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Periodic travelling waves are an important solution form in oscillatory reaction–diffusion equations. I
have shown previously that such waves arise naturally near a boundary at which a Dirichlet condition is
applied. This result has applications in ecology, providing a potential explanation for the periodic waves
seen in a number of natural populations. However, in ecological applications the Dirichlet boundary con-
dition typically arises as a simple approximation to a more realistic Robin condition. In this paper, I
consider the generation of periodic travelling waves by Robin boundary conditions and how the wave
amplitude compares with that arising from Dirichlet conditions. I study a ‘λ–ω’ system of equations,
which is the normal form of an oscillatory reaction–diffusion system with scalar diffusion matrix close
to a Hopf bifurcation. I consider a Robin boundary condition close to the Dirichlet limit, with proxim-
ity measured by a small parameterε, and I study the equations as a perturbation problem in this small
parameter. I show that the perturbation is singular and that although the solution itself changes at O(ε),
the amplitude of the periodic travelling wave which this solution approaches far from the boundary is
unchanged at both O(ε) and O(ε2). This provides strong justification for the use of the Dirichlet approx-
imation to the Robin condition when studying periodic travelling wave generation in equations ofλ–ω
type. Finally, I discuss the ecological applications of the results.
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1. Introduction

Oscillatory reaction–diffusion equations are a class of model with important applications in many areas
of biology, ranging from calcium signalling in cell biology (Sneyd & Sherratt, 1997; Timofeeva &
Coombes, 2003) to population dynamics in ecology (Pascual, 1993; Petrovskiiet al., 2001; Medvinsky
et al., 2002; Garvie, 2007). In one space dimension, the most important solution type for such equations
is periodic travelling waves. These are the 1D version of more complicated 2D behaviours such as spiral
and scroll waves and are also important in their own right. For example, periodic travelling waves have
recently been identified in a number of ecological systems (Lambin et al., 1998; Moss et al., 2000;
MacKinnonet al., 2001; Bjørnstadet al., 2002; Johnsonet al., 2004; Biermanet al., 2006).

Periodic travelling waves arise when oscillatory reaction–diffusion equations are subject to inhomo-
geneities that drive the system away from spatially uniform oscillations. These may have the form of
noise in parameter values (Hagan, 1981; Kopell, 1981; Kay & Sherratt, 2000) or forcing applied at a
boundary of the domain. Both mechanisms have been studied extensively for chains of coupled oscilla-
tors (Ermentrout & Kopell, 1984, 1986; Kopell et al., 1991; Ren & Ermentrout, 1998), but in oscillatory
reaction–diffusion equations, there has been very little work on boundary-driven periodic travelling
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waves, despite early work byAuchmuty & Nicolis(1976) on the Brusselator model with Neumann and
Dirichlet boundary conditions.

In a previous paper (Sherratt, 2003), I studied the generation of periodic travelling waves by Dirichlet
boundary conditions in a ‘λ–ω’ system. These equations are the normal form of an oscillatory reaction–
diffusion system with scalar diffusivity close to a supercritical Hopf bifurcation (Hassardet al., 1981;
Guckenheimer & Holmes, 1983) and have the form

∂u/∂t = uxx + (1− r 2)u− (ω0− ω1r 2)v, (1a)

∂v/∂ t = vxx + (ω0− ω1r 2)u+ (1− r 2)v, (1b)

wherer = (u2 + v2)1/2. In an ecological application, the variablesu andv would reflect the deviation
of population densities from a coexistence steady state; henceu andv can be positive or negative. The
parametersω0 andω1 would be functions of ecological parameters that can be derived via the theory of
normal forms (Hassardet al., 1981; Guckenheimer & Holmes, 1983; Sherratt, 2001). In Sherratt(2003),
I studied the system (1) on a semi-infinite domain 06 x < ∞, subject to the boundary condition
u = v = 0 at x = 0. I showed that the long-term solution has a simple analytical form (given below)
and that this solution approaches a periodic travelling wave at largex.

In many ecological applications, Dirichlet boundary conditions are used as a simplifying approxi-
mation, with a more accurate boundary condition being of Robin (mixed) type. The derivation of such
a Robin condition was first presented byLudwig et al. (1979). Suppose that a population of density
W(X, T) occupies the regionX > 0, satisfying the equationWT = DWX X + f (W). Suppose further
that X < 0 is a hostile environment on whichW satisfiesWT = DWX X − ηW. This equation has a
unique (up to scaling) bounded equilibrium solution onX < 0, and matching densities and fluxes at
X = 0 yields

(D/η)1/2WX = W. (2)

Since theX < 0 region is hostile, one expectsη to be a large parameter, so that the Dirichlet condition
W = 0 is a natural approximation at the boundary. In practice, almost all studies use the approximate
Dirichlet condition rather than the Robin condition; for recent exceptions, see Cantrellet al. (1998,
2002).

In this paper, I investigate the way in which Robin and Dirichlet boundary conditions differ in terms
of the generation of periodic travelling waves. Specifically, I consider (1) on 06 x <∞, subject to

εux = u, εvx = v at x = 0, (3)

with ε � 1. This is not directly analogous to (2), sinceW is a population density, whereas in ecological
applications,u andv would correspond to the difference between population density and a non-trivial
uniform steady state. The advantage of (3) is that it preserves the circular symmetry inherent in (1) and
thus offers mathematical simplification over (2). Therefore, I use (3) as a first stage in the comparison of
Robin and Dirichlet boundary conditions. For (1) subject to (3), I will show that although the overall so-
lutions foru andv change at O(ε), the periodic travelling wave that develops at largex does not change
either at orderε or ε2. This provides strong justification for the use of the Dirichlet approximation to
the Robin condition when studying periodic travelling wave generation in (1).

In Section2, I give a more detailed introduction toλ–ω systems. In Sections3 and4, I determine the
O(ε) and O(ε2) corrections to the solution, showing that in both cases there is no change in the limiting
behaviour at largex, which is the periodic travelling wave solution. Finally in Section5, I discuss the
implications of my results, focussing in particular on ecological applications.
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2. λλλ–ωωω systems

In their seminal paper on oscillatory reaction–diffusion systems,Kopell & Howard(1973) showed that
any such system with scalar diffusivity has a one-parameter family of periodic travelling waves. They
also introduced theλ–ω equations and showed that for (1), the family has the simple form

u= r ∗ cos[θ0±
√

1− r ∗2 x + (ω0− ω1r ∗2)t ],

v = r ∗ sin[θ0±
√

1− r ∗2 x + (ω0− ω1r ∗2)t ].

