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Abstract 
Predation is an established cause of cycling in prey species. Here, the ability of 

predation to explain periodic travelling waves in prey populations, which have 

recently been found in a number of spatiotemporal field studies, is examined. The 
nature of periodic waves in these systems, and the way in which they can be generated 

by the invasion of predators into a prey population is discussed. A theoretical 
calculation that predicts, as a function of two parameter ratios, whether such an 

invasion will lead to a stable periodic travelling wave that would be observed in 
practice is presented - the alternative outcome is spatiotemporal chaos. The calculation 

also predicts quantitative details of the periodic waves, such as speed and amplitude. 
The results give new insights into the types of predator-prey systems in which one 

would expect to see periodic travelling waves following an invasion by predators. 
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INTRODUCTION 

Predator-prey systems have an intrinsic tendency to cycle. 
This was one of the first predictions from mathematical 
modelling in ecology (Lotka 1925; Volterra 1926), and has 
subsequently been confirmed by a large volume of 
theoretical modelling (May 1981; Nisbet & Gurney 
1982), and by a number of experimental studies (Korpi- 
maki & Norrdahl 1998; Turchin et al 1999; Klemola et aL 
2000). However, the spatial synchrony of these population 
cycles is much less well understood, and is currently an 
active area of study. An important recent contribution to 
this debate has been the identification of periodic 
travelling waves in the dynamics of cyclic field voles 
(Mirrotus agrcsriz) (Ranta & Kaitala 1997; Lambin ct al. 
1998). This development is made possible by new 
statistical methods, together with extensive spatiotempor- 
al data sets (reviewed by Bjornstad ct al. 1999). The 
ecological mechanisms underlying these periodic waves 
remain unclear, but one hypothesis has been that the 
waves arise from interactions with weasels (MU&Z 
nivalis), a small rodent specialist predator (Lambin et a/. 
1998). Mathematical models are a key resource in the 
understanding of such phenomena. Here, I present a 
detailed discussion of periodic travelling wave behaviour 
in a simple mathematical model for predator-prey 
interactions. The work is not specifically oriented towards 
the vole-weasel interaction; rather, it is deliberately 
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general, aiming to highlight the behaviour that arises 
simply as a consequence of basic predator-prey dynamics. 
I will show that mathematical analysis of travelling waves 
enables specific ecological predictions to be made. 

The term “periodic travelling wave” means that equally 
spaced peaks in population density are moving through 
space. Thus, if one were monitoring the population at a 
particular location, one would see a cycle in population 
levels, as peaks and troughs alternately occurred. A key 
point is that the occurrence of moving peaks and troughs 
does not imply a large-scale movement of individuals in 
the population. A useful aid in understanding this is the 
“Mexican wave”, familiar in sports stadiums. There, one 
sees a moving wave, but nothing is physically moving in 
space. Periodic travelling waves in ecology are a little 
different because there is typically local movement of 
individuals, but despite thi , when averaged over time, 
there is no net movement % f the population in space. 
Thus, periodic travelling waves imply large-scale spatial 
synchrony of population cycles, but without large-scale 
spatial movement. 

To enable a more detailed discussion of periodic 
travelling waves, I will use a mathematical model of 
predator-prey interaction. The majority of theoretical 
work on spatial,synchrony has used models of “coupled 
map lattice” type (Hassell et aL 1991; Bascompte & Sole 
1998; Savill & Hogeweg 1999) in which population 
dynamics are followed on a series of separate but coupled 
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patches. This type of model is an efficient simulation tool, 
but underlying mathematical theory is rather limited. For 
example, I am not aware of any mathematical results on 
periodic waves in coupled map lattice models. For this 
reason, I will illustrate my discussion using a model of 
“reaction-diffusion” type, which has much stronger 
mathematical underpinning. Reaction-diffusion models 
have a long history in theoretical ecology (Skellam 1951; 
Holmes ct aL 1994), and assume continuous time 
population dynamics together with unbiased local dis- 
persal. The specific model I consider is 

benrft jFom predation dcatb 

Ipredators] dp/dt = 6 ax2 + &ij +P -T (la) 

