on neutrophils vary widely, from about 3000 to about 100000
{Williams et al., 1977, Zimmerli et al., 1986; Follin et al., 1989). Therefore, we take
T =3000/6:02 % 102 =4-98 x 107 mol and ppe,=333T, which gives §=0-97/T..

Having established these parameter values, we non-dimensionalize the model (6a, b)
and (7) by defining the following dimensionless quantities, denoted by*.

n*=n/ny c*=cfe, p*=p/T x*=xja *=y/T DY¥=D,T/a*
DI=D\TT/é  Di=D,TTYd  DP=DT/d gz *=yTT/d.
ki=k,Te,  ki=kdT  kf=kT T*=Tno/c.  prax=pPmax/T
B*=BT  hi=hfa  Wi=(h+a)fa  ch=co/er . Ji=5T/(nea);

we take the time scale T as the duration of the experiment. In the remainder of the
paper, we will drop the asterisks for notational simplicity, and we will use the superscript
4™ t0 denote the dimensional parameter corresponding to a given dimensionless param- '
eter. With these rescalings, the dimensionless equations descrlbmg cell movement in the
Boyden chamber are as follows:

on aJ

On0<x<l: T=—-3" | (82)
} dc &c
5P az+k,,rnp koLen[1 + (= 1)p] (8b)
é Jn @
E?: ap+kc[1+(ﬁ—l)p] (katk))p (8¢c)
where
) F;
Jy= —(Do+D,p=Dy0%) 2t yn P
: ax ax

On—h;<x<0

and l1<x<hy: E=Dc— (8d)

This parabolic-hyperbolic system of partial differential equations is subject to the
following end conditions:

CAtt=0: n=0 on0=<x<l,n=1 atx=]
p=0 on0<x<l

c=1 on —hgx<]l, c=cy onl<x<h,.



CHEMICAL CONTROL OF CELL MOVEMENT

At x=0: 6_n___ - " g-e=0, — continuous
ot x
én ap c .
Atx=1: —=J,/L, —=0, — continuous
x=le 5 = ox ox
.
At x=—hg, hy: —=0
o dx

A typical solution of this system, for the values of the transport coefficients discussed
below, is illustrated in Fig. 5. In this figure, it is not immediately clear that the end
conditions on ¢ and p at x=0, | are satisfied, but detailed numerical investigation
confirms that these conditions do hold. In both cases, a wave of cell density moves
through the filter during the experiment. The concentration of extracellular FMLP
decreases with time owing to rapid binding and internalization of bound receptors at
the cell surface, and after an initial rapid rise from zero, the number of these bound
receptors per cell also decreases because at high levels of receptor occupancy, dissocia-
tion and internalization of the receptor-chemical complex occur slightly more rapidly
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FiG. 5. The solution for n(x, 1), c(x, ) and p(x, 1) of (8), plotted against x at equally spaced times. For
_clarity, we plot with time intervals of 3 min for the solutions within the filter, and 6 min for ¢(x, ) in the
wells. The parameter values are as discussed in the text, with ¢; =4 x 107* M and ¢p=0. The equations
were solved numerically using the semi-implicit finite difference scheme discussed in the Appendix.
(a) nix, 1) in filter; (b) c(x, €) in filter; (€} p(x, t) in filter; (d} e(x, £) in filter and wells.
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than its association. In both cases, the spatial gradients of both extracellular chemical
concentration and bound receptors per cell are quite small.

Comparison with Experimental Data

We have developed a model for chemically controlled cell movement based on-
chemical-receptor interactions on the cell surface, and we have used experimental
data to obtain quantitative estimates for all the parameter values except the transport
coefficients y, Dy, D, and D,. We now use data from the Boyden chamber experi-
ments of Harvath & Aksamit (1984), illustrated in Fig. 2, to estimate these remaining
parameters and to test the model.

In the absence of extracellular chemical, the medel (8) reduces to a linear diffusion
equation with diffusion coefficient D,. Further, as the concentration of extracellular
chemical becomes very large, the receptors on the cell surface become saturated with
ligand, and thus p approaches its upper limit of p,... at all points in the filter. Thus
in the limit as ¢, — o0, the model again reduces to a lmear diffusion equation, in this
case with diffusion coefficient (Dg+ Dipmax— Daphas). Therefore the results of
Harvath & Aksamit (1984) for ¢, =0 and ¢, very large, together with their results
for one intermediate concentration in both the cases ¢, =ci™ and ¢, =0, enable all
four transport coefficients to be estimated.