Here,r ∗ is the solution amplitude (06 r ∗ 6 1) and is the most convenient parameter for the wave
family. Over the last three decades, the simple form of this periodic wave family has provided an in-
valuable reference point for the study of periodic travelling waves in more general reaction–diffusion
systems. This work has focussed in particular on the existence and stability of periodic travelling waves
(Ermentrout, 1981; Maginu, 1979, 1981; Kapitula, 1994), other cases with exact solutions (Cope, 1979;
Romeroet al., 2000) and the generation of periodic travelling waves by environmental heterogeneities
(Auchmuty & Nicolis, 1976; Hagan, 1981; Kopell, 1981; Kay & Sherratt, 2000; Sherratt, 2003)
and behind invasive wavefronts (Sherratt, 1994, 1996; Ermentroutet al., 1997; Petrovskiiet al., 1998;
Petrovskii & Malchow, 2000, 2001; Webb & Sherratt, 2004; Garvie, 2007).

Analytical study of (1) is greatly facilitated by rewriting the equations usingr =
√

u2+ v2 and
θ = tan−1(v/u) as dependent variables. This gives equations of the form

rt = rxx − r θ2
x + r (1− r 2), (4a)

θt = θxx +
2rxθx

r
+ ω0− ω1r 2, (4b)

while the periodic travelling waves are

r = r ∗, θ = θ0±
√

1− r ∗2 x + (ω0− ω1r ∗2)t. (5)

In terms ofr andθ , the Robin boundary condition (3) has the form

εrx = r, θx = 0 atx = 0. (6)

Figure1 illustrates a typical solution of (1) subject to these end conditions; I plot the solutions foru,
v, r andθx. Once initial transients have disappeared, the solution has the form of periodic travelling
waves moving away from thex = 0 boundary. The waves appear as sinusoidal oscillations inu andv
and correspond to constant values ofr andθx. In fact, numerical solutions suggest that when plotted in
terms ofr andθx, the entire long-term solution is a function ofx only, independent of time. Substituting
r = R(x) andθx = Ψ (x) into (1) gives a third-order system of ordinary differential equations for this
long-term solution:

Rxx + R(1− R2− Ψ 2) = 0, (7a)

Ψx + 2Ψ Rx/R+ ω1A2− ω1R2 = 0. (7b)

Here, A is a constant of integration, into which the parameterω0 has been incorporated; a periodic
travelling wave satisfying these equations must have amplitudeA. The boundary condition (6) implies
that

εRx = R and Ψ = 0 atx = 0. (8)
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FIG. 1. An illustration of periodic travelling wave generation in theλ–ω system of equations (1) subject to the Robin boundary
condition (6) at x = 0. I show space–time plots foru andv, in which a series of solutions are plotted at equally spaced times, with
vertical separation corresponding to the time interval. The solution has the form of periodic travelling waves moving away from
thex = 0 boundary. I also plot the long-term solutions for the amplituder and phase gradientψ . These both evolve to a steady
state, independent of time. The parameter values areω0 = 1.5, ω1 = 0.5 andε = 0.3, and the solution is solved on the spatial
domain 0< x < 250 with zero-flux boundary conditions atx = 250, to replicate a semi-infinite domain. The initial conditions
for u andv are given by randomly generated values between−1 and 1. The solutions forr andψ are plotted att = 2500, while
for u andv, I plot 60 solutions at equally spaced times in the period 2300< t < 2500. The equations were solved numerically
using a semi-implicit Crank–Nicolson method.

Since we are looking for a solution that approaches a periodic travelling wave away from thex = 0
boundary, we also require

R→ A and Ψ →
√

1− A2 asx→∞. (9)

The amplitudeA will depend on the parametersω1 andε; Fig. 2 illustrates this dependence, determined
from numerical solutions of (1). Note in particular that asε increases from zero, the wave amplitudeA
gradually increases.
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FIG. 2. An illustration of the variation withε of the amplitude of periodic travelling waves that form away from thex = 0
boundary in (1) subject to (6). The amplitude is calculated from numerical solutions of (1, 6) on a large domain. The parameter
values areω0 = 1.5 andω1 = 0.6.

In Sherratt(2003), I showed that in the case ofε = 0 (Dirichlet boundary condition), (7–9) has the
exact solution

R(x) = R0(x) ≡ a tanh(x/
√

2), (10a)

Ψ (x) = Ψ0(x) ≡ −sign(ω1)
√

1− a2 tanh(x/
√

2), (10b)

with

a = A|ε=0 =

{
1

2

[

1+

√

1+
8

9
ω2

1

]}−1/2

. (11)

This exact solution raises the possibility of determining an approximate form for the solution and in
particular the wave amplitudeA, whenε is small but non-zero.

3. Solution for smallεεε

3.1 Special case ofω1 = 0

I begin by considering the special case ofω1 = 0, which implies thata = 1. Then, (7–9) can be solved
exactly, giving the solution

R= tanh[(x + x0)/
√

2] and φ ≡ 0,

wherex0=
1
√

2
log[
√

2ε +
√

1+ 2ε2] = ε −
2

3
ε3+O(ε5).
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Therefore in this case,A ≡ 1, independent ofε, so that the periodic travelling wave generated by the
boundary conditions has the degenerate form of a spatially uniform oscillation.

In the subsequent calculations, I assume thatω1 6= 0, so thata < 1.

3.2 Formulation of the problem

Some algebraic simplification in the study of (7) is given by usingy = x/
√

2 as independent variable
and by substitutingψ = −sign(ω1)φ and |ω1| = 3

√
1− a2/(a2

√
2). Recall thatA is the amplitude

of the periodic travelling wave solution, whilea is the corresponding amplitude whenε = 0. These
substitutions give

d2R/dy2+ 2R(1− R2− φ2) = 0, (12a)

dφ/dy+ 2(φ/R)dR/dy− 3
√

1− a2A2/a2+ 3
√

1− a2R2/a2 = 0, (12b)

while the boundary conditions become

ε dR/dy = R
√

2 and φ = 0 at y = 0, (13a)

R→ A and φ→
√

1− A2 asy→∞. (13b)

For smallε, one can investigate solutions of (12) subject to (13) in the usual way, by expandingR, ψ
andA as power series inε:

R= a tanhy+ εR1+ ε
2R2+ · · · , (14a)

φ =
√

1− a2 tanhy+ εφ1+ ε
2φ2+ · · · , (14b)

A = a+ εA1+ ε
2A2+ · · · . (14c)

My aim is to determine the correctionsAi to the wave amplitude; to do this it is necessary to find the
corresponding solutionsRi andφi .

