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Pattern solutions of the Klausmeier model for
banded vegetation in semi-arid environments II:

patterns with the largest possible
propagation speeds
BY JONATHAN A. SHERRATT*

Department of Mathematics and Maxwell Institute for Mathematical Sciences,
Heriot–Watt University, Edinburgh EH14 4AS, UK

Pattern formation at the ecosystem level is a rapidly growing area of spatial ecology. The
best studied example is vegetation stripes running along contours in semi-arid regions.
Theoretical models are a widely used tool for studying these banded vegetation patterns,
and one important model is the system of advection–diffusion equations proposed by
Klausmeier. The present study is part of a series of papers whose objective is a
comprehensive understanding of patterned solutions of the Klausmeier model. The author
focuses on the region of parameter space in which the propagation speed of the patterns
is close to its maximum possible value. Exploiting the large value of one of the model
parameters, a leading order approximation is obtained for the maximum propagation
speed, and the author undertakes a detailed investigation of the parameter region in
which there are patterns with speeds close to this maximum.

Keywords: pattern formation; mathematical model; arid landscapes; tiger bush; wavetrain;
perturbation theory
1. Ecological background

Pattern formation at the level of whole ecosystems is a rapidly growing area
of spatial ecology. Examples include regular isolated spots of trees and shrubs
in savannah grasslands (Lejeune et al. 2002; Ben Wu & Archer 2005); patterns
of open-water pools in peatlands (Belyea 2007; Eppinga et al. 2009); tussock
patterns in freshwater marshes (van de Koppel & Crain 2006; Yu 2010);
labyrinthine patterns in mussel beds (van de Koppel et al. 2005, 2008); striped
patterns of tree lines (‘ribbon forests’) in the Rocky Mountains (Hiemstra et al.
2006; Bekker et al. 2009); and spots, stripes and labyrinths of vegetation in semi-
arid environments (Galvin et al. 2007; Scanlon et al. 2007). Of these, by far
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the best studied are striped patterns of vegetation, separated by bare ground,
running along contours on gentle slopes in semi-arid regions (for reviews, see
Valentin et al. 1999; Rietkerk et al. 2004). These banded patterns are very
widespread, occurring in Africa, Australia, North and South America and Asia
(see Valentin et al. 1999, table 1 and fig. 3). Their study is motivated both by
their intrinsic fascination, which is particularly clear from satellite images, and
by the susceptibility of these fragile ecosystems to abrupt shifts to total desert
(Kéfi et al. 2007).

There are no laboratory replicates of banded vegetation, so that empirical
study is limited to observation of existing patterns. Because the time scale of
pattern evolution is very slow (decades), such observational data are ineffective
as a basis for assessing the implications of changes in environmental parameters
such as rainfall. Therefore, theoretical models are an important and widely
used tool for studying these patterns (Borgogno et al. 2009). One group of
models is based on the ‘water redistribution hypothesis’. This proposes that
rain water falling onto bare ground mostly runs off to nearby vegetated areas.
There the infiltration capacity of the soil is higher because of the presence
of organic matter and roots (Hills 1971; Callaway 1995; Valentin et al. 1999;
Rietkerk et al. 2000), and thus the rain water can infiltrate. The resulting
positive feedback in plant growth provides a potential mechanism for patterning,
and this paper is concerned with one mathematical model for this process,
due originally to Klausmeier (1999). However, it is important to emphasize
that there are alternative hypothesized mechanisms for banded vegetation
pattern formation which have also been studied using mathematical models.
In particular, some authors argue that the non-locality of water uptake as
a result of extended root systems is important. Some mathematical models
consider this in addition to water redistribution (e.g. Gilad et al. 2007; Kletter
et al. 2009; von Hardenberg et al. 2010), while others set it alongside local
facilitation because of shading (e.g. Lefever & Lejeune 1997; Barbier et al.
2008; Lefever et al. 2009), providing a ‘short range activation, long range
inhibition’ mechanism.