This approach gives the dimensional values D§™=13x10"!°cm?sec!
Dim — 4.8 10° cm? sec™* mol !, D¥™=30x10?®cm?sec ! mol~2, and yd™=
2:0 x 102 cm? sec~" mol~*. With these values, the model prediction of the dose-
response curve for neutrophils and FMLP in the Boyden chamber used by Harvath
& Aksamit (1984) is as illustrated in Fig. 6. These results capture the main qualitative
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F1G. 6. The dose-response curve for human neutrophils and FMLP, as predicted by the model (8). The
corresponding experimental result is illustrated in Fig. 2. The parameter values are as discussed in the
text, and the equations were solved numerically using the semi-implicit finite difference scheme discussed
in the Appendix. The final number of cells on the lower surface of the filter is determmcd asn(0, 1) . No,
where N, is the initial number of cells in the upper well. { Em=0; - - - i =gy).
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features of the corresponding experimental results (see Fig. 2). However, they do
differ in quantitative detail. We anticipated such quantitative differences, since our
model represents the increase in total receptor number with occupied receptor num-
ber, and the increase in cell flux with occupied receptor gradient, as linear. In reality,
these processes are undoubtedly non-linear, but experimental data from which
detailed relationships could be obtained are not currently available. Although we
have not undertaken a detailed study, we expect that the fit between the model
predictions and experimental data could be considerably improved by the introduc-
tion of appropriate non-linearities, in a manner similar to that used for the simple
model that we considered initially. The key difference between the two modeis is that
in the simple.model, the introduction of appropriate non-linearities is crucial for the
model predictions to be even qualitatively correct, whereas in our new model, any
non-linearities are simply perturbing the model predictions about a basic form that
is already qualitatively correct,

The model can also be tested against experimental results from a “leading front”
Boyden chamber assay. In this approach, first used by Zigmond & Hirsch (1973), a
thicker filter is used, and the distance travelled by the leading cell front is measured.
The model can be applied to this assay exactly in the form (8); in Fig. 7, we compare
the model predictions to the experimental resuits of Harvath & Aksamit (1989),
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Fi16. 7. The experimental results of Harvath & Aksamit (198%) from a “leading front’ Boyden chamber
assay, and the corresponding predictions of the model (8), The dimensions of the chamber were, in the
notation of Fig. 1, A, =3-125 mm, h,=375mm, =150 pm and A=8 mm> In the experimental study,
cellulose nitrate filters with 5 pm pores were used, 30 000 cells were added to the upper well, suspended
in Hank’s balanced salt solution with 0-2% bovine serum albumin; the peptide was also in solution with
Hank's balanced sait solution. The chambers were incubated for 45 min at 37°C in humidified air. Harvath
& Aksamit (1989) define the “cell front™ as the position of the furthest horizontal cross-section of the
filter containing at least three cells, and we therefore take the location of the front to be the position at
which the cell density corresponds to three cells. The model parameter values are as discussed in the text,
and the equations were solved numerically using the semi-implicit finite difference scheme discussed in
the Appendix. The data points denote the mean experimental result, and the ertor bars represent the
standard deviation of the means, (—— Experimental results; — — — model predictions.)
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which again used the neutrophil-FMLP system. The cell transport coefficients are
different in this study and that of Harvath & Aksamit (1984), primarily owing to
differences in the material of the filter. The result for the controf case ¢; =0 enables
us to estimate Dy, giving the value D™ = 61 x 10~'° cm? sec™?, and we assume that
all the other transport coefficients are increased in the same proportion. In reality,
different transport coefficients will increase to different extents, and more detailed
data (in particular, data for the case ¢, = ciim) would enable us to estimate the other
coefficients independently, which would improve the fit between the model pre-
dictions and experimental data. There are again quantitative differences between the
results of the model and experimental data, but the model results again have the
appropriate qualitative forms. Moreover, the form of the cell front was determined
experimentally by Zigmond & Hirsch (1973), and although their experiments were
for a different cell-chemical system, the shape of the front was very similar to that
predicted by our model (resuits not shown).