3.3 Order ε solution

Substituting (14) into (12, 13) and equating coefficients ofε gives

d2R1/dy2+ 2R1[1− (1+ 2a2) tanh2 y] − 4a
√

1− a2 tanh2 yφ1 = 0, (15a)

a tanhy dφ1/dy+ 2asech2yφ1+ 2
√

1− a2[ tanhy dR1/dy

+ (4 tanh2 y− 1)R1− 3A1 tanhy] = 0. (15b)

These equations can be converted into a single third-order equation forR1 by differentiating (15a) with
respect toy and eliminatingφ1, giving

d3R1/dy3+ 2(dR1/dy)[1− 3(2a2− 1) tanh2 y]

−12R1[tanhy sech2y− 2(1− a2) tanh3 y] = g1(y) ≡ 24(1− a2)A1 tanh2 y. (16)

I am looking for solutions of this equation subject toR1 = a/
√

2 at y = 0 andR1→ A1 asy→∞.
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The third-order equation (16) can be reduced to second order using the derivative of the leading-
order solution (10). SubstitutingR1(y) = sech2yΥ (y) gives

d3Υ/dy3− 6 tanhy d2Υ/dy2+ [12(2− a2) tanh2 y− 4]dΥ/dy = g1(y) cosh2 y. (17)

Further substitution reduces the homogeneous equation corresponding to (17) to a hypergeometric equa-
tion. Specifically, I set

w = (dΥ/dy) coshp y and ξ = (1+ tanhy)/2 with p = −3+
√

12a2− 11. (18)

This substitution is adapted from Section 2.1.2.227 ofPolyanin & Zaitsev(2003); after some algebraic
simplification, it reduces the homogeneous version of (17) to

ξ(ξ − 1)d2w/dξ2+ (p+ 4)(2ξ − 1)dw/dξ + (p+ 4)w = 0. (19)

Note that for some values of the parametera, p and hence the solutionw are complex. Linearly inde-
pendent solutions of (19) are given by

w = F(α, β, γ ; ξ) and w = F(α, β, γ ; 1− ξ), (20)

where

α + β = 2p+ 7= 1+ 2
√

12a2− 11, (21a)

αβ = γ = p+ 4= 1+
√

12a2− 11 (21b)

(Abramowitz & Stegun, 1964, Section 15.5;Gradshteyn & Ryzhik, 2000, Section 9.153.7).
The general solution forΥ (y) and henceR1(y) then follows in the standard way (Polyanin &

Zaitsev,2003, Section 0.2.1-6):

R1(y)= Kwsech2y

[∫ y1=y

y1=0
Y−(y1)

∫ y2=∞

y2=y1

Y+(y2)g1(y2)

cosh4 y2
dy2 dy1

−
∫ y1=y

y1=0
Y+(y1)

∫ y2=∞

y2=y1

Y−(y2)g1(y2)

cosh4 y2
dy2 dy1

]

+ C1,1sech2y
∫ y1=y

y1=0
Y+(y1)dy1+ C2,1sech2y

∫ y1=y

y1=0
Y−(y1)dy1+ C3,1sech2y, (22)

where

Y±(y) = Re[sechpy F(α, β, γ, (1± tanhy)/2)]. (23)

Here,F(·, ·, ·, ·) is the hypergeometric function. The functiong1(y) is defined in (16), and the constant
Kw is defined byY+(y)Y−

′
(y) − Y−(y)Y+

′
(y) = Kw cosh6 y. Kw is a complicated function ofa and

for brevity I omit its exact form, which is not required in the subsequent calculations. The various limits
of integration are chosen to simplify subsequent calculations. In Appendix A, I derive the behaviour
of (22) as y → ∞. This shows that the conditionR1 → A1 as y → ∞ is satisfied if and only if
C1,1 = C2,1 = 0.
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To consider the boundary conditions aty = 0, it is necessary to investigate the behaviour of the
solution (22) neary = 0. I define

H1= Kw

[
Y−(0)

∫ y2=∞

y2=0

Y+(y2)g1(y2)

cosh4 y2
dy2− Y+(0)

∫ y2=∞

y2=0

Y−(y2)g1(y2)

cosh4 y2
dy2

]

= 24(1− a2)A1KwRe

[
F

(
α, β, γ ;

1

2

)]

×Re
∫ y=∞

y=0

[
F

(
α, β, γ ;

1+ tanhy

2

)
− F

(
α, β, γ ;

1− tanhy

2

)]
tanh2 y sech4+py dy,

(24)

I1= Kw
d

dy1

[
Y−(y1)

∫ y2=∞

y2=y1

Y+(y2)g1(y2)

cosh4 y2
dy2− Y+(y1)

∫ y2=∞

y2=y1

Y−(y2)g1(y2)

cosh4 y2
dy2

]∣∣
∣
∣
y1=0

= 24(1− a2)A1KwRe

[
F ′
(
α, β, γ ;

1

2

)]

×Re
∫ y=∞

y=0

[
F

(
α, β, γ ;

1+ tanhy

2

)
+ F

(
α, β, γ ;

1− tanhy

2

)]
tanh2 y sech4+py dy.

(25)

Expanding the coefficients of (16) as power series iny then implies that neary = 0

R1(y) = C3,1+ H1y+
(

1

2
I1− C3,1

)
y2−

1

3
H1y3+

[
2

3
C3,1−

1

12
I1

]
y4+O(y5) (26)

using (22). Equation (15a) then implies that

φ1(y) =
I1

4a
√

1− a2

1

y2
+

C3,1
√

1− a2

a
+O(y) (27)

for small y.
There are two undetermined constants in the solution I have derived:C3,1 and A1. One anticipates

that these constants will be determined by the boundary conditionsR1(0) = a/
√

2 andφ1(0) = 0;
however, the expansions (26) and (27) imply that the boundary conditions cannot both be satisfied for
any values ofC3,1 andA1. This suggests that an inner (boundary) layer solution is required neary = 0,
and I now consider the form of such an inner solution.

3.4 Leading-order inner solution and matching

The appropriate inner equations are given by re-scalingy, R andφ neary = 0:

ξ = y/ε, R̃= R/ε, φ̃ = φ/ε.