The Klausmeier model was the first continuum model for patterning due
to water redistribution. Many subsequent models incorporate more specific
details of this process, typically involving separate variables for soil and
surface water (e.g. HilleRisLambers et al. 2001; Rietkerk et al. 2002; Ursino
2007, 2009). Some authors have also incorporated features such as rainfall
variability (Ursino & Contarini 2006; Guttal & Jayaprakash 2007) and a
herbivore population (van de Koppel et al. 2002; for other recent extensions,
see Kéfi et al. 2008; Pueyo et al. 2008). These various studies have made
important contributions to the ongoing ecological debates on the causes of
vegetation patterns, and the most effective management strategies. However,
they are primarily simulation based; a recent exception to this is the work
of Goto et al. (2011), who prove an existence theorem for the model of
Gilad et al. (2007). In particular, there is only a limited mathematical
understanding of even the relatively simple Klausmeier model. This paper is
the second in a series whose objective is a comprehensive understanding of
patterned solutions of the Klausmeier model, which can act as a springboard
both for simulation-based studies of that model and for analysis of more
detailed models.
Proc. R. Soc. A
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2. Model equations and the form of patterns

When appropriately non-dimensionalized (see Klausmeier 1999; Sherratt 2005),
the Klausmeier model is

vu
vt

=

plant
growth︷︸︸︷
wu2 −

plant
loss︷︸︸︷
Bu +

plant
dispersal︷︸︸︷

v2u
vx2

(2.1a)

and
vw
vt

= A︸︷︷︸
rainfall

− w︸︷︷︸
evaporation

− wu2︸︷︷︸
uptake

by plants

+ n
vw
vx︸︷︷︸

flow
downhill

. (2.1b)

Here u(x , t) is plant density, w(x , t) is water density, t is time and x is
space in a one-dimensional domain of constant slope, with the positive direction
being uphill. It is important to emphasize that this model is deliberately simple
and conceptual. In particular, it does not separate water into surface and sub-
surface components. In this regard, it differs from the various more detailed
models that include a more mechanistic representation of the water budget (e.g.
HilleRisLambers et al. 2001; Rietkerk et al. 2002; Gilad et al. 2007; Ursino 2009).
The model assumes constant rainfall, with water lost via both evaporation and
uptake by plants. The assumption of proportionality between evaporation and
water density is consistent with both more detailed modelling and field data
(Rodriguez-Iturbe et al. 1999; Salvucci 2001). Per capita plant growth is assumed
to be jointly proportional to water density and biomass. The dependence on
biomass reflects the positive correlation between the infiltration capacity of soil
and its vegetation level in semi-arid environments (Hills 1971; Callaway 1995;
Valentin et al. 1999; Rietkerk et al. 2000). Plant loss is assumed to occur at
a constant per capita rate, which may include herbivory. Finally, water flows
downhill while plant dispersal is modelled by linear diffusion. The model contains
three dimensionless parameters, A, B and n, which reflect rainfall, plant loss and
slope gradient, respectively. Ursino (2005) has performed a detailed calculation
that relates n to soil parameters; her work shows that, in general, there will also
be a diffusive term for water, although this will be negligible when the mean
capillary rise in the soil is small; this depends on soil type.

Pattern solutions of equations (2.1) move in the positive x direction (uphill)
at a constant speed. This migration has been the subject of a long controversy
in the ecological literature (see Tongway & Ludwig 2001, pp. 24–26 for a
detailed discussion). A considerable number of field studies do report uphill
migration (e.g. Valentin et al. 1999, table 5), and this is backed up by a new
and very detailed study using satellite images (Deblauwe 2010, ch. 10) that
confirms migration in three different geographical locations. The proposed cause
of uphill migration is that moisture levels are higher on the uphill edge of the
bands than on their downhill edge, leading to reduced plant death and greater
seedling density (Montaña et al. 2001; Tongway & Ludwig 2001). However,
other field data indicate stationary patterns (e.g. Dunkerley & Brown 2002).
One suggested explanation for this is that seed dispersal may be preferentially
Proc. R. Soc. A
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oriented in the downslope direction because of transport in run-off (Saco
et al. 2007; Thompson & Katul 2009). The model (2.1) neglects any such
directed dispersal.