(preyl 
a2h 

(lb) dhdt= 6 - +A(1 - h/ho) - cpf(kh). 
&-- 

dirpersal 
intrimic bird death dcatb 

The symbols p and h denote predator and prey densities, 
which depend on space x and time t; a, 6, c, Y, b, R and 6 
are positive parameters. The function jii.) represents the 
prey consumption rate per predator, as a fraction of the 
maximal consumption rate, c. This will he an increasing 
saturating function of the prey density: the constant k 
reflects how quickly the consumption rate saturates as 
prey density increases. Parameters a and Y denote maximal 
per capita predator and prey birth rates; for predators, that 
is the birth rate when the prey density is very high, while 
for prey it is the birth rate at very low prey density. The 
per capita predator death rate is denoted by 6, and b is the 
prey carrying capacity. To facilitate calculations later in 
the paper, I assume that the two populations have the 
same dispersal coefficient, 6 - all of my results apply more 
generally provided the predator and prey dispersal rates 
are fairly similar. 

The model (1) has been very well studied for a number 
of different forms for f(.) (e.g. May 1981; Nisbet &; 
Gurney 1982). A key property of the model is that for 
appropriate parameters, when there is no variation in 
space, the population dynamics are cyclic, with oscilla- 
tions in predator and prey densities. When spatial 
variation is allowed, periodic travelling waves are then 
possible, and standard mathematical results can be 
applied. Most importantly, these show that there is a 
family of possible periodic travelling waves (Kopell & 
Howard 1973). This family contains a periodic wave 
solution for each value of the wave speed above a critical 
minimum value; as the wave speed becomes large, so does 
the spatial wavelength, and the amplitude approaches that 
of the spatially homogeneous population cycle. 

WAVES GENERATED BY INVASION 

The occurrence of a family of periodic travelling waves 
has an important consequence: even if one knew all of the 
parameter values in a particular case, one still could not 
predict the details of a periodic travelling wave occurring 
in practice. This is because different mechanisms of 
periodic wave generation may cause different members of 
the periodic wave family to develop. Therefore, one 
cannot study the generation of periodic travelling waves 
as a general topic; rather, it is necessary to focus on the 
periodic waves generated by a particular type of ecological 
event, corresponding mathematically to particular initial 
conditions. For predator-prey interactions, I am aware of 
only one type of ecological event that has been shown to 
generate periodic waves: the invasion of a predator 
population into prey. 

Ecological invasions have been an important research 
topic in recent years [see the books by Shigesada & 
Kawasaki (1997) and Williamson (1996) for review], but 
in almost all cases, both experiments and field data have 
focussed on the taxonomy of the invader, rather than its 
interaction with existing species. Theoretical work by 
myself and others on’ cyclic predator-prey systems 
predicts that, while the rate of invasion is determined by 
predator characteristics only, the cyclic nature of the 
interaction with prey leads to either periodic travelling 
waves or spatiotemporal chaos behind invasion (Sherratt 
et al. 1995, 1997; Petrovskii & Malchow 1999; Ashwin et 
al. 2000; see also Pascual 1993). An example of periodic 
wave formation is given in Figure l(a), which simulates 
behaviour when a small group of predators are introduced 
into a prey population. The predator population grows 
and invades surrounding prey, with this invasion 
generating periodic /fravelling waves moving in the 
opposite direction to the invasion, at a faster speed. In 
order to make a detailed assessment about whether this 
mechanism could be responsible for the periodic waves 
seen in recent field data (Lambin et al 1998; Ranta & 
Kaitala 1997), it is necessary to predict quantitatively how 
the speed and amplitude of the periodic waves behind 
invasion depend on parameter values; this is the subject of 
the next section of the paper. 

For some parameters, invasion generates spatiotempor- 
al chaos - highly disordered oscillations, rather than the 
simple, periodic oscillations in a periodic travelling wave; 
an example of this is illustrated in Figure l(b). I have 
shown previously that, from a mathematical viewpoint, 
these chaotic oscillations occur when the mechanism of 
periodic wave generation selects a wave that is unstable. 
From the ecological viewpoint, this implies that the 
calculation of periodic wave speed and amplitude (from 
which the stability of the wave can be deduced) is 
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important for understanding qualitative as well as 
quantitative behaviour. 