Substituting these re-scalings into (12) gives

d2R̃/dξ2+ 2ε2R̃− 2ε4R̃(R̃2+ φ̃2) = 0, (28a)

a2 d(R̃2φ̃)/dξ

3
√

1− a2
− R̃2[a2+ 2A1εa+ (A

2
1+ 2a A2)ε

2] + ε2R̃4 = O(ε3). (28b)
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In the usual way, I expand̃R andφ̃ as power series inε:

R̃= R̃0+ ε R̃1+ ε
2R̃2,

φ̃ = φ̃0+ εφ̃1+ ε
2φ̃2

and substituting these into (28) and (13a) gives to leading order

d2R̃0/dξ
2 = 0,

d(R̃2
0φ̃0)/dξ = 3

√
1− a2R̃2

0

subject to d̃R0/dξ = R̃0
√

2 andφ̃0 = 0 atξ = 0. The solution of these equations is

R̃0 = D1(1+ ξ
√

2), φ̃0 =
√
(1− a2)/2[1+ ξ

√
2− 1/(1+ ξ

√
2)2], (29)

whereD1 is a constant of integration. To match this leading-order inner solution with the outer solutions
R0 + εR1 andφ0 + εφ1, it is necessary to expand the inner solutions forξ → ∞ and to use the
expansions (26) and (27) neary = 0. I express these expansions in terms of the intermediate variable
z= y/ν(ε) = εξ/ν(ε), where 1� ν(ε)� ε. Then, the conditions for matching are

R0︷ ︸︸ ︷
aνz+O(ν3)+

εR1︷ ︸︸ ︷
ε[C3,1+O(ν)] =

ε R̃0︷ ︸︸ ︷
εD1(1+

√
2νz/ε)

and
√

1− a2 νz+O(ν3)
︸ ︷︷ ︸

φ0

+
ε I1

4a
√

1− a2 ν2z2
+ ε

C3,1
√

1− a2

a
+O(εν)

︸ ︷︷ ︸
εφ1

= ε
√
(1− a2)/2[

√
2νz/ε + 1+ (ε2/ν2)]

︸ ︷︷ ︸
εφ̃0

.

These conditions are satisfied provided thatD1 = C3,1 = a/
√

2 andI1 = 0. In Appendix B, I show that
∫ y=∞

y=0

[
F

(
α, β, γ ;

1+ tanhy

2

)
+ F

(
α, β, γ ;

1− tanhy

2

)]
tanh2 y sech4+py dy

and F ′
(
α, β, γ ; 1

2

)
both have non-zero real part for alla ∈ (0, 1). Therefore, the conditionI1 = 0

implies thatA1 = 0.
With these values for the outstanding constants of integration, the leading-order correction to the

solutions whenε 6= 0 is given by the combination ofR1 and R̃0, andφ1 andφ̃0; composite solutions
can easily be determined. But crucially I have shown thatA1 = 0, so that this leading-order correction
does not affect the periodic wave amplitudeA, which is unchanged at this order.

4. Higher-order terms

I have shown that the periodic travelling wave amplitudeA is the same for the Robin (6) and Dirichlet
(r = θx = 0 atx = 0) boundary conditions, at orderε. To determine the next correctionε2A2 to A, it is
necessary to calculate higher-order terms in both the outer and the inner solutions.
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4.1 Higher-order terms in the outer solution

Equating coefficients ofε2 in (12, 13) gives equations forR2(y) andφ2(y). These can be reduced to a
single third-order equation forR2 in a manner directly analogous to that used in the calculation ofR1;
the resulting equation is

d3R2/dy3+ 2(dR2/dy)[1− 3(2a2− 1) tanh2 y] − 12R2[tanhy sech2y− 2(1− a2) tanh3 y]

= g2(y) ≡ 24(1− a2)A2 tanh2 y+ 6a(a2− 3)sech4y+ 3a(7− 2a2)sech6y. (30)

This is the same as (16) except for the difference in the right-hand side, and the solution of the equation
proceeds in exactly the same way as for (16), giving

R2(y)= Kwsech2y

[∫ y1=y

y1=0
Y−(y1)

∫ y2=∞

y2=y1

Y+(y2)g2(y2)

cosh4 y2
dy2 dy1

−
∫ y1=y

y1=0
Y+(y1)

∫ y2=∞

y2=y1

Y−(y2)g2(y2)

cosh4 y2
dy2 dy1

]

+C1,2sech2y
∫ y1=y

y1=0
Y+(y1)dy1+ C2,2sech2y

∫ y1=y

y1=0
Y−(y1)dy1+ C3,2sech2y. (31)

I show in Appendix A that the conditionR2→ A2 asy→∞ is satisfied if and only ifC1,2 = C2,2 = 0.
For matching, we will require the behaviour of this solution neary = 0. I define

H2 = Kw

[
Y−(0)

∫ y2=∞

y2=0

Y+(y2)g2(y2)

cosh4 y2
dy2− Y+(0)

∫ y2=∞

y2=0

Y−(y2)g2(y2)

cosh4 y2
dy2

]
, (32)

I2 = Kw
d

dy1

[
Y−(y1)

∫ y2=∞

y2=y1

Y+(y2)g2(y2)

cosh4 y2
dy2− Y+(y1)

∫ y2=∞

y2=y1

Y−(y2)g2(y2)

cosh4 y2
dy2

]∣∣
∣
∣
y1=0

. (33)

Expansion of the coefficients of (30) as power series neary = 0 then gives

R2(y)=C3,2+ H2y+
(

1

2
I2− C3,2

)
y2+

[
1

2
a−

1

3
H2

]
y3+

[
2

3
C3,2−

1

12
I2

]
y4

+
[(

1

5
a2+

2

15

)
H2+

2

5
(1− a2)A2+

1

10
(a3− 5a)

]
y5+O(y6). (34)

The solution forφ2(y) can then be calculated from

φ2 =
d2R2/dy2+ 2R2[1− (1+ 2a2) tanh2 y] − 3a tanhysech4y

4a
√

1− a2 tanh2 y
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which implies

φ2(y) =
I1

4a
√

1− a2

1

y2
+

C3,2
√

1− a2

a
+

√
1− a2(4A2− a)

2a
y+O(y2). (35)

4.2 Higher-order terms in the inner solution

The expansions (34) and (35) match with higher-order terms in the inner solution. It is necessary to
calculateR̃1, φ̃1, R̃2 andφ̃2 in order to complete the matching. Equating coefficients ofε in (28) gives

d2R̃1/dξ
2 = 0, (36a)

(d/dξ)(R̃2
0φ̃1+ 2R̃0R̃1φ̃0) = 6

√
1− a2R̃0R̃1. (36b)

These equations are subject to the end conditions dR̃1/dξ = R̃1
√

2 andφ̃1 = 0 atξ = 0. Substituting
the leading-order inner solutions (29) into (36) gives the solution

R̃1 = D2(1+ ξ
√

2), φ̃1 = 0, (37)

whereD2 is a constant of integration. Similarly, equating coefficients ofε2 in (28) gives

d2R̃2/dξ
2+ 2R̃0 = 0,

(d/dξ)(R̃2
0φ̃2+ R̃2

1φ̃0+ 2R̃0R̃2φ̃0) = 3
√

1− a2(R̃2
1 + 2R̃0R̃2+ 2A2R̃2

0/a− R̃4
0/a

2)

with end conditions d̃R2/dξ = R̃2
√

2 andφ̃2 = 0 atξ = 0. Using (29) and (37), this has the solution

R̃2 = D3(1+ ξ
√

2)− a

(
1
√

2
ξ2+

1

3
ξ3
)
, (38a)