Mathematically, patterns moving with constant shape and speed can be studied
via the ansatz u(x , t) = U (z) and w(x , t) = W (z), where z = x − ct with c being
the migration speed. Substituting these solution forms into equations (2.1) gives
the travelling wave equations as

d2U
dz2

+ c
(

dU
dz

)
+ WU 2 − BU = 0 (2.2a)

and
(n + c)

dW
dz

+ A − W − WU 2 = 0. (2.2b)

Patterned solutions correspond to periodic solutions of equations (2.2).
Previously, Gabriel Lord and I used numerical bifurcation analysis to study these
periodic solutions (Sherratt & Lord 2007). We showed that, for a given value of
the migration speed c, patterns occur for a range of rainfall parameter values
A, and our results suggested that this range is bounded by a Hopf bifurcation
point and a homoclinic solution; details of the relevant homogeneous equilibria
are given in §2. A typical result is illustrated in figure 1, which shows the loci
of the Hopf bifurcation point and the homoclinic solution in the A–c parameter
plane, for fixed values of B and n.

Intuitively, sufficiently high rainfall levels give rise to only homogeneous
vegetation, whereas very low rainfall levels imply a complete desert. Intermediate
rainfall levels are too low to maintain homogeneous plant cover, but are
compatible with vegetation bands.

The parameters A, B and n will vary between different ecosystems. Estimates of
A (rainfall) and B (plant loss) lie in the ranges 0.1–3.0 and 0.05–2.0, respectively
(Klausmeier 1999; Rietkerk et al. 2002). Throughout the paper, I make the
assumption that B < 2. This guarantees that equations (2.1) have simple local
dynamics: phenomena such as limit cycles can occur in the kinetics for larger
values of B, but these are not relevant in applications. In comparison to A and B,
the slope parameter n is much larger, with a value of 200 being typical. The non-
dimensionalization (see Klausmeier 1999; Sherratt 2005) shows that n depends
on the ratio of the advection rate of water and the (square root of the) plant
diffusion coefficient; hence, it is very large, even though the slopes on which
banded vegetation occurs are quite gentle (a few per cent).1 Mathematically,
the large value of n suggests an investigation of the asymptotic form of periodic
solutions of equations (2.2) for large n. This is the approach taken in this paper,
and my focus is the maximum value of the migration speed c for which patterns
occur. I will show that this speed is Os(n) as n → ∞, meaning that there are
constants k1 and k2 such that the maximum speed satisfies k1n ≤ c ≤ k2n for n
sufficiently large.2 Further, I will show that, for fixed B, the scaling c = Os(n),
1On steeper slopes, rainwater does not flow downhill in a sheet; rather, gullies form. Then, the
model (2.1) is invalid, and different phenomena occur.
2Throughout the paper, I also use the standard notations O(·) and o(·). For example, f = O(n) as
n → ∞ ⇔ there is a constant C1 > 0 such that |f | ≤ C1n for all sufficiently large n; intuitively, the
order of magnitude of f is the same as, or smaller than, that of n. For o(·), f = o(n) as n → ∞ ⇔
f /n → 0 as n → ∞; intuitively, the order of magnitude of f is smaller than that of n. Thus f = Os(n)
as n → ∞ ⇔ f = O(n) and f �= o(n); intuitively, the order of magnitude of f is the same as that of n.
Proc. R. Soc. A
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Figure 1. A typical example of the part of the A–c parameter plane in which the results of
Sherratt & Lord (2007) predict patterned solutions of equations (2.1); these correspond to periodic
solutions of equations (2.2). I plot the loci of Hopf bifurcation points (thick line) and homoclinic
solutions (thin line) in equations (2.2); Sherratt & Lord (2007) suggest that these loci bound the
pattern region. In the present paper, I will show that, for some values of c, patterns actually
occur for a wider range of rainfall levels. The other parameters are B = 0.45 and n = 182.5. The
numerical solutions were performed using AUTO (Doedel 1981; Doedel et al. 1991, 2006). The loci
of homoclinic solutions are approximations; they are in fact the loci of periodic solutions of a fixed
but very long wavelength (3000). Further details of the numerical continuation approach are given
in Sherratt & Lord (2007). The inset shows detail of the behaviour for large c.