PREDICTING THE PERIODIC TRAVELLING WAVE 

A cyclic predator-prey system represented by the model (1) 
has a family of possible periodic travelling waves, with 
different members of the family having different speeds and 
amplitudes. The invasion of predators into a prey 
population leads to the formation of one particular 
travelling wave from this family - the same wave is 
generated even if environmental heterogeneity is included 
(Kay & Sherratt 2000). In order to make predictions in any 
detail for particular predator-prey systems, it is essential to 
know which of the waves is generated, as a function of 
parameter values. I have previously given a mathematical 
solution of this wave selection problem (Sherratt 1998). 
Application of this to the predator-prey model (1) involves 
some long calculations, which are described in the 
Appendix. The calculations can be done most easily using 
computer algebra, and a worksheet for use with the package 
maple is available at the Web address http://www.ma.hw. 
ac.uk/-jas/predprey-worksheet.html. This worksheet per- 
forms all the calculations described in the Appendix and 
automatically draws the graphs illustrated below. 

Figure 1 An illustration of the behaviour generated 
by the invasion of predators into prey in cyclic 
populations. The changes in prey and predator 
densities with space and time are illustrated for two 

sets of parameter values: there is a receding wave 
front of prey, and a corresponding advancing wave 
front of predators, behind which there is a periodic 
travelling wave in (a), and spatiotemporal chaos in 
(b). Note that in (b), a small band of periodic waves 
is visible just behind the invasion front: this is the 
unstable member of the periodic wave family that is 

selected by the invasion, and which destabilises to 
give chaos. Model simulations predict that one of 
these two types of behaviour is seen whenever 
invasion occurs in a cyclic predator-prey system. 
The plots show numerical solutions of the dimen- 
sionless model equations (A.3), with f(6 = e/ 
(l+Q, and (a) A=3, B=4, C=3; (b) A=1.2, 

B = 1.2, C = 13. The equations were solved using 
the method of lines and Gears method, with initial 
conditions corresponding to a prey-only state 
everywhere, except at x = 0, where there is a small 
non-zero predator density. 

The key results of this calculation are formulae for the 
amplitude and speed of the periodic travelling waves 
generated by inva ion, 

aii 
as a function of parameters. 

Examples of this re illustrated in Figure 2, for case of 
the interaction between the zooplankton Dapbnia pukx 
and the phytoplankton Cbiumydomonar reinbard& Nisbet 
et aL (1991) performed a detailed parameter estimation of 
the model (1) for this case. I should stress that there is, to the 
best of my knowledge, no data showing periodic waves in 
plankton systems: I choose this system simply because it is 
a rare example of a cyclic predator-prey system that has 
been parameterised in detail. In Figure 2(a), the variation 
in wave speed with r, the phytoplankton birth rate is 
plotted; Figure 2(b) shows the amplitude of the prey 
periodic wave as a function of the predator death rate 6. 
Previous studies of periodic wave behaviour in ecological 
systems have mostly been qualitative, with occasional 
quantitative simulations for single parameter sets. My 
calculation enables detailed quantitative predictions to be 
made, for the first time. One particularly important 
consequence of this is that one can predict whether 
invasion will result in stable periodic waves, or spatio- 
temporal chaos (which develops from an unstable wave). 
This involves calculating the wave amplitude, and then 
using standard results on stabilityamplitude relationships 
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Figure 2 Predicted variations in (a) wave speed and (b) prey amplitude, for the periodic travelling waves generated by invasion of the 
predator Daphnia pukx into the prey population Cbiumydomonas reinbardii. Some of these waves are stable and would be observed in 
practice, others are unstable, so that the observed behaviour would be spatiotemporal chaos. The calculation is as described in the 
Appendix. Parameter values are as estimated by Nisbet et al. (1991) except for those being varied: a = 0.5 day-’ 6 = 0.14 day-’ c = 1.0 
day-’ k = 6.1 1 mg-’ r= 1.0 day-‘. The values of & and 6 are not given by Nisbet et al. (1991). I take 6 = 10-4cm2s-‘, based on 
estimates for other plankton species (Kessler 1985; Bees & Hill 1998). The parameter h must be above a critical minimum value for the 

population to be cyclic [see the Appendix and Nisbet ct al. (1991)], and I take ho to be 10% above this minimum value (arbitrarily: Nisbet 

ctal (1991) regard & as a free parameter). Increasing/decreasing & causes the wave speed to decrease/increase, while the prey amplitude 
increases/decreases. Following Nisbet et al. (1991), the assumed form for the functional response is f(t) = t/(1 = 5>. 

