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Periodic travelling waves are an important solution form in oscillatory reaction—diffusion equations. |
have shown previously that such waves arise naturally near a boundary at which a Dirichlet condition is
applied. This result has applications in ecology, providing a potential explanation for the periodic waves
seen in a number of natural populations. However, in ecological applications the Dirichlet boundary con-
dition typically arises as a simple approximation to a more realistic Robin condition. In this paper, |
consider the generation of periodic travelling waves by Robin boundary conditions and how the wave
amplitude compares with that arising from Dirichlet conditions. | study-a»' system of equations,
which is the normal form of an oscillatory reaction—diffusion system with scalar diffusion matrix close
to a Hopf bifurcation. | consider a Robin boundary condition close to the Dirichlet limit, with proxim-
ity measured by a small parameterand | study the equations as a perturbation problem in this small
parameter. | show that the perturbation is singular and that although the solution itself changes at O
the amplitude of the periodic travelling wave which this solution approaches far from the boundary is
unchanged at both @) and Qe2). This provides strong justification for the use of the Dirichlet approx-
imation to the Robin condition when studying periodic travelling wave generation in equatidrs of

type. Finally, | discuss the ecological applications of the results.

Keywords oscillatory system; perturbation theory; reaction-diffusion; wavetrain.

1. Introduction

Oscillatory reaction—diffusion equations are a class of model with important applications in many areas
of biology, ranging from calcium signalling in cell biologyKeyd & Sherrait1997 Timofeeva &
Coombes2003 to population dynamics in ecologiPéscual1993 Petrovskiiet al., 2001 Medvinsky

et al, 2002 Garvie 2007). In one space dimension, the most important solution type for such equations
is periodic travelling waves. These are the 1D version of more complicated 2D behaviours such as spiral
and scroll waves and are also important in their own right. For example, periodic travelling waves have
recently been identified in a number of ecological systebasnpin et al., 1998 Mosset al, 2000
MacKinnonet al, 2001, Bjgrnstadet al,, 2002 Johnsoret al, 2004 Biermanet al.,, 2006).

Periodic travelling waves arise when oscillatory reaction—diffusion equations are subject to inhomo-
geneities that drive the system away from spatially uniform oscillations. These may have the form of
noise in parameter valueblggan 1981 Kopell, 1981, Kay & Sherratf 2000 or forcing applied at a
boundary of the domain. Both mechanisms have been studied extensively for chains of coupled oscilla-
tors Ermentrout & Kopel] 1984 1986 Kopell et al,, 1991 Ren & Ermentroyt1998, but in oscillatory
reaction—diffusion equations, there has been very little work on boundary-driven periodic travelling
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waves, despite early work Byuchmuty & Nicolis(1976 on the Brusselator model with Neumann and
Dirichlet boundary conditions.

In a previous papeSherratt2003, | studied the generation of periodic travelling waves by Dirichlet
boundary conditions in a~w’ system. These equations are the normal form of an oscillatory reaction—
diffusion system with scalar diffusivity close to a supercritical Hopf bifurcatidagsardcet al,, 198%;
Guckenheimer & Holmes 983 and have the form

AU/t = Uyy + (1 — r)u — (wo — w1r %), (1a)
00 /0t = vyx + (wo — w1rHu + (L —r?)o, (1b)

wherer = (U2 + v2)%/2. In an ecological application, the variablesindo would reflect the deviation
of population densities from a coexistence steady state; heao€elv can be positive or negative. The
parametersg andw; would be functions of ecological parameters that can be derived via the theory of
normal forms Hassardet al., 1981 Guckenheimer & Holmed 983 Sherratt2007). In Sherrat{2003,
| studied the systemlf on a semi-infinite domain G X < oo, subject to the boundary condition
u =0 = 0 atx = 0. | showed that the long-term solution has a simple analytical form (given below)
and that this solution approaches a periodic travelling wave at large

In many ecological applications, Dirichlet boundary conditions are used as a simplifying approxi-
mation, with a more accurate boundary condition being of Robin (mixed) type. The derivation of such
a Robin condition was first presented bydwig et al. (1979. Suppose that a population of density
W(X, T) occupies the regioX > 0, satisfying the equatiowr = DWxx + f(W). Suppose further
that X < 0 is a hostile environment on whidWV satisfiesWr = DWxx — #W. This equation has a
unique (up to scaling) bounded equilibrium solution Xn< 0, and matching densities and fluxes at
X = 0vyields

(D/mY2Wx = W. )

Since theX < 0 region is hostile, one expecjgo be a large parameter, so that the Dirichlet condition
W = 0 is a natural approximation at the boundary. In practice, almost all studies use the approximate
Dirichlet condition rather than the Robin condition; for recent exceptions, see Cagitiall (1998
2002).

In this paper, | investigate the way in which Robin and Dirichlet boundary conditions differ in terms
of the generation of periodic travelling waves. Specifically, | consitfeol 0 < X < oo, subject to

€Uy =U, evx=0 atx=0, 3)

with ¢ « 1. This is not directly analogous t8)( sinceW is a population density, whereas in ecological
applicationsy ando would correspond to the difference between population density and a non-trivial
uniform steady state. The advantage3)fi§ that it preserves the circular symmetry inherentlinghd
thus offers mathematical simplification ov@)(Therefore, | used) as a first stage in the comparison of
Robin and Dirichlet boundary conditions. Fd) ubject to 8), | will show that although the overall so-
lutions foru andv change at @), the periodic travelling wave that develops at laxggoes not change
either at ordek or €2. This provides strong justification for the use of the Dirichlet approximation to
the Robin condition when studying periodic travelling wave generatiof)in (

In Section2, | give a more detailed introduction fie-w systems. In Sectiorgand4, | determine the
O(e) and Qe?) corrections to the solution, showing that in both cases there is no change in the limiting
behaviour at large, which is the periodic travelling wave solution. Finally in Sectl®r discuss the
implications of my results, focussing in particular on ecological applications.
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2. A-o systems

In their seminal paper on oscillatory reaction—diffusion systdfogell & Howard (1973 showed that
any such system with scalar diffusivity has a one-parameter family of periodic travelling waves. They
also introduced thé—w equations and showed that fd)(the family has the simple form

U=r*cosPo £ v1—r*2x + (wo — w1r *At],
v =r*sinfo £ v1—r*2x + (wp — wr *Ait].

Here,r* is the solution amplitude (& r* < 1) and is the most convenient parameter for the wave
family. Over the last three decades, the simple form of this periodic wave family has provided an in-
valuable reference point for the study of periodic travelling waves in more general reaction—diffusion
systems. This work has focussed in particular on the existence and stability of periodic travelling waves
(Ermentrout 1981; Maginu, 1979 1981; Kapitula 1994, other cases with exact solutior@qpe 1979
Romeroet al, 2000 and the generation of periodic travelling waves by environmental heterogeneities
(Auchmuty & Nicolis 1976 Hagan 1981, Kopell, 1981, Kay & Sherratf 2000 Sherratt 2003
and behind invasive wavefrontSiferratt 1994 1996 Ermentroutet al,, 1997 Petrovskiiet al, 1998
Petrovskii & Malchow 200Q 2001, Webb & Sherratt2004 Garvig 2007).

Analytical study of () is greatly facilitated by rewriting the equations using= +~/uZ + 12 and
0 = tan1(v/u) as dependent variables. This gives equations of the form

My =rxx — 02 +r(1—r?), (4a)

2r Oy

p +wp — w11, (4b)

Ht =9xx+

while the periodic travelling waves are

r=r* 60=0+v1-r2x+ (wg— wir*t. (5)
In terms ofr and#, the Robin boundary conditior8) has the form
erx=r, 6Ox=0 atx=0. (6)

Figurel illustrates a typical solution oflj subject to these end conditions; | plot the solutionsupr

v, r and#y. Once initial transients have disappeared, the solution has the form of periodic travelling
waves moving away from the = 0 boundary. The waves appear as sinusoidal oscillationsaimdo

and correspond to constant values @ndédx. In fact, numerical solutions suggest that when plotted in
terms ofr anddy, the entire long-term solution is a functionxobnly, independent of time. Substituting

r = R(x) andfx = ¥ (x) into (1) gives a third-order system of ordinary differential equations for this
long-term solution:

R+ R(1L— R? —¥?) =0, (7a)
Py + 2¥ Ry /R + w1 A% — 01 R? = 0. (7b)

Here, A is a constant of integration, into which the parametgrhas been incorporated; a periodic
travelling wave satisfying these equations must have amplifudehe boundary conditiorgf implies
that

eRk=R and ¥ =0 atx=0. (8)
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FiG. 1. An illustration of periodic travelling wave generation in they system of equationdl) subject to the Robin boundary
condition @) atx = 0. | show space-time plots farandv, in which a series of solutions are plotted at equally spaced times, with
vertical separation corresponding to the time interval. The solution has the form of periodic travelling waves moving away from
thex = 0 boundary. | also plot the long-term solutions for the amplituéad phase gradient. These both evolve to a steady
state, independent of time. The parameter valuesgre: 1.5, w1 = 0.5 ande = 0.3, and the solution is solved on the spatial
domain O< x < 250 with zero-flux boundary conditions at= 250, to replicate a semi-infinite domain. The initial conditions

for u ando are given by randomly generated values betweérand 1. The solutions farandy are plotted at = 2500, while

for u ando, | plot 60 solutions at equally spaced times in the period 2300 < 2500. The equations were solved numerically
using a semi-implicit Crank—Nicolson method.

Since we are looking for a solution that approaches a periodic travelling wave away from=th@
boundary, we also require

R> A and ¥ — Vv1—-AZ asx— oo. 9)

The amplitudeA will depend on the parametedg ande; Fig. 2 illustrates this dependence, determined
from numerical solutions oflj. Note in particular that asincreases from zero, the wave amplituble
gradually increases.
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FiIG. 2. An illustration of the variation witle of the amplitude of periodic travelling waves that form away from xhe= 0
boundary in 1) subject to ). The amplitude is calculated from numerical solutionslofe) on a large domain. The parameter
values areng = 1.5 andwq = 0.6.

In Sherrat(2003, | showed that in the case ef= 0 (Dirichlet boundary condition),79) has the
exact solution

R(x) = Ry(X) = atanh(x/+/2), (10a)
P(X) = Po(X) = —sign(w1)v/1 — a2tanh(x/+/2), (10b)

with

-1/2
a=A|E=0={%[1+,/1+gw§” . (12)

This exact solution raises the possibility of determining an approximate form for the solution and in
particular the wave amplituda, whene is small but non-zero.

3. Solution for smalle
3.1 Specialcase ab; =0

| begin by considering the special case®af= 0, which implies that = 1. Then, {-9) can be solved
exactly, giving the solution

R=tanh[(x + x0)/+/2] and ¢ =0,

1 2
wherexg = 72 log[v/2e + v/1+2¢2] = ¢ — 563 + O(e®).
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Therefore in this casé) = 1, independent of, so that the periodic travelling wave generated by the
boundary conditions has the degenerate form of a spatially uniform oscillation.
In the subsequent calculations, | assume ¢éhag 0, so thata < 1.