A = Os(1) incorporates an important part of the region of the c–A parameter
plane giving patterns, including the crossing of the homoclinic solution and Hopf
bifurcation loci that is shown in the inset in figure 1. It is important to note
that c = Os(n) does not imply that c and n have comparable numerical values,
since the constants k1 and k2 could be either very large or very small. This is
exemplified by the crossing point of the homoclinic solution and Hopf bifurcation
loci in figure 1, which occurs at c ≈ 20, while n = 182.5; nevertheless, I will show
that this wave speed is Os(n) as n → ∞. Figure 2 shows a typical pattern solution
of equations (2.2) close to the crossing point.

In §3, I show that, for large values of the parameter n, the third-order travelling
wave equations (2.2) reduce to a second-order system, to leading order, and in §4
I present two main analytical results on periodic solutions of this system. In §5,
I describe a numerical study of periodic solutions, which builds on the analysis.
Section 6 contains the proof of a theorem stated in §4, and §7 summarizes my
results and discusses them in the wider context of ecological travelling waves.
Proc. R. Soc. A
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Figure 2. An example of a pattern solution of the Klausmeier model (2.1) in the parameter region
considered in this paper. I plot U and W as a function of the travelling wave coordinate z ; the
solution was calculated by numerically continuing periodic solutions of equations (2.2) from a Hopf
bifurcation point using AUTO (Doedel 1981; Doedel et al. 1991, 2006). The parameter values are
A = 1.1776, B = 0.45, c = 15 and n = 182.5.

3. Leading order travelling wave equations

Periodic solutions of equations (2.2) can be calculated numerically via
continuation methods (Sherratt & Lord 2007). Such numerical solutions suggest
that for values of c close to the maximum, periodic solutions of equations (2.2)
have a period that scales with n as n → ∞. Therefore, I rewrite equations (2.2)
using the rescaled coordinate z = z/n, giving

1
n2

d2U
dz2

+ c
n

dU
dz

+ WU 2 − BU = 0

and (
1 + c

n

) dW
dz

+ A − W − WU 2 = 0.

Clearly, c = Os(n) is a distinguished scaling for these equations, which implies the
leading order equations as follows:

c
n

dU
dz

+ WU 2 − BU = 0 (3.1a)

and (
1 + c

n

) dW
dz

+ A − W − WU 2 = 0. (3.1b)
Proc. R. Soc. A
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Substituting

Ũ = U , W̃ =
(
1 + n

c

)
W , z̃ =

(
1 + c

n

)−1
z,

a =
(
1 + n

c

)
A and b =

(
1 + n

c

)
B (3.2)

simplifies equations (3.1) to
dŨ

dz̃
= bŨ − Ũ 2W̃ (3.3a)

and
dW̃

dz̃
= Ũ 2W̃ + W̃ − a. (3.3b)

Almost all of the remainder of the paper is concerned with periodic solutions of
equations (3.3).

For all values of a and b, equations (3.3) have a steady state (0, a); ecologically,
this corresponds to a total desert, and it is always an unstable node in
equations (3.3). When a > 2b, there are two other steady states;

Ũ = Ũ ± ≡ a ± √
a2 − 4b2

2b
and W̃ = W̃ ± ≡ a ