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Simulations of invasion in cyclic predator-prey systems show plane waves behind the

invasion front. When the selected plane wave is unstable, there is a band of plane waves
of constant width, followed by spatiotemporal chaos. We describe a new method for
calculating the width of this band, based on the absolute stability of plane waves in
moving frames of reference. This calculation shows that the band width can be very
sensitive to changes in parameters, and we discuss the ecological implications of this
result.
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1. Invasions in Cyclic Predator-Prey Systems

Many natural populations exhibit multi-year cycles in abundance. These cycles arise

from a variety of different mechanisms, but in some cases there is strong evidence

that the underlying cause is the interaction between a predator population and

its prey. For example, vole populations in Fennoscandia cycle with a period of 4

or 5 years [1]. The main terrestrial predator of voles is weasels, and when these

are removed from a region of habitat via live trapping, the multi-year cycles in

vole density disappear [2]. Predator-prey cycles have been studied mathematically

for nearly 100 years, and a wide variety of different models have been proposed,

including a large number consisting of two coupled odes (see the books [3, 4] for

review). A typical example is the Rosenzweig-MacArthur model [5], which has the
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dimensionless form

predators dp/dt =

benefit from
predation

︷ ︸︸ ︷

ACph/B(1 + Ch)−

death
︷ ︸︸ ︷

p/AB (1)

prey dh/dt = h(1 − h)
︸ ︷︷ ︸

intrinsic
birth & death

−Cph/(1 + Ch)
︸ ︷︷ ︸

predation

. (2)

Here p and h are the densities of predators and prey at time t, and A, B and C are

positive parameters. Eqs. (1,2) have a unique “coexistence” steady state in which h

and p are both non-zero, and as C increases through (A+1)/(A−1), this steady state

becomes unstable via undergo a standard supercritical Hopf bifurcation, leading to

a stable limit cycle.

It is increasingly common for field studies of cyclic populations to record abun-

dances at a number of different locations. In many cases this data reveals that the

population is not spatially homogeneous; rather, there is a one-dimensional gra-

dient in the phase of the cycles, so that the overall dynamics have the form of a

plane wave [6]. By this, we mean that the population density is a periodic function of

x−at, where x is a one-dimensional spatial coordinate, t is time, and a is the (phase)

velocity. Note that the terms “plane wave”, “wavetrain”, and “periodic travelling

wave” are synonymous. The model (1,2) can easily be adapted to study spatiotem-

poral behaviour, by adding diffusion terms to both equations, representing unbiased

local dispersal. For simplicity, we assume that the populations have the same dif-

fusion coefficient (which we arbitrarily set to 1); however, the phenomena that we

will report also occur when the two coefficients are different [7] or even density-

dependent [8]. Standard theory shows that oscillatory reaction-diffusion equations

have a one-parameter family of plane wave solutions; some waves in the family are

stable as solutions of the pdes, but others are unstable [9].

For predator-prey systems, a particularly important spatiotemporal scenario is

the invasion of prey by predators. We simulate this by solving our pde model on

a large spatial domain with zero Neumann boundary conditions, and with initial

conditions consisting of a uniform prey density, with predators zero except near

to one boundary. The pde solutions exhibit an advancing wave of predators and

a corresponding receding wave of prey. For C above the threshold for population

cycles, the behaviour behind the invasion front consists of spatiotemporal oscilla-

tions [10–12]. In some cases, these are stable plane waves. However when the ap-

propriate plane wave is unstable, more complicated dynamics occur. Immediately

behind the invasion front, the population densities are almost constant, at their

(unstable) coexistence steady state. Behind this, there is a plane wave band whose

width remains constant as the invasion progresses, and which is followed by spa-

tiotemporal chaos [11, 12, Fig. 1]. The width of the plane wave band is the key

determinant of the behaviour observed in practice behind the invasion. We have

recently developed a method that enables direct calculation of this width, for the

first time [13].
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Fig. 1. Plane wave generation in a simulated invasion of a prey population by predators, using
Eqs. (1,2) augmented by diffusion terms for p and h, with both diffusion coefficients set to 1. We
plot prey density h as a function of space and time. There is a receding invasive wave front, behind
which the solution settles at the (unstable) coexistence steady state. A plane wave band then
develops; the plane wave is unstable, and destabilises to give irregular spatiotemporal oscillations.
The predator dynamics are directly analogous, with the oscillations of the two populations being
out of phase. The initial conditions correspond to a prey-only state everywhere, except for a small
non-zero predator density at the left hand boundary. The parameters are A = 1.3, B = 1.2,
C = 11.0. The domain length is 1000, and the solution is plotted for 1155 ≤ t ≤ 1284. The
equations were solved using a semi-implicit finite difference method, with a grid spacing of 0.5 and
a time step of 3 × 10−5.