3.2 Formulation of the problem

Some algebraic simplification in the study @J s given by usingy = x/+/2 as independent variable
and by substitutingy = —sign(w1)¢ and|w1| = 3v1 — a2/(a2v/2). Recall thatA is the amplitude
of the periodic travelling wave solution, whikeis the corresponding amplitude when= 0. These
substitutions give

d?R/dy? 4+ 2R(1 — R? — ¢?) = 0, (12a)
de/dy + 2(¢/R)dR/dy — 3v/1 — a2A2/a2 + 3V/1 — a2R?/a% = 0, (12b)
while the boundary conditions become
edR/dy=Ry2 and ¢ =0 aty=0, (13a)
R—> A and ¢ > vV1—AZ asy— oo. (13b)

For smalle, one can investigate solutions dfg} subject to {3) in the usual way, by expanding, y
and A as power series ia

R=atanhy + eR; + €’Ro+ - - - , (14a)
¢ =+v1—a2tanhy + ep1 + €2po+ - - - , (14b)
A=a+eA +e?Ap+---. (14c)

My aim is to determine the correctio§ to the wave amplitude; to do this it is necessary to find the
corresponding solution®; andg; .

3.3 Ordere solution

Substituting 14) into (12, 13) and equating coefficients efgives
d?Ry/dy? + 2R([1 — (1 + 2a°) tani? y] — 4av/1 — a2tanif y¢1 = 0, (15a)

atanhy dg1/dy + 2asecify¢; + 2v/1 — a2 tanhy dRy/dy
+ (4tanify — 1)Ry — 3Astanhy] = 0. (15b)

These equations can be converted into a single third-order equati®a for differentiating (5a) with
respect toy and eliminatingps, giving

d®Ry/dy® + 2(dRy/dy)[1 — 3(2a® — 1) tantt y]
—12Ry[tanhy secRy — 2(1 — a®) tani y] = gi(y) = 24(1 — a®)Ar tanif y. (16)

| am looking for solutions of this equation subject®e = a/+/2 aty = 0 andR; — A asy — oo.
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The third-order equationlg) can be reduced to second order using the derivative of the leading-
order solution {0). SubstitutingRy(y) = secfyY (y) gives

d*r/dy® — 6tanhy d?Y/dy? + [12(2 — a®) tant? y — 4]dY/dy = gi(y) cosif y. (17)

Further substitution reduces the homogeneous equation correspondifpttog hypergeometric equa-
tion. Specifically, | set

w = (dr/dy)cosi’y and ¢ = (1+tanhy)/2 withp= -3+ 123211 (18)

This substitution is adapted from Section 2.1.2.22Paolfyanin & Zaitse2003; after some algebraic
simplification, it reduces the homogeneous versiorld@j {o

E(E = 12w /dE2 + (p+ 4) (28 — Ddw/dE + (p+ dw = 0. (19)

Note that for some values of the parametep and hence the solutiom are complex. Linearly inde-
pendent solutions ofLQ) are given by

w=F(,p,7;¢) and w=F(ap y;1-9), (20)

where
a+p=2p+7=1+2V/12a2 — 11, (21a)
af=y=p+4=1+1222-11 (21b)

(Abramowitz & Stegun1964 Section 15.5(Gradshteyn & Ryzhik200Q Section 9.153.7).
The general solution fo"(y) and henceR;(y) then follows in the standard way (Polyanin &
Zaitsev,2003 Section 0.2.1-6):

Yi=Yy Y2=00 Y+
Ri(y) = K, seciy [ / Y~ (y1) Mdyz dy;
y:

=0 Yo=Yy1 costf y,
yi=y Y2=00 y—
- / Y*(y) Y0202 g, dyl]
y1=0 yo=y,  costy,
yi=y =y
+ Cy.1seclfy Y*+(y1)dys + Cp 15ecHy Y~ (y1)dy; + Csz1seciy, (22)
y1=0 y1=0
where
Y*(y) = Re[secRy F(a, 8, 7, (1 + tanhy)/2)]. (23)
Here,F(, -, -, -) is the hypergeometric function. The functigi(y) is defined in 16), and the constant

K., is defined by T (y)Y~"(y) = Y= (y)Y+ (y) = K,, cosf y. K,, is a complicated function af and

for brevity | omit its exact form, which is not required in the subsequent calculations. The various limits
of integration are chosen to simplify subsequent calculations. In Appendix A, | derive the behaviour
of (22) asy — oo. This shows that the conditioR; — A; asy — oo is satisfied if and only if
Ci1=Cy1=0.
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To consider the boundary conditionsyat= 0, it is necessary to investigate the behaviour of the
solution @2) neary = 0. | define

Y2=20 Y+ (y2)g1(y2) dys — Y*(0) Y2=0 Y~ (y2)01(Y2) dyz}

Hi=K,|Y (0
TR [ © yo=0 cost y» yo=0 cost y»

=241 — az)AleRe[F (a,ﬁ, y; %)}

y=00 1+ tanh 1-—tanh
X Re/ [F (a,,b’, an ﬂ) - F (a,ﬂ, 75 ﬂ)} tani? ysecl‘?‘prdy,
y

=0 2 2
(24)
d Y2=00 y+ Y2=00 y—
1=K, — [Y_(yl) Mdyz —YH(y) (¥2)91(Y2) dyz}
dy1 yo=y1  costy; yo=y,  costy, y1=0

1
:24(1 _ az)AleRe|:F/ (a,ﬁ, Vs 5):|

y=00 1+ tanh 1—tanh
xRe/ [F (a,ﬂ,y;ﬂ)+F(a,ﬂ,y;ﬂ)}tanﬁysecﬁ”ydy.
y

=0 2 2
(25)
Expanding the coefficients 016) as power series ig then implies that neay = 0
1 1 2 1
&M=Cu+Hw+Gh—%Oﬁ—§WW+h%yq?4W+QW) (26)
using @2). Equation {5a) then implies that
|1 1 C3,1«/ 1- a2
4av/1—a? y?

p1(y) = + O(y) (27)

for smally.

There are two undetermined constants in the solution | have de@gdand A;. One anticipates
that these constants will be determined by the boundary condife(® = a/+/2 and¢1(0) = O;
however, the expansion26) and @7) imply that the boundary conditions cannot both be satisfied for
any values ofC3 1 and A;. This suggests that an inner (boundary) layer solution is requiredynedd,
and | now consider the form of such an inner solution.

3.4 Leading-order inner solution and matching
The appropriate inner equations are given by re-scafirfgand¢ neary = O:
E=yle, R=R/e, §=¢/e
Substituting these re-scalings intt?f gives
d?R/dE? + 262R — 2¢*R(R? + ¢°) = 0, (28a)
a® d(R?g)/d¢

— R[a® + 2A1€a + (A? + 2aAp)e?] + €2R* = O(€d). 28b
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In the usual way, | expanR and¢ as power series ia:
R=Ry+ R+ €°Ry,
b =do+ ed1 + €2p2
and substituting these int@§) and (L3a) gives to leading order
d*Ro/d? =0,
d(R2o)/ds = 3v/1 - a2R}
subject to Ry/dé = Ryv/2 andgp = 0 até = 0. The solution of these equations is

Ro=Di(1+&v2), do=/(1-a2)/2[1+EvV2-1/(1+EV2)7, (29)
whereD; is a constant of integration. To match this leading-order inner solution with the outer solutions
Ro + ¢Ry and ¢p + €¢1, it is necessary to expand the inner solutionsfor> oo and to use the
expansionsZ6) and @7) neary = 0. | express these expansions in terms of the intermediate variable
z=y/v(e) = €& /v(¢), where 1> v(€) > €. Then, the conditions for matching are

Ro eRy cﬁo
—

rm—
avz+ O3 +¢€[Cs1 + O(W)] = eD1(1+ v2vz/e)

and

I C31v/1—a?
V1-—a2vz+ 003+ €1 +e21 + O(ev

> ) day/1— a2v2z2 a )
0

€p1

=¢,/(1—a?)/2[V2vz/e + 1+ (?/v?)].

€go

These conditions are satisfied provided tBat= C3 1 = a/+/2 andl; = 0. In Appendix B, | show that

y=00 —
/ . [F (a,ﬁ, s Lgnhy) +F (a,ﬁ, s %’)} tanif y sec Py dy
y=

and F’(a,/}, 73 %) both have non-zero real part for @l € (0, 1). Therefore, the conditioh; = 0
implies thatA; = 0.

With these values for the outstanding constants of integration, the leading-order correction to the
solutions where # 0 is given by the combination d®; and Ry, and¢1 and¢o; composite solutions
can easily be determined. But crucially | have shown that= 0, so that this leading-order correction
does not affect the periodic wave amplitudlewhich is unchanged at this order.

4. Higher-order terms

| have shown that the periodic travelling wave amplitidles the same for the Robir6) and Dirichlet
(r = 64 = 0 atx = 0) boundary conditions, at order To determine the next correctieRA; to A, it is
necessary to calculate higher-order terms in both the outer and the inner solutions.
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4.1 Higher-order terms in the outer solution

Equating coefficients of? in (12, 13) gives equations foRx(y) and¢»(y). These can be reduced to a
single third-order equation fdR; in a manner directly analogous to that used in the calculatid®, pf
the resulting equation is

d®*Ry/dy? + 2(dRy/dy)[1 — 3(2a® — 1) tant? y] — 12Ry[tanhy seclfy — 2(1 — a®) tank’ y]
= go(y) = 24(1 — a®) Axtanif y + 6a(a® — 3)seclty + 3a(7 — 2a?)sechy. (30)

This is the same ad.6) except for the difference in the right-hand side, and the solution of the equation
proceeds in exactly the same way as fo8)( giving

=y Y2=00 Y+ (y2) g2 (y2)

Ro(y) = K,,seciy [ / Y~ (y1) dy, dy1
y1=0 yo=y:  costfy,
y1=y ya=00 =
_ / Y*y1) (¥2)92(y2) dys dy1}
y1=0 Yo=y1 cosHf Y2

yi=y y1i=
+ Cypsecify Y*(y1)dys + Cz2seciy

y1=0 y1=0

y
Y~ (y1)dy; + Csosecify. (31)

I show in Appendix A that the conditioR, — Az asy — oo is satisfied if and only iC1 2 = C2 2 = 0.
For matching, we will require the behaviour of this solution ngaf 0. | define

Y2=00 y+ Y2=00 y—
Hy = K, [Y‘ ©) (¥2)92(y2) dys — Y*+(0) (y2)92(y2) dyz} ’ (32)
y2=0 cost y, y2=0 cost y,
d Y2=00 y+ Y2=00 y—
2= K g [Yoo [T U gy, ey [TTY 08B0, ]| ey
dys Yo=Y1 costy, Y2=y1 costy, y1=0
Expansion of the coefficients d8() as power series negr= 0 then gives
. i 2 11 3 2 1 4
Ra(y) =Cs2 + Hay + (2|2 Cs,z) Yy + [za 3H2] y + [3C3,2 12|2] y
1, 2 2 2 1 3 5 6
+ [(Sa + 15) Ha + 5(1 a’)Ax + 10(a 5a)} y° + O(y°). (34)

The solution forp,(y) can then be calculated from

_ d?Ry/dy? + 2Ry[1 — (1 + 2a®) tanif y] — 3atanhysecly
B 4av/1— a2tanify

P2
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which implies

l1 1 Cg,zx/l—a2+x/1—a2(4A2—a)

— o(y?). 35
a2y a m O Y

p2(y) =

4.2 Higher-order terms in the inner solution

The expansions3f) and @5) match with higher-order terms in the inner solution. It is necessary to
calculateRy, #1, R» andg» in order to complete the matching. Equating coefficients iof (28) gives

d?Ry/dé? = 0, (36a)
(d/dé)(R2¢1 + 2RoRucho) = 6v/1 — a2RoRy. (36b)

These equations are subject to the end conditidhg'd = Ri+/2 andgd; = 0 até = 0. Substituting
the leading-order inner solution29) into (36) gives the solution

Ri=D2(1+¢v2), ¢1=0, (37)
whereD; is a constant of integration. Similarly, equating coefficients?ih (28) gives
d*Ro/de? + 2Ry = 0,
(d/dS) (R3B2 + R2Go + 2RoRodo) = 3v'1 — a2(R2 + 2RoR, + 2A;R}/a — RY/a?)
with end conditions &»/dé = Rov/2 andg, = 0 até = 0. Using @9) and @7), this has the solution

5 _ ot 1
Ry = D3(1+¢v2) a( ﬁf + 3¢ ) (38a)
- J2a-aya, 1
= e 2_—
vz a [”5[ (1+¢ﬁ)2}
_ Vi-a? 6 5 4 3 2
3(1+—§f2)3[8§ + 24225 + 6054 + 48V258 + 5452 + 9V27]. (38D)

4.3 Higher-order matching

Expansions of the solution87) and @88) nearé = oo are straightforward. These expansions together
with (34) and @5) give conditions for matching; as in the leading-order matching, | use the intermediate
variablez = y/v(e) = € £/v(€), where 1> v(¢) > ¢. The conditions are

Ro

eRy

a[ z- %v z } +00°) + (ea/V2)[L — v?Z’] + O(ev?)

62R2

1
€2 [Cg,z + Havz + [5 P cg,z] v222i| + O(e?v3)
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= (ea/vV2)(1+~2vz/€) + €?Da(1++2vz/€)
éﬁo Ezli]_

+é3 [Dg(l + \/évz/e) —a (%21)222/62 + %v323/e3)i|

63R2

and

%0 €P1

Vi-a? (vz - %u3z3) + 00®) + €/ (1 —a2)/2(1 — v?Z?%) + O(ev?)

62¢2 (continued on next line)

+€
4a/1— a2 ) v?z?
€2¢2 (continued from previous line)

Czov1—2a2 2 (4A2 —a)v1-a? 2.2
+[ a +6a«/1—a2]+[ 2a ]VZ}FO(”)

= ¢/ (1—a?)/2[V2vz/e + 1] + O(e3/v?) + 0
2 =
€do

+e3V1—a? |:2(A2/a)vz/e - (%UBZS/€3 + %21)

222/€® + %vz/e)} + (%)

4o

Therefore, the solutions match providBd = 0, D3 = Hz/«/i, Csz2 = 0 andl, = 0. These conditions
determine all the outstanding constants. In particular, the last of the conditions detefpirigisnce
g2(+) is an even function,33) and @0) give

+00
Ih=0& Re|:F’ (a,ﬁ, 75 %)] Re/ F (a,ﬁ, Y3 L;nhy) g2(y)sectPydy =0
—0oQ

Foo 1+ tanhy

& 24(1 - a%) Ay Re/ F (a,ﬂ,y, T)tanf? ysectPydy

—00

+00
_ 3aRe[(6— 2a2)/ F (a,ﬂ, v w) sectf+Py dy

+00
+ (2% - 7)/ F (a,ﬂ, v w) secH0+pydy] . (39)
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Here, | am using RE'(a, B, 7; %) # 0, which is shown in Appendix B. In Appendix B, | also show
that the right-hand side 086) is identically zero, while the integral on the left-hand side has non-zero
real part for alla € (0, 1). Therefore,A2 = 0, so that even though the solution f@rhas a correction

at O(¢), the periodic travelling wave that this solution approaches at hatggs no correction at either
O(e) or O(€2).

5. Discussion

There have been relatively few studies of pattern formation on domains with Robin boundary conditions.
Some work on spiral waves uses Robin conditid@sl(ibitskyet al, 2000 Ramos 2003, which give
eigenfunctions with prominent spiral features at a Hopf bifurcation. There have also been some studies
of stationary patterns in reaction—diffusion systems with Robin conditions, motivated by applications
in physics Hassaret al, 1994, chemistry and physiology\io et al., 1993 von Haefteret al,, 1997

lzuset al, 1998 and developmental biologpf{llon et al,, 1994 Maini et al,, 2007). None of this work
involves applications to ecology, despite Robin boundary conditions being very natural in this context,
as the appropriate condition when the domain of interest is surrounded by a hostile envirdnrdeig

etal, 1979 Section 1Cantrellet al, 1998. In such applications, the hostility of the environment means
that the Robin condition will be close to the Dirichlet limit. In this paper, | have focussed on a reaction—
diffusion system ofi—w form, which is generic because it is the normal form of any oscillatory system
with scalar diffusion close to a supercritical Hopf bifurcation. | have shown that Robin and Dirichlet
conditions generate a periodic travelling wave of very similar amplitude—much closer than one would
expect intuitively. My specific result is that for the boundary conditi®yn the amplitude of the periodic
travelling wave generated far from the boundary has no correction at eithgp©0(e2), although the
solution more generally has a correction at both orders. The complexity of @#f €blution means

that explicit calculation of the @2) correction to the wave amplitude would be extremely laborious but
numerical calculations indicate thAg is non-zero. Typical numerical results are illustrated in Big.

and details of the numerical method are given in Appendix C. From the viewpoint of applications,

-2 o]

4 :o b
[ 1 3
§ -6 -2 &
= L - 5
ED -8 —1-4 E

- 1 @
—-10F —-1-6 £
N ] :o;’
- -8
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-3 -2 -1 0 1 -3 -2 -1 0 1
log(e) log(e)

FIG. 3. An illustration of numerical results indicating thag = 0, so that there is an (@3) correction to the periodic travelling
wave amplitude. | shows] (a) A—a and (b) wavelength 2z /+/1 — a2. Both plots are againston logarithmic axes foa = 0.85.
Superimposed on these results are lines of slope 3. Details of the numerical method used to édlcufatel the corresponding
wavelength) are given in Appendix C.
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the actual value of\z is not critical: the key result is the absence akand Qe?) corrections to the
solution amplitude. Wavelength, time period and wave speed are all simple functions of the amfalitude

wo — wlAz 2 . .
wave speeéd= —————, wavelength= —, time period= ——. 40
PSR W m mePe Lo

Therefore, the corrections to these wave properties are &lsH).@ follows that the Dirichlet boundary
condition is a very good approximation indeed to the Robin condition, from the viewpoint of periodic
travelling wave generation.