(Kopell & Howard 1973); details are in the Appendix. 
This shows that one can predict whether periodic waves 
or chaos will be generated by the invasion of predators 
into prey, from two parameter ratios: r/a and a/b. These 
are the ratio of prey and predator birth rates, and the ratio 
of predator birth and death rates, respectively. Here the 
birth rates required are the maximum possible levels, that 
would be achieved when resources are abudent (this is the 
definition of parameters r and a); these will of course be 
much higher than the actual birth rates in the field. 

Figure 3 shows the predicted behaviour as a function of 
these two ratios, for a particular functional response f(.): 
different functional responses give slightly different 
parameter regions, but with the same general form. For 
the Dapbnia p&x - Chkzmyahomas reinbardii interaction, 
Nisbet et al. (1991) estimated r/a = 2.0 and a/b = 3.6, 
implying that invasion will generate spatiotemporal chaos. 
These ratios can also be calculated for the interaction 
between field voles (it4icrotus agreh) and weasels (MU&&-Z 
nivalis) , even though there is insufficient data to 
parameterise the whole model in this case. Recall that 
maximum possible birth rates are required. When prey are 
abundent, female weasels can have two litters in each 
breeding season, with an average of six young per litter 
(King 1989). M oreover, the early-born females (three on 
average) can breed themselves within the same season. 
Thus each female can have up to 30 offspring, giving a 
maximum per capita productivity of 15 per year (King 

1989). The birth rate a is then given by 8 = 15 + a = 
2.7 year-‘. For field voles, 6 litters could be expected in 
optimal conditions, with an average litter size of 5 
(Dyczkowski & Yalden 1998); again, early-born females 
can breed themselves, giving a maximum possible per 
capita annual productivity of 27.5 (=$ (6 x 5 +2.5 
x 2 x 5)). Thus e’ = 27.5 =+ I = 3.3 year-‘, and r/a = 

1.2. Annual mortality for weasels is 77.5% (King 1989), so 
that Cb = 0.225, giving b = 1.5 year-’ and a/b = 1.8. 
Again, these ratios correspond to a point outside the 
parameter region giving stable periodic waves (see Figure 
3), suggesting that the invasion of a field vole population 
by weasels would generate spatiotemporal chaos, not 
periodic travelling waves. As a third example, I consider 
the interaction of snowshoe hare (Lepus americanus) and 
lynx (Lynw canaabuti) in the North American boreal 
forest. This was an early example of cyclic populations, 
from the famous Hudson Bay Company data (see Murray 
1989). Recent experiments suggest that the cycles involve 
a third trophic level (Krebs eta/. 1995) and that additional 
predators are important (Stenseth et al. 1997); never- 
theless, this is a useful case to consider in view of the large 
attention given to it in the literature. Moreover, the 
population cycles do exhibit large scale spatial synchrony 
(Smith 1983), though whether or not this involves 
periodic waves remains unclear. Parameters for this case 
have been estimated previously (Tanner 1975; Mowat et 
al. 1996): maximal per capita productivities for hare and 
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lynx are about 4.5 and 2 per year, with 75% annual 
survival for lynx, giving a/6 = 2.4 and r/a = 2.2. These 
imply stable periodic travelling waves following invasion 
of a hare population by lynx. 

DISCUSSION 

The temporal oscillations implicit in a cyclic predator-prey 
system mean that periodic travelling waves are a possible 
form of spatial synchronisation; this mathematical result 
has been known for nearly 30 years (Kopell & Howard 
1973). More recently, it has been shown that this type of 
synchronisation is actually one of two possible behaviours 
when the predators invade a prey population, with the 
other being spatiotemporal chaos (Sherratt ct al 1997). 
Here, I have shown how one can calculate which of these 
two behaviours will occur, as a function of parameter 
values. For a given functional response f(.), the distinction 
depends on only two parameter ratios, which can be 
estimated for many specific predator-prey systems. A case 
of particular interest is the weasel-field vole interaction, 
which has been suggested as a possible explanation for the 
periodic waves seen in cyclic field vole populations in the 
Kielder forest (Lambin ct al 1998). My results suggest that 
invasion of a field vole population by weasels will generate 
spatiotemporal chaos, not periodic waves. This is due 
predominantly to the high maximal productivity of the 
weasel Mustela nivalsj: a key implication of Figure 3 is that 
stable periodic waves following invasion require the 
predators to be much less productive than their prey. 
Since periodic waves do occur in field vole populations, 
two possible explanations remain. Firstly, the interaction 
with weasels may have generated the observed periodic 
waves, but via a process other than predator invasion - 
although no such process has been suggested to the best of 
my knowledge. Secondly, the periodic waves may have 
been generated by a mechanism other than the interaction 
with weasels, for example by parasites, which are 
established as the cause of population cycles in red grouse 
(Lagopus hgopw scotic~) (Hudson et al 1998). 