2. Amplitude Equation and Band Width Calculation

Detailed calculations show that the plane waves behind the invasion arise via the

invasion front leaving the system at the coexistence steady state and also initiating

an invasion of that state, in the opposite direction [14]. This means that close to Hopf

bifurcation in the kinetics, the plane wave band can be studied using an amplitude

equation. Since the Hopf bifurcation is supercritical and the diffusion coefficients

of predators and prey are equal, the appropriate amplitude equation is the cubic

complex Ginzburg-Landau equation with zero linear dispersion:

At = Axx + A − (1 + ic)|A|2A.

The relevant solution of this equation is a propagating front, with A = 0 ahead

of the front and a plane wave behind it [15, 16]. When the selected plane wave is

unstable, the plane waves occur in a band that is followed by spatiotemporal chaos.

The width of the band increases (from zero) in the early stages of the invasion, but

at large times it is constant.

The key to understanding the width of the plane wave band is to consider

absolute stability [17, 18] when viewed in a frame of reference moving with a fixed,

arbitrary velocity V . That is, we consider whether perturbations to the plane wave

grow or decay over time when viewed at a fixed point travelling with velocity V . We

denote by λmax(V ) the growth rate of the most unstable linear mode, with νmax(V )

being the corresponding spatial eigenvalue. Using general theory of absolute stability

[17, 18], we reduce the calculation of these quantities to the numerical tracking of
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solutions of a quartic polynomial as parameters in the coefficients vary; details

are given in [13]. There is a range of velocities (VL, VR) for which λmax > 0; all

perturbations decay in frames of reference moving with velocities outside this range.

Having calculated λmax(V ), we can address the width of the plane wave band.

For this, we require a precise definition of its left-hand edge, which we take as the

first point at which the perturbations to the plane wave that are present immediately

behind the invasion front become amplified by an arbitrary factor F . We show

in [13] that the dependence of the plane wave band width on F and c decouples,

having the form log(F)W(c). We refer to W(c) as the “band width coefficient”;

it contains all of the dependence of the band width on ecological parameters. Let

(x∗, t∗) be a point on the invasion front. We make the generic assumption that the

most unstable linear modes are present in the perturbation given to the plane wave

at such a point. As t increases above t∗, these perturbations will spread out in space

and time, growing along all rays x = x∗ +(t− t∗)V with V ∈ (VL, VR). On any such

ray, the initial perturbation becomes amplified by the factor F at time tcrit(V ) =

t∗ + log(F)/Re[λmax(V )], at location xcrit(V ) = x∗ + V log(F)/Re[λmax(V )]. The

left-hand edge of the plane wave band occurs at the point on the locus (as V varies)

of (xcrit(V ), tcrit(V )) that is closest to the invasion front. We show in [13] that this

implies W = 1/Re[νmax(Vband)], where

(Vband − c inv)Re[νmax(Vband)] = Re[λmax(Vband)] . (3)

It is of course entirely expected that W is the reciprocal of the real part of the

spatial eigenvalue; our key result is Eq. (3) for the frame velocity Vband at which

this eigenvalue should be calculated. Note that in general Vband is different from the

velocity that maximises λmax(V ).

3. Band Width Sensitivity and Ecological Implications

The parameter c in the complex Ginzburg-Landau equation can be related to eco-

logical parameters via the standard process of reduction to normal form [19, 20].

Therefore our formula for the band width coefficient enables precise predictions of

the variation in the width of the plane wave band as ecological parameters are al-

tered. In [13] we show a contour plot of the width in a key ecological parameter

plane. An important conclusion from such plots is that the width of the plane wave

band can be very sensitive to parameters. For example, in the case of parameter

estimates for the interaction between field voles and weasels [20], a 5% increase in

vole birth rate increases the band width by 22%. An even more striking example

of this sensitivity is provided by the interaction between the zooplankton Daphnia

pulex and the phytoplankton Chlamydomonas reinhardii. Using estimates of the

relevant parameters [21], we predict that the width of a plane wave band behind

invasion would be extremely sensitive to the estimate of zooplankton birth rate,

with a reduction of only 5.2% sufficient to double the band width. Such sensitivity

is particularly important in the context of a changing climate, which is both in-

creasing the frequency of ecological invasions [22] and also changing the parameters
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of many oscillatory ecological systems [23, 24]. The sensitivity of the band width

to such parameter changes suggests a very profound effect of climate change on the

spatiotemporal dynamics of cyclic populations.
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