There are two main reasons for investigating the quality of this approximation, rather than just
using the Robin condition directly. The first is that the zero density condition is significantly simpler
mathematically. Analysis is much easier for the Dirichlet condition (e.g. She?@Qf Smithet al,

2008; moreover, numerical solution is much more difficult for the Robin condition, especially in two
dimensions. Secondly, there are often no quantitative data on the extent of the hostility of the surrounding
environment, so that although one anticipates that the Robin condition will be close to the Dirichlet
limit, the actual proximity is hard to estimate. For these reasons, it is important to understand the effect
of using the Robin rather than zero Dirichlet boundary condition.

| am aware of two examples of periodic travelling waves in ecological field data for which
Robin conditions at one boundary provide a plausible explanation. Between 1962 and 1978, a large
spatiotemporal data set was gathered on red grausgmpus lagopus scoticusn Kerloch Moor (North-

East Scotland)Watsonet al,, 1984). Subsequent analysis of the data has revealed periodic travelling
waves moving across the domain at a speed of 2—3 km/i@sget al, 2000. One edge of the study

area is bordered by farmland, which is a very hostile environment for red grBiesengyet al, 1998.
Therefore, a Robin condition is appropriate at this boundary and could be responsible for the observed
periodic travelling waves.

The second example concerns field vollBcfotus agrestiyin Kielder Forest (Northern UK). A
spatiotemporal field study of these voles has been running for about 20 years and shows that the voles
exhibit population cycles that are spatially organized into periodic travelling waves, moving at a speed
of 15-20 km/year (Lambiret al., 1988; MacKinnonet al, 2001). The voles are subject to both ter-
restrial predation (mainly weaselustela nivali$ and avian predation (mainly short-eared ovwfsio
flammeuy (Pettyet al, 2000. The former will be roughly uniform across the forest, but one expects
that the latter will be significantly greater in and around large open spaces, which facilitate hunting. By
far the largest such open space is Kielder Water, a very large reservoir in the middle of the forest. The
natural boundary condition for voles at the reservoir edge would therefore be of Robin type, correspond-
ing to the rate at which voles are killed at the reservoir edge being proportional to vole density there;
the condition would be close to the Dirichlet limit because of the high level of avian predation, which
removes 10-15% of the overall vole population per y®attyet al., 2000. Therefore, in this case also,
the observed periodic waves can be explained by a Robin condition at a boundary of the domain.

There are two main differences between these ecological situations and the simple model studied
in this paper. Firstly, the systems are at some distance from Hopf bifurcation; indeed, any population
cycles that merit the time and expense of spatiotemporal field study will inevitably be of relatively large
amplitude. Secondly, although the Robin/Dirichlet boundary conditions are relative to zero population
density in both ecological systems and the» model, in the former case the cycles occur around a
different, non-trivial equilibrium. These differences mean that a significant extension of my work is
needed before a full comparison of Robin and Dirichlet boundary conditions can be made in realistic
ecological models.
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There is an increasing body of evidence from ecological field studies suggesting that periodic trav-
elling waves are a widespread spatiotemporal pattern in cyclic populations (Ranta & Kaitala, 1997;
Lambin et al, 1998 Rantaet al, 2002 Johnsoret al, 2004 Sherratt & Smith 2008. A thorough
mathematical understanding of the dynamics underlying such patterns is crucial, in view of the consid-
erable time and expense required for field studies. The work in this paper represents one step in this
on-going process.
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Appendix A
A.1 Introduction

In this appendix, | discuss the behaviouryas> oo of the general solutions ofilf) and B0). Recall
from (22) and @1) that these are given by the suba ;71 + C2,i 72 + C3 73 + 74, whereCyj, Cy;i
andCg; are constants of integration and

yi=y
T1 = seciy Y*(y1)dys,

y1=0

yi=y
T = secify Y~ (y1)dy,
y1=0

73 = secty,

yi=y Yo=00 Y+ .
Tai = K, secify [ / Y~ (y1) Md)@ dys
y1=0 Yo=Yy1 cost Y2

Y*t(y1)

3 / n=y Y2720 Y (y2)gi (2)
y1=0 Y2=y1 costy,

dy2 d)ﬁ} -

Here,Y*(y) = Re[secPyF(a, £, 7, E2MW)] p = -3+ V1282 — 11,0 4+ f = 1+ 21232 — 11
andaf = y = 1+ +/12a2 — 11. The constankK,, is defined byY T (y)Y~"(y) — Y= (y)Y* (y) =
K., coslf y. By constructionz; — A asy — oo, and the limiting behavioufz ~ 4 e % asy — oo
is immediate. However, the behaviourfifand7; asy — oo depends o —a — f = —+/12a2 — 11,
and | consider separately the three casesafreater than, equal to and less than 11/12.

A2 Casell> a> 11/12

A.2.1 Leading-order behaviour off;. For values of1in this rangey — a — £ is real and negative,
so that

ro)yra+p-y)
() (B)
(Abramowitz & Stegun1964 Section 15.3.6). Therefore, §s— oo

I(y)f(a+p—y)

1=¢)y~*F as¢ - 1”

Fla,p,7:8) ~

+(v) ~ —2Yyy —a—B (2 a=Y)P
Y™ (y) @I () e (2e7)
_2Pr(y) e+ p—7y)
= T@Orh) exp{(3+ v'12a2 — 11)y}.