φ̃2 =

√
2(1− a2)A2

a

[
1+ ξ

√
2−

1

(1+ ξ
√

2)2

]

−

√
1− a2

3(1+ ξ
√

2)3
[8ξ6+ 24

√
2ξ5+ 60ξ4+ 48

√
2ξ3+ 54ξ2+ 9

√
2ξ ]. (38b)

4.3 Higher-order matching

Expansions of the solutions (37) and (38) nearξ = ∞ are straightforward. These expansions together
with (34) and (35) give conditions for matching; as in the leading-order matching, I use the intermediate
variablez= y/ν(ε) = ε ξ/ν(ε), where 1� ν(ε)� ε. The conditions are

R0︷ ︸︸ ︷

a

[
νz−

1

3
ν3z3

]
+O(ν5)+

εR1︷ ︸︸ ︷
(εa/
√

2)[1− ν2z2] +O(εν4)

+

ε2R2︷ ︸︸ ︷

ε2
[
C3,2+ H2νz+

{
1

2
I2− C3,2

}
ν2z2

]
+O(ε2ν3)
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= (εa/
√

2)(1+
√

2νz/ε)
︸ ︷︷ ︸

ε R̃0

+ ε2D2(1+
√

2νz/ε)
︸ ︷︷ ︸

ε2R̃1

+ ε3
[

D3(1+
√

2νz/ε)− a

(
1
√

2
ν2z2/ε2+

1

3
ν3z3/ε3

)]

︸ ︷︷ ︸
ε3R̃2

and

φ0︷ ︸︸ ︷
√

1− a2

(
νz−

1

3
ν3z3

)
+O(ν5)+

εφ1︷ ︸︸ ︷

ε

√
(1− a2)/2(1− ν2z2)+O(εν4)

+

ε2φ2 (continued on next line)
︷ ︸︸ ︷

ε2
[{

I2

4a
√

1− a2

}
1

ν2z2

+

ε2φ2 (continued from previous line)
︷ ︸︸ ︷{

C3,2
√

1− a2

a
+

I2

6a
√

1− a2

}

+

{
(4A2− a)

√
1− a2

2a

}

νz

]

+O(ε2ν2)

= ε
√
(1− a2)/2[

√
2νz/ε + 1]+O(ε3/ν2)

︸ ︷︷ ︸
εφ̃0

+ 0︸︷︷︸
ε2φ̃1

+ ε3
√

1− a2

[
2(A2/a)νz/ε −

(
1

3
ν3z3/ε3+

1
√

2
ν2z2/ε2+

1

2
νz/ε

)]
+ (ε3)

︸ ︷︷ ︸
ε3φ̃2

.

Therefore, the solutions match providedD2 = 0, D3 = H2/
√

2, C3,2 = 0 andI2 = 0. These conditions
determine all the outstanding constants. In particular, the last of the conditions determinesA2. Since
g2(·) is an even function, (33) and (30) give

I2 = 0⇔Re

[
F ′
(
α, β, γ ;

1

2

)]
Re
∫ +∞

−∞
F

(
α, β, γ ;

1+ tanhy

2

)
g2(y)sech4+py dy = 0

⇔ 24(1− a2)A2 Re
∫ +∞

−∞
F

(
α, β, γ ;

1+ tanhy

2

)
tanh2 y sech4+py dy

= 3a Re

[
(6− 2a2)

∫ +∞

−∞
F

(
α, β, γ ;

1+ tanhy

2

)
sech8+py dy

+ (2a2− 7)
∫ +∞

−∞
F

(
α, β, γ ;

1+ tanhy

2

)
sech10+py dy

]
. (39)
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Here, I am using ReF ′
(
α, β, γ ; 1

2

)
6= 0, which is shown in Appendix B. In Appendix B, I also show

that the right-hand side of (39) is identically zero, while the integral on the left-hand side has non-zero
real part for alla ∈ (0, 1). Therefore,A2 = 0, so that even though the solution forR has a correction
at O(ε), the periodic travelling wave that this solution approaches at largey has no correction at either
O(ε) or O(ε2).

5. Discussion

There have been relatively few studies of pattern formation on domains with Robin boundary conditions.
Some work on spiral waves uses Robin conditions (Golubitskyet al., 2000; Ramos, 2003), which give
eigenfunctions with prominent spiral features at a Hopf bifurcation. There have also been some studies
of stationary patterns in reaction–diffusion systems with Robin conditions, motivated by applications
in physics (Hassanet al., 1994), chemistry and physiology (Wio et al., 1993; von Haeftenet al., 1997;
Izuset al., 1998) and developmental biology (Dillon et al., 1994; Maini et al., 2007). None of this work
involves applications to ecology, despite Robin boundary conditions being very natural in this context,
as the appropriate condition when the domain of interest is surrounded by a hostile environment (Ludwig
et al., 1979, Section 1;Cantrellet al., 1998). In such applications, the hostility of the environment means
that the Robin condition will be close to the Dirichlet limit. In this paper, I have focussed on a reaction–
diffusion system ofλ–ω form, which is generic because it is the normal form of any oscillatory system
with scalar diffusion close to a supercritical Hopf bifurcation. I have shown that Robin and Dirichlet
conditions generate a periodic travelling wave of very similar amplitude—much closer than one would
expect intuitively. My specific result is that for the boundary condition (3), the amplitude of the periodic
travelling wave generated far from the boundary has no correction at either O(ε) or O(ε2), although the
solution more generally has a correction at both orders. The complexity of the O(ε2) solution means
that explicit calculation of the O(ε3) correction to the wave amplitude would be extremely laborious but
numerical calculations indicate thatA3 is non-zero. Typical numerical results are illustrated in Fig.3,
and details of the numerical method are given in Appendix C. From the viewpoint of applications,

FIG. 3. An illustration of numerical results indicating thatA3 6= 0, so that there is an O(ε3) correction to the periodic travelling

wave amplitude. I show (•) (a) A−a and (b) wavelength−2π/
√

1− a2. Both plots are againstε on logarithmic axes fora = 0.85.
Superimposed on these results are lines of slope 3. Details of the numerical method used to calculateA(ε) (and the corresponding
wavelength) are given in Appendix C.
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the actual value ofA3 is not critical: the key result is the absence of O(ε) and O(ε2) corrections to the
solution amplitude. Wavelength, time period and wave speed are all simple functions of the amplitudeA:

wave speed=
ω0− ω1A2

√
1− A2

, wavelength=
2π

√
1− A2

, time period=
2π

ω0− ω1A2
. (40)

Therefore, the corrections to these wave properties are also O(ε3). It follows that the Dirichlet boundary
condition is a very good approximation indeed to the Robin condition, from the viewpoint of periodic
travelling wave generation.