Since our model depends on the kinetics of receptor-chemical binding, we can use
experimental data on the variation of the kinetic parameters with temperature to
predict dose-response curves at different temperatures, Although quantitative results
are rare, a number of authors have found a decrease in neutrophil chemotaxis as
temperature is decreased (for example, Nielsen & Olesen, 1983; Ternowitz, 1985). A
number of the model parameter values are temperature dependent, in particular the
three kinetic parameters k,, k; and k,; the data of Sklar er al. (1984) enables the
values of these parameters to be estimated at 15°C and 25°C, as well as 37°C.
Experimental data suggest that the unstimulated random motility of neutrophils at
25°C is about half the value observed at 37°C (Olson, 1990). We therefore take D,
at 25°C to be half the value at 37°C, and we assume that the other cell transport
coefficients will be reduced by the same fraction. The chemical diffusion coefficient
D, will also be smaller at lower temperatures, which will in fact tend to increase the
chemotactic response by increasing the local chemical concentration gradient; its
value can be calculated at these lower temperatures using eqn (3). Under these
assumptions, we calculated dose-response curves at 25°C for both the “leading front”
and “migrated cell” assays, and our results are shown in Fig. 8. The predicted dose-
. response curves are markedly different from those at 37°C (see Figs 6 and 7), and
the changes in the kinelic parameters are crucial to the new forms. To illustrate this
point, we solved the model equations with D_ and the cell transport coefficients
reduced to their values at 25°C, but with k., k; and k. at their 37°C values. We found
that both the extent of the maximum chemotactic response and the concentration of
FMLP giving this maximum response were significantly increased, for both assays,
compared to the response illustrated in Fig. 8. Our modei could be used in the same
way to predict the effect on dose-response curves of other changes in experimental
conditions, such as the pH in the Boyden chamber or the presence of a second,
competing ligand.

Conclusion

The vast majority of continuum models for chemically controlled eukaryotic cell
movement that are in current use are based on the seminal work of Keller & Segel
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FIG. 8. The dose-response curves for human neutrophils and FMLP at 25°C, as predicted by the model
(8), for {a) “migrated celi” and (b) “leading front” Boyden chamber assays. The dimensions of the
chamber, the duration of the assay, and the total number of cells used are as in the experiments of Harvath
& Aksamit (1984) and (1989), respectively, and as used in Figs 6 and 7, respectively. The dimensional
model parameter  values are kST =89x 10°M 'min~', AF"=002min”", A*™=01min",
Dim=55x10"%cm?sec”!, DIm=65x10"cm?sec”!, D™ =24x10"cm’sec " mol™', D™=
1-5 % 10® cm® sec™" mol ™, and *™=10"2 cm? sec™* mol™', with all other parameters as discussed in the
text and as used in Figs 6 and 7. The model equations were solved numerically using the semi-implicit
finite difference scheme discussed in the Appendix, (— ci==0; — — — efi®=¢)

(19714, b). These models have been highly successful in a wide range of applications.
However, one drawback of the Keller-Segel approach is that it requires external
specification of the variation of transport coefficients with chemical concentration.
In this paper, we have proposed a new model which avoids this problem by incorpor-
ating the receptor kinetics on which these parameter variations depend. The model
predictions capture the key qualitative features of the experimental dose-response
curves for neutrophils and FMLP obtained from the Boyden chamber assay, through
use of either the distance traveiled by the celi front, or the total number of migrated
cefls, as a measure of stimulated cell motion. We have also used our model to predict
dose-response curves for both types of assay at 25°C, and our results show that
changes in the kinetic parameters play a key role in controlling the temperature
dependence of cell chemotaxis and chemokinesis.
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APPENDIX

In this Appendix, we discuss the numerical solution of the dimensionless model
eqn (8). The equations are a parabolic-hyperbolic system, and are thus rather non-
standard, so that particular care is required when solving numerically. We have
investigated a number of possible discretizations of the system (8), both explicit and
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implicit in time, and we have found a semi-implicit scheme to be the most efficient.
Using subscripts to denote the space node and supersctipts to denote the time point,
the scheme in the filter region 0 <x <1 is as follows: :
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Here 8x is the node separation in the uniform space mesh, and 81 is the time step.
The use of a forward difference representation of dp/dx is crucial: central and
backwards difference approximations both give unstable schemes. This is familiar
from the theory of numerical solution of first-order partial differential equations
(Smith, 1985: chapter 4), and is to be expected since (8¢) is first order in p. The
diffusion equation (8d) for the chemical concentration ¢(x, f) in the wells was solved
using a fully implicit time discretization. The overall scheme then gives a tridiagonal
system of linear equations, which can be solved very efﬁclently by Gaussian
elimination.