Here, | am using = —3 4 +/12a2 — 11. Therefore,

_2Mr(p)re+p—y)
T' (@) (B)(3+ /1222 — 11)

exp{(1++v12a2 — 11)y} asy — oo.
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A.2.2 Leading-order behaviour off2. F(a, 8, y; 0) = 1 in all casesAbramowitz & Stegun1964
Section 15.1.1). Therefor¥,” (y) ~ 2P e PY asy — oo and thus

2p+2
To~ ———exp{(1— V1232 — 11 asy — oo.
2~ o el Y )y} asy

A.2.3 Conclusions in this case.From these various leading-order forms, it follows tliaand7, —
oo asy — oo, at different rates, whil§z — 0 and7s; — A;. Since the sunCy;71 + C2,i 72 +
Cz,i T3 + 74, must approach a finite limit as— oo, it is necessary tha;; = Cpj = 0.

A3 Case2:&=11/12
A.3.1 Leading-order form of7;. Whena? = 11/12,y —a — f = 0, so that

—1I'(a + p)log1 - &) -
Fla,B,7;8) ~ Tl B as¢ - 1
(Abramowitz & Stegun1964 Section 15.3.10). Therefore, gs—~ oo,
ye”
Ar(a)rp)
Here, | am using the fact that+ f = 1 andp = —3 in this case. Therefore,
3 (a) I (B)

Y*t(y) ~

T1 asy — oo.

A.3.2 Leading-order form of72 As in SectionA.2.2, T ~ %ey asy — oo.

A.3.3 Conclusions in this case.Again 71 and7; — oo at different rates ag — oo, while 73 — 0
and74; — A;. Since the sunCq,i 71 + C2,i T2 + C3,i T3 + 74,i must approach a finite limit as— oo,
it is necessary that1; = Cpj = 0.

A4 Case3: & < 11/12

A.4.1 Leading-order form of7;. Whena? < 11/12,y — a — S is pure imaginary, so that
o)y —a=p re)yla+p-y)
F ;) ~
B —arG =p T T T
(Abramowitz & Stegun1964 Section 15.3.6). Therefore,
1+tanhy) N [F(V)F(V —a—=p) T a+p- y)ez(ﬁ/;_y)y} oP =Py
2 'y —a)l'(y — p) I'(a)I(B)
Ir()H)ry —a—p
= 2P 3—+v12a%2 - 11
ro—wrG-p> o™ )
I'(y)o+pB—
I'(e)I"(B)
1+ tanhy
2

Q=& F asg - 1”

secPyF (a,ﬁ, v,

y)2p exp((3++v12a2 — 11)y} asy — oo

=Y (y) = Re[secH’yF (a, By, )} ~ (k1 Sindy + ko cosdy) e asy — oo.
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Here, the real numbe#s k; andk; are given by

6= —ivi2— 11a2
ratp—y) __ IG—a—p)
ki = [zpr (V){ T@r e ~ r(y—ya)?(y—/f)}]’ (A1)
T'(a+p—7) I'(y—a—p)
ko = [2Pr ) { rard + r(y—ya)?(y—ﬂ)}]' (A-2)

Therefore,

4¢
Ti~ g5z [Gka + dka) sindy + (3kz — k) cosdy] - asy — oc.

A.4.2 Leading-order behaviour off2. Asin SectionA.2.2,
Y~ (y) ~ Re[2P e PY] = (k3 sindy + ks cosdy)e®y asy — oo,

whereks = —Im(2P) andk, = Re(2P). Therefore,

A.4.3 Conclusion in this case. Again 71 and7, — oo asy — oo, while 73 — 0 and7z; — Aj. In
this case;J; and7; exhibit growing oscillations ag — oo, with the same growth rate, but their linear
independence implies th&@; ; = Cy; = 0.

Appendix B
In this appendix, | derive three results which together imply that 1, = 0.

B.1 First result
| begin by showing that

+o0 1+ tanh 6—2a% [T 1+ tanh
/ F (0!, ﬂa Vs %) SECHO-prdyZ 7— 2:2/ F (0(, ﬂa Vs %) Sec}§+pydy'
(B.1)

| define

+0o0
Qu =/ F (a,ﬁ, 7 L;nhy) secy dy.
—00

Substituting = (1 + tanhy)/2 in the integral gives

1
Q, = 223 /O & = (o, B,y E) A (82)
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From (19),

-2 dF dF
e + (-2

here and henceforth, | omit the argumentdg-dior brevity. SubstitutingB8.3) into (B.2) gives

Fla,B,7:¢) = (B.3)

_ a8t 2. FF N 2vu-1 dF
Q#—p+4/0(5—5) 2 /O(é—é) 1-2)5 &
_ 523 (1 ) / & -2 - 25)—5015

on integrating the first integral by parts. Applying integration by parts again gives

1
Qu =273 (1 - ﬁ) /o FORE -+ (L - (& =&AL - 27 d¢

(1‘m)“4“ 2)Q, + 41— 1)Qu-1)
4p+4—w(@d—p)

= Qu= (p+4)(3—4u) +2u(Cu — 1)

Qu-1. (B.4)
Substitutingu = 54 p/2 andp = —3 + +/12a2 — 11 into B.4) gives B.1).

B.2 Second result
I now show that Ré # O for alla € (0, 1), where

y=0o0 1 h 1—tanh
J =/ [ (a B,y w) +F (a,ﬁ, i %)]tanh2 ysectPydy.
=0

Straightforward simplification shows that= Qz;.p/2/2'"P — Qa4 p/2/2%+P, and B.4) then gives

3 3p?+18p + 16 9 _ o1/l
T 203 (pZ6p+6) TP

w2+ 90— @)
1+ 6(1— a?)