There are two main reasons for investigating the quality of this approximation, rather than just
using the Robin condition directly. The first is that the zero density condition is significantly simpler
mathematically. Analysis is much easier for the Dirichlet condition (e.g. Sherratt,2003; Smith et al.,
2008); moreover, numerical solution is much more difficult for the Robin condition, especially in two
dimensions. Secondly, there are often no quantitative data on the extent of the hostility of the surrounding
environment, so that although one anticipates that the Robin condition will be close to the Dirichlet
limit, the actual proximity is hard to estimate. For these reasons, it is important to understand the effect
of using the Robin rather than zero Dirichlet boundary condition.

I am aware of two examples of periodic travelling waves in ecological field data for which
Robin conditions at one boundary provide a plausible explanation. Between 1962 and 1978, a large
spatiotemporal data set was gathered on red grouse (Lagopus lagopus scoticus) on Kerloch Moor (North-
East Scotland) (Watsonet al., 1984). Subsequent analysis of the data has revealed periodic travelling
waves moving across the domain at a speed of 2–3 km/year (Mosset al., 2000). One edge of the study
area is bordered by farmland, which is a very hostile environment for red grouse (Piertneyet al., 1998).
Therefore, a Robin condition is appropriate at this boundary and could be responsible for the observed
periodic travelling waves.

The second example concerns field voles (Microtus agrestis) in Kielder Forest (Northern UK). A
spatiotemporal field study of these voles has been running for about 20 years and shows that the voles
exhibit population cycles that are spatially organized into periodic travelling waves, moving at a speed
of 15–20 km/year (Lambinet al., 1988;MacKinnonet al., 2001). The voles are subject to both ter-
restrial predation (mainly weasels,Mustela nivalis) and avian predation (mainly short-eared owls,Asio
flammeus) (Pettyet al., 2000). The former will be roughly uniform across the forest, but one expects
that the latter will be significantly greater in and around large open spaces, which facilitate hunting. By
far the largest such open space is Kielder Water, a very large reservoir in the middle of the forest. The
natural boundary condition for voles at the reservoir edge would therefore be of Robin type, correspond-
ing to the rate at which voles are killed at the reservoir edge being proportional to vole density there;
the condition would be close to the Dirichlet limit because of the high level of avian predation, which
removes 10–15% of the overall vole population per year (Pettyet al., 2000). Therefore, in this case also,
the observed periodic waves can be explained by a Robin condition at a boundary of the domain.

There are two main differences between these ecological situations and the simple model studied
in this paper. Firstly, the systems are at some distance from Hopf bifurcation; indeed, any population
cycles that merit the time and expense of spatiotemporal field study will inevitably be of relatively large
amplitude. Secondly, although the Robin/Dirichlet boundary conditions are relative to zero population
density in both ecological systems and theλ–ω model, in the former case the cycles occur around a
different, non-trivial equilibrium. These differences mean that a significant extension of my work is
needed before a full comparison of Robin and Dirichlet boundary conditions can be made in realistic
ecological models.
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There is an increasing body of evidence from ecological field studies suggesting that periodic trav-
elling waves are a widespread spatiotemporal pattern in cyclic populations (Ranta & Kaitala, 1997;
Lambin et al., 1998; Rantaet al., 2002; Johnsonet al., 2004; Sherratt & Smith, 2008). A thorough
mathematical understanding of the dynamics underlying such patterns is crucial, in view of the consid-
erable time and expense required for field studies. The work in this paper represents one step in this
on-going process.
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Appendix A

A.1 Introduction

In this appendix, I discuss the behaviour asy → ∞ of the general solutions of (16) and (30). Recall
from (22) and (31) that these are given by the sumC1,i T 1 + C2,i T2 + C3,i T3 + T4,i , whereC1,i , C2,i
andC3,i are constants of integration and

T1= sech2y
∫ y1=y

y1=0
Y+(y1)dy1,

T2= sech2y
∫ y1=y

y1=0
Y−(y1)dy1,

T3= sech2y,

T4,i = Kwsech2y

[∫ y1=y

y1=0
Y−(y1)

∫ y2=∞

y2=y1

Y+(y2)gi (y2)

cosh4 y2
dy2 dy1

−
∫ y1=y

y1=0
Y+(y1)

∫ y2=∞

y2=y1

Y−(y2)gi (y2)

cosh4 y2
dy2 dy1

]
.

Here,Y±(y) = Re
[
sechpyF

(
α, β, γ, 1±tanhy

2

)]
, p = −3+

√
12a2− 11,α + β = 1+ 2

√
12a2− 11

andαβ = γ = 1 +
√

12a2− 11. The constantKw is defined byY+(y)Y−
′
(y) − Y−(y)Y+

′
(y) =

Kw cosh6 y. By construction,T4,i → Ai asy→∞, and the limiting behaviourT3 ∼ 4 e−2y asy→∞
is immediate. However, the behaviour ofT1 andT2 asy→∞ depends onγ −α−β = −

√
12a2− 11,

and I consider separately the three cases ofa2 greater than, equal to and less than 11/12.

A.2 Case 1:1> a2 > 11/12

A.2.1 Leading-order behaviour ofT1. For values ofa in this range,γ − α − β is real and negative,
so that

F(α, β, γ ; ξ) ∼
Γ (γ )Γ (α + β − γ )

Γ (α)Γ (β)
(1− ξ)γ−α−β asξ → 1−

(Abramowitz & Stegun, 1964, Section 15.3.6). Therefore, asy→∞

Y+(y)∼
Γ (γ )Γ (α + β − γ )

Γ (α)Γ (β)
(e−2y)γ−α−β(2 e−y)p

=
2pΓ (γ )Γ (α + β − γ )

Γ (α)Γ (β)
exp{(3+

√
12a2− 11)y}.

Here, I am usingp = −3+
√

12a2− 11. Therefore,

T1 ∼
2p+2Γ (γ )Γ (α + β − γ )

Γ (α)Γ (β)(3+
√

12a2− 11)
exp{(1+

√
12a2− 11)y} asy→∞.
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A.2.2 Leading-order behaviour ofT2. F(α, β, γ ; 0) = 1 in all cases (Abramowitz & Stegun, 1964,
Section 15.1.1). Therefore,Y−(y) ∼ 2p e−py asy→∞ and thus

T2 ∼
2p+2

3−
√

12a2− 11
exp{(1−

√
12a2− 11)y} asy→∞.

A.2.3 Conclusions in this case.From these various leading-order forms, it follows thatT1 andT2→
∞ as y → ∞, at different rates, whileT3 → 0 andT4,i → Ai . Since the sumC1,i T1 + C2,i T2 +
C3,i T3+ T4,i must approach a finite limit asy→∞, it is necessary thatC1,i = C2,i = 0.

A.3 Case 2: a2 = 11/12

A.3.1 Leading-order form ofT1. Whena2 = 11/12,γ − α − β = 0, so that

F(α, β, γ ; ξ) ∼
−Γ (α + β) log(1− ξ)

Γ (α)Γ (β)
asξ → 1−

(Abramowitz & Stegun, 1964, Section 15.3.10). Therefore, asy→∞,

Y+(y) ∼
y e3y

4Γ (α)Γ (β)
.

Here, I am using the fact thatα + β = 1 andp = −3 in this case. Therefore,

T1 ∼
y ey

3Γ (α)Γ (β)
asy→∞.

A.3.2 Leading-order form ofTTT 222 As in SectionA.2.2, T2 ∼ 1
6ey asy→∞.

A.3.3 Conclusions in this case.AgainT1 andT2→∞ at different rates asy→∞, while T3→ 0
andT4,i → Ai . Since the sumC1,i T1+C2,i T2+C3,i T3+ T4,i must approach a finite limit asy→∞,
it is necessary thatC1,i = C2,i = 0.

A.4 Case 3: a2 < 11/12

A.4.1 Leading-order form ofT1. Whena2 < 11/12,γ − α − β is pure imaginary, so that

F(α, β, γ ; ξ) ∼
Γ (γ )Γ (γ − α − β)

Γ (γ − α)Γ (γ − β)
+
Γ (γ )Γ (α + β − γ )

Γ (α)Γ (β)
(1− ξ)γ−α−β asξ → 1−

(Abramowitz & Stegun, 1964, Section 15.3.6). Therefore,

sechpyF

(
α, β, γ,

1+ tanhy

2

)
∼
[
Γ (γ )Γ (γ − α − β)

Γ (γ − α)Γ (γ − β)
+
Γ (γ )Γ (α + β − γ )

Γ (α)Γ (β)
e2(α+β−γ )y

]
2p e−py

=
Γ (γ )Γ (γ − α − β)

Γ (γ − α)Γ (γ − β)
2p exp{(3−

√
12a2− 11)y}

+
Γ (γ )Γ (α + β − γ )

Γ (α)Γ (β)
2p exp{(3+

√
12a2− 11)y} asy→∞

⇒ Y+(y) ≡ Re

[
sechpyF

(
α, β, γ,

1+ tanhy

2

)]
∼ (k1 sinδy+ k2 cosδy) e3y asy→∞.
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Here, the real numbersδ, k1 andk2 are given by

δ = −i
√

12− 11a2

k1 = Im
[
2pΓ (γ )

{
Γ (α+β−γ )
Γ (α)Γ (β) −

Γ (γ−α−β)
Γ (γ−α)Γ (γ−β)

}]
, (A.1)

k2 = Re
[
2pΓ (γ )

{
Γ (α+β−γ )
Γ (α)Γ (β) +

Γ (γ−α−β)
Γ (γ−α)Γ (γ−β)

}]
. (A.2)

Therefore,

T1 ∼
4 ey

9+ δ2 [(3k1+ δk2) sinδy+ (3k2− δk1) cosδy] asy→∞.

A.4.2 Leading-order behaviour ofT2. As in SectionA.2.2,

Y−(y) ∼ Re[2p e−py] = (k3 sinδy+ k4 cosδy)e3y asy→∞,

wherek3 = −Im(2p) andk4 = Re(2p). Therefore,

T2 ∼
4 ey

9+ δ2 [(3k3+ δk4) sinδy+ (3k4− δk3) cosδy] asy→∞.

A.4.3 Conclusion in this case.AgainT1 andT2→∞ asy→∞, while T3→ 0 andT4,i → Ai . In
this case,T1 andT2 exhibit growing oscillations asy→∞, with the same growth rate, but their linear
independence implies thatC1,i = C2,i = 0.

Appendix B

In this appendix, I derive three results which together imply thatI1 = I2 = 0.

B.1 First result

I begin by showing that

∫ +∞

−∞
F

(
α, β, γ ;

1+ tanhy

2

)
sech10+py dy =

6− 2a2

7− 2a2

∫ +∞

−∞
F

(
α, β, γ ;

1+ tanhy

2

)
sech8+py dy.

(B.1)
I define

Qµ =
∫ +∞

−∞
F

(
α, β, γ ;

1+ tanhy

2

)
sech2µy dy.

Substitutingξ = (1+ tanhy)/2 in the integral gives

Qµ = 22µ−3
∫ 1

0
(ξ − ξ2)µ−1F(α, β, γ ; ξ) dξ. (B.2)
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From (19),

F(α, β, γ ; ξ) =
ξ − ξ2

p+ 4

d2F

dξ2
+ (1− 2ξ)

dF

dξ
; (B.3)

here and henceforth, I omit the arguments ofF for brevity. Substituting (B.3) into (B.2) gives

Qµ =
22µ−3

p+ 4

∫ 1

0
(ξ − ξ2)µ

d2F

dξ2
dξ + 22µ−3

∫ 1

0
(ξ − ξ2)µ−1(1− 2ξ)

dF

dξ
dξ

= 22µ−3
(

1−
µ

p+ 4

)∫ 1

0
(ξ − ξ2)µ−1(1− 2ξ)

dF

dξ
dξ

on integrating the first integral by parts. Applying integration by parts again gives

Qµ = 22µ−3
(

1−
µ

p+ 4

)∫ 1

0
F(ξ)[2(ξ − ξ2)µ−1+ (1− µ)(ξ − ξ2)µ−2(1− 2ξ)2] dξ

=
(

1−
µ

p+ 4

)
{(4µ− 2)Qµ + 4(1− µ)Qµ−1}

⇒ Qµ =
4(p+ 4− µ)(1− µ)

(p+ 4)(3− 4µ)+ 2µ(2µ− 1)
Qµ−1. (B.4)

Substitutingµ = 5+ p/2 andp = −3+
√

12a2− 11 into (B.4) gives (B.1).

B.2 Second result

I now show that ReJ 6= 0 for all a ∈ (0, 1), where

J =
∫ y=∞

y=0

[
F

(
α, β, γ ;

1+ tanhy

2

)
+ F

(
α, β, γ ;

1− tanhy

2

)]
tanh2 y sech4+py dy.

Straightforward simplification shows thatJ = Q2+p/2/21+p − Q3+p/2/23+p, and (B.4) then gives

J =
3p2+ 18p+ 16

2p+3(p2+ 6p+ 6)
Q2+p/2 = 21−

√
12a2−112+ 9(1− a2)

1+ 6(1− a2)
Q2+p/2.

Becauseγ = (1+α+β)/2, the hypergeometric functionF(α, β, γ ; z) can be expressed in terms of an
associated Legendre function of the first kind (seeAbramowitz & Stegun, 1964, Section 15.4.19). This
implies

Q2+p/2= 2p+2Γ

(
1+ α + β

2

)∫ +1

−1
(1− ζ )−1/2P(1−α−β)/2(α−β−1)/2 (ζ )dζ

=
2p+2+(1−α−β)/2πΓ

(
3−α−β

4

)
Γ
(

1+α+β
4

)
Γ
(

1+α+β
2

)

Γ
(

3+α−β
4

)
Γ
(

3−α+β
4

)
Γ
(

1+α
2

)
Γ
(

1+β
2

)
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usingGradshteyn & Ryzhik(2000, Section 7.132.1). Explicit calculation ofα andβ using (21) then
gives

J =
π 2+9(1−a2)

2+12(1−a2)
Γ

(
1−
√

12a2−11
2

)
Γ

(
1+
√

12a2−11
2

)
Γ (1+
√

12a2−11)

Γ

(
3−
√

48a2−47
4

)
Γ

(
3+
√

48a2−47
4

)
Γ

(
3+2
√

12a2−11−
√

48a2−47
4

)
Γ

(
3+2
√

12a2−11+
√

48a2−47
4

) .

All the various arguments of the Gamma functions in this expression have positive real part whenever
a ∈ (0, 1), and thereforeJ 6= 0.

It remains to show thatJ is not pure imaginary. The expressions(1±
√

12a2− 11)/2 are either real

or complex conjugate, and sinceΓ (z) = Γ (z), the productΓ
(

1−
√

12a2−11
2

)
Γ
(

1+
√

12a2−11
2

)
is always

real. Similar reasoning shows thatJ is always real ifa >
√

11/12; otherwise,

argJ = argΓ (1+ iσ)− argΓ

(
3+ 2iσ + i

√
3+ 4σ 2

4

)

− argΓ

(
3+ 2iσ − i

√
3+ 4σ 2

4

)

,

whereσ =
√

11− 12a2. Combining Sections 6.1.27, 6.3.2 and 6.3.16 inAbramowitz & Stegun(1964)
then gives argJ =

∑n=∞
n=0 qn, where

qn = tan−1

(
2σ +

√
3+ 4σ 2

4n+ 3

)

+ tan−1

(
2σ −

√
3+ 4σ 2

4n+ 3

)

− tan−1
(

σ

n+ 1

)
.

Explicit differentiation gives

d2qn

dσ 2
=

2σnQn(σ
2)

[(4n2+ 6n+ 3+ 2σ 2)2− σ 2(3+ 4σ 2)]2(n2+ 2n+ 1+ σ 2)2
.

Here, Qn(σ
2) is a quadratic function ofσ 2, and explicit calculation of the roots ofQn shows that

Qn(σ
2) < 0 for all n > 1 andσ ∈ (0,

√
11) (details omitted for brevity). Therefore, d2qn/dσ 2 <

0 for all n > 1 andσ ∈ (0,
√

11). Straightforward applications of the Weierstrass test show that∑n=∞
n=0 dqn/dσ and

∑n=∞
n=0 d2qn/dσ 2 both converge uniformly onσ ∈ [0,

√
11], and thus d2 argJ/

dσ 2 < 0 for all σ ∈ (0,
√

11). Moreover, direct calculation shows that d argJ/dσ > 0 whenσ =
√

11,
and thus d argJ/dσ > 0 for all σ ∈ (0,

√
11). (Note that dqn/dσ is not positive for allσ and n.)

Finally, argJ = 0 whenσ = 0 and argJ ≈ 0.075π whenσ =
√

11, by direct calculation. Therefore,
argJ ∈ (0, π/2) for all σ ∈ (0,

√
11), i.e. for all a ∈ (0, 1), so thatJ is never pure imaginary. In

combination with the result thatJ 6= 0, this implies that ReJ 6= 0 for all a ∈ (0, 1).

B.3 Third result

Finally, I show that ReF ′
(
α, β, γ ; 1

2

)
6= 0 for a ∈ (0, 1). Simplification usingAbramowitz & Stegun

(1964, Sections 15.1.24 and 15.2.1) gives

F ′
(
α, β, γ ;

1

2

)
=

4
√
πΓ (αβ)

Γ (α/2)Γ (β/2)
=

4
√
πΓ (1+

√
12a2−11)

Γ
(

1+2
√

12a2−11−
√

48a2−47
4

)
Γ
(

1+2
√

12a2−11+
√

48a2−47
4

) .
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All three arguments of the Gamma functions in this expression have positive real part whenevera ∈
(0, 1). SinceΓ (z) is analytic and non-zero over the whole complex plane except for simple poles at
z = 0,−1,−2, . . ., this implies thatF ′

(
α, β, γ ; 1

2

)
6= 0 for 0 < a < 1. A similar argument to that

above shows thatF ′
(
α, β, γ ; 1

2

)
is not pure imaginary; its argument increases monotonically from zero

to about 0.27π asa decreases from
√

11/12 to zero. There is a slight complication in this case, in that
the first term in the series expansion of the argument does not always have a negative second derivative
with respect toσ , but this is easily rectified by considering the sum of the first two terms; the other terms
all do have negative second derivative. Therefore, ReF ′

(
α, β, γ ; 1

2

)
6= 0 for all a ∈ (0, 1).

Appendix C

In this appendix, I describe the numerical method used to calculate the dependence of periodic travelling
wave amplitudeA on ε. This is used to generate the results shown in Fig.3.

My basic approach is to solve (12) numerically. The required solution satisfies end conditions at
y = 0 andy → ∞ that are given in (13), and in practice it is most convenient to solve backwards
in y, starting close to the steady stateR = A, R′ = 0, φ =

√
1− A2. Straightforward calculation

shows that this equilibrium has a unique stable eigenvector, and I solve (12) as an initial-value problem
starting close to the steady state, on the eigenvector corresponding to this stable eigenvalue, withR (and
φ) slightly below their equilibrium values. (Numerical calculations suggest that for initial values on the
eigenvector withR andφ slightly above the steady-state levels,R andφ increase towards∞ as y is
decreased.) I integrate the equations for decreasingy, until φ becomes zero. The appropriate value ofε
can then be read off asR

√
2/R′. Note that in this numerical approach, it is not necessary to keep track

of the actual values ofy.
I implement this procedure using the solverDLSODAR (Hindmarsh, 1983; Petzold, 1983) which

is part of theODEPACK collection. The solver automatically switches between an Adams predictor–
corrector method and a Gear backward differentiation formula method and automatically stops integra-
tion when specified algebraic conditions are satisfied. This makes it straightforward to integrate up to
the point at whichφ becomes zero. The numerical code is freely available at www.netlib.org.
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