As with any theoretical predation, there are a number 
of potentially important ecological features that have been 
excluded from the modelling. Weasels are estimated to 
comprise only about a third of total predation on voles 
(Dyczkowski & Yalden 1998), with the remainder due 
mainly to foxes and raptors; the model assumes that these 
other predators are present at constant density, and 
changes in their densities may be significant (for 
discussions of other vole predators, see O’Mahony et al. 
1999; Lambin et al 2000; Petty et al. 2000). In addition, 
seasonality of breeding and the specific form of functional 
response are factors that would be required in a more 
detailed, specific model. 
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Figure 3 The predicted parameter regions in which invasion of 
prey by predators generates either periodic travelling waves or 
spatiotemporal chaos. The distinction between the two beha- 
viours depends on two dimensionless parameter ratios: the 
maximum possible birth rate for prey divided by that for 
predators, and the maximal predator birth rate divided by the 

predator death rate. Estimated ratios for three specific predator- 
prey systems are plotted: the Dapbnia p&x-Cbkzmydomonar 
reinhardii interaction; the interaction between weasels (Musteha 
nivah) and field voles (Microtzu agrestis); and the snowshoe hare 
(Lepzu americanus)-lynx (Lynx canadenk) system. The calculation 
of the parameter regions is as described in the Appendix, and 

depends on the assumed form for the functional response A.); 
the case shown is for ji(5> = c/(1 = Q. Changing the functional 
response alters the precise location of the boundary between the 
two behaviours, but the overall form remains the same. 

In the context of other predator-prey systems, the 
calculation that I have performed gives important 
information about the types of predator-prey system in 
which invasion would be expected to generate periodic 
waves. Moreover, the quantitative predictions on wave 
speed and amplitude provide specific tests for predator- 
prey invasion as a cause of periodic travelling waves. 

APPENDIX 

In this Appendix, I summarise the mathematical calcula- 
tion that determines the periodic travelling wave solution 
generated by the invasion of predators into a prey 
population. It is this calculation that leads to predictions 
such as Figure 2, which shows the speed and amplitude of 
periodic waves as a function of parameters, and Figure 3, 
which illustrates the parameter region in which stable 
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periodic oscillations, rather than spatiotemporal chaos, are 
generated behind invasion. 

The equations (1) have a spatially homogeneous 
oscillatory solution (mathematically, a limit cycle in the 
reaction kinetics) provided the parameter k is sufficiently 
large. As R is increased from a small value, the oscillations 
appear at a critical value of k, known as a Hopf bifurcation 
point. The standard mathematical theory of “normal 
forms” implies that when k is close to this critical value, 
the model equation (1) can be reduced to equations of “a- 
W” type by a series of changes of variable. These LO 
equations have the form 

au 
x=aw2 ~~+~u-w~v-(x,Ir+w~~)(u2+2r2) (A.la) 

~=~+w~*+~v+(w,u-x~v)(3+3). (A.lb) 

Previously, I have calculated the behaviour behind 
invasion in general oscillatory systems, as a function of 
&, ill, 00 and 01. In order to apply these results to the 
predator-prey model (l), it is necessary to calculate &, Al, 
~0 and m in terms of the parameters in (1). This is known 
as a “reduction to normal form”. The theory underlying 
this calculation is described in most books on normal 
form theory, but the practical implementation in not 
explained in detail, and thus I will summarise it here; note 
that there is an alternative method for deriving normal 
forms, using perturbation theory (Yu 1998), which can be 
used as an independent check on the results. Some of the 
steps in my calculation involve complex algebra that is 
most efficiently done using a computer algebra package 
such as maple; an example of a maple worksheet that 
performs the entire calculation automatically is available at 
http://www.ma.hw.ac.uk/ - jas/predprey-worksheet.html. 
The worksheet also generates automatically a plot of the 
parameter domain for periodic travelling waves, of the 
type shown in Figure 3. 

Step 1: Nondimensionalisation 

The first step is to simplify (1) by the standard process 
nondimensionalisation. Substituting the resealings 

of 

H = h/ho P =p- c/(&J T=rtA=a/b 

B = r/a C = kbo X = xfl (A4 

gives 

W/aT = 62P/dX2 + P [Af(CH) - l]/(A . B) (A.3a) 

aH/dT = #H/ax2 + H (1 - H) - Pf(CH). (A.3b) 

Step 2: Steady states and linear stability analysis 

I assume that f(.) is an increasing function, with f(0) = 0 
and f( + 00) = 1: this will be true for any realistic function 
form. (Recall that f(.) re p resents the consumption rate of 
prey per predator, as a function of prey density.) Then 
(A.3) has zero and prey-only steady states, and in addition 
exactly one coexistence steady state (I’&), where 

P, = AH,(l - H,) and H, =f-‘(l/A)/G 

Note that A > 1 is required for this steady state to exist - 
otherwise the death rate of the predators is too great for a 
predator population to be maintained. Standard linear 
stability analysis (see for example May 1981) shows that 
the population represented by (A.3) becomes cyclic when 
the parameter C is above the critical value C&, given by 
the formula 

Co =f-‘(l/A)[l +&I- 

where r = A f ’ (l/A) f F ’ (l/A)). The linear stability 
analysis itself implies that & is given by 

x, = (C - Co)@?c(E)) I ccc, =fjg#& 

where E is the complex conjugate pair of eigenvalues at 
(I’&). Similarly ~0 is given by Im (E) at C=C& which gives 

w = [&I’/‘- 

Step 3: Converting linear part to normal form 

Calculation of ai and wl is more involved. Standard 
theory implies that one can set C = G, since corrections 
due to changes in C only enter higher order terms in the 
normal form (Guckenheimer & Holmes 1983). Fixing C 
at this value, the next step is to do a linear change of 
variables so that the linear part of the equations is in 
normal form. For (A.3), this is achieved by setting 

r; = (I’$ - P)/dA(l - 2H,)/B and L=H-H, 

which gives the equations 

@/aT = 8fi /3X’ - wol; + F @ I;) (A.4a) 

~ii/tIT=~h/~X2+wo~+ ~&ii). (A.4b) 
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Here the functions F and S; have complicated algebraic 
forms, but are easily calculated by a computer algebra 
package; a simple check on the calculation is possible 
because both functions should be zero with zero first 
derivatives at 6 = 6 = 0. 

Step 4: Calculating ill and q 

Once the equations are in the form (A.4), standard 
formulae can be used to find ill and q. Methods for 
deriving these formula are described in textbooks and 
some papers (Guckenheimer 8c Holmes 1983; Knobloch 
1986), but I am not aware of a reference in which both 
formulae are given explicitly, and thus I repeat them here: 

Here the subscripts @ and i denote partial derivatives: 
thus for example !$br= a3F/QZ%‘. These formulae are 
extremely laborious to use by hand, but a computer 
algebra package makes them easy to evaluate. Typically 
the results require considerable algebraic simplification, 
but this can be done automatically by computer algebra. 

Using the results 

The final result of these four stages are expressions for & 
a1 Q and ~1. Of these, &, depends on A, B and C, but the 
other three are functions of A and B only. These 
expressions can easily be rewritten in terms of original 
model parameters using (A.2), and can then be used to 
determine properties of the periodic waves generated by 
invasion. In particular, the amplitude of the periodic 
waves is given by 

R= @(&+w;- X1)]‘/2 (A-5) 

(Sherratt 1998), with the speed given by (wg+ wl@)/(;b- 
A,@)? A key issue is whether the waves of this 
amplitude are stable: if not, the observed behaviour will 

be spatiotemporal chaos. A mathematical condition on R 
for stability was determined by Kopell & Howard (1973), 
and substituting (A.5) into their condition implies that the 
periodic waves generated by invasion will be stable if g/ 
$ < 1.148. Figure 3 is generated by substituting the 
expressions for 01 and a1 into this condition: the 
parameter ratios on the axes of Figure 3 are simply the 
dimensionless parameters A and B. 
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