Q2+4p/2.

Because = (1+a + f)/2, the hypergeometric functidh(a, 8, y ; Z) can be expressed in terms of an
associated Legendre function of the first kind (8&eamowitz & Stegun1964 Section 15.4.19). This
implies

1+a+p +1 1-a—p)/2
Qotpj2=2°42r (T) | a-oreels e

2p+2+(l—a—ﬁ)/2nr(3—i—ﬁ)r (l+o‘z1+ﬁ) r (l+oé+ﬁ)

) () 1 () 1 ()
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using Gradshteyn & RyzhiK200Q Section 7.132.1). Explicit calculation ef and # using @1) then
gives

2+9(1—a?) 1-4/12a2-11 144/12a2-11
T o2a-a) ! ( 2 )F ( 2 I (1++/1222-11)

r (3—«/4&2—47) r (3+«/48a2—47) r (3+2J12a2—11—¢48a2—47) r (3+2J12a2—11+¢48a2—47) '
- 4 - 4 4 4

J =

All the various arguments of the Gamma functions in this expression have positive real part whenever
a € (0, 1), and therefore) # 0.
It remains to show thal is not pure imaginary. The expressidiist +/12a2 — 11)/2 are either real

or complex conjugate, and sin€égz) = 7"(2), the productl“(l_ l,faz_ll)r(“ 122""2_11) is always
real. Similar reasoning shows thats always real ifa > /11/12; otherwise,

34 2ig + i«/3+402) argF(3+ 2ic —iv3+ 402)
4 4 :

argd =argl'(1+ic) — argF(

wheres = +/11 — 12a2. Combining Sections 6.1.27, 6.3.2 and 6.3.18amowitz & Stegur(1964
then gives arg = > n=5° gn, where

_1(20+«/3+402) _1(20—\/34-402) _1( o )
On = tan — |+ tan — | —tan .

n+3 an + 3 n+1
Explicit differentiation gives

d’gn 26nQn(c?)

do? ~ [(4n? +6n+ 3+ 202)% — 023+ 402)]A(N* + 2n + 1+ 02)%

Here, Qn(c?) is a quadratic function of2, and explicit calculation of the roots @, shows that

Qn(6?) < Oforalln > 1 ande € (0,+/11) (details omitted for brevity). Therefore2qh/do? <

Oforalln > 1 ands e (0,+/11). Straightforward applications of the Weierstrass test show that
n=3° dgn/do and > 1=5° d’gn/da? both converge uniformly oa e [0, +/11], and thus 8largJd/

do2 < Oforalls € (0, +/11). Moreover, direct calculation shows that ddygls > 0 whens = /11,

and thus darg/ds > 0 for all ¢ € (0, +/11). (Note that d/do is not positive for alls andn.)

Finally, argJ = 0 whens = 0 and arg) ~ 0.075r whens = +/11, by direct calculation. Therefore,

argd € (0,7/2) for all & € (0,+/11), i.e. for alla € (0, 1), so thatJ is never pure imaginary. In

combination with the result thak # 0, this implies that R& = 0 for alla € (0, 1).

B.3 Third result

Finally, I show that ReF’(a,ﬂ, Vs %) #+ 0 fora € (0, 1). Simplification usingAbramowitz & Stegun
(1964 Sections 15.1.24 and 15.2.1) gives

E (a by 1) A/m I (ap) A /7 I (1++/1222-11)
SR

- I(@/r (B/2) F(1+2\/12a2—1211—\/48a2—47)[,(1+2\/12a2_];11+\/48a2_47)'
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All three arguments of the Gamma functions in this expression have positive real part wharever
(0,1). Sincer(2) is analytic and non-zero over the whole complex plane except for simple poles at
z=0,-1,-2,..., this implies that~’(a, 8, y ; %) # 0for0 < a < 1. A similar argument to that

above shows thaFf/(a, B,7; %) is not pure imaginary; its argument increases monotonically from zero

to about 027z asa decreases frony/11/12 to zero. There is a slight complication in this case, in that

the first term in the series expansion of the argument does not always have a negative second derivative
with respect tar, but this is easily rectified by considering the sum of the first two terms; the other terms

all do have negative second derivative. ThereforeFRe, 5, y; 3) # O for alla € (0, 1).

Appendix C

In this appendix, | describe the numerical method used to calculate the dependence of periodic travelling
wave amplitudeA one. This is used to generate the results shown in ig.

My basic approach is to solvd?) numerically. The required solution satisfies end conditions at
y = 0 andy — oo that are given inX3), and in practice it is most convenient to solve backwards
in y, starting close to the steady stdRe= A, R = 0, ¢ = +/1— AZ, Straightforward calculation
shows that this equilibrium has a unique stable eigenvector, and | ddlyag an initial-value problem
starting close to the steady state, on the eigenvector corresponding to this stable eigenvakiéamdth
¢) slightly below their equilibrium values. (Numerical calculations suggest that for initial values on the
eigenvector withR and¢ slightly above the steady-state level®and¢ increase towardso asy is
decreased.) | integrate the equations for decreasingtil ¢ becomes zero. The appropriate value of
can then be read off @&+/2/R’. Note that in this numerical approach, it is not necessary to keep track
of the actual values of.

| implement this procedure using the sol@rsobAR (Hindmarsh 1983 Petzold 1983 which
is part of theoDEPACK collection. The solver automatically switches between an Adams predictor—
corrector method and a Gear backward differentiation formula method and automatically stops integra-
tion when specified algebraic conditions are satisfied. This makes it straightforward to integrate up to
the point at whichp becomes zero. The numerical code is freely available at www.netlib.org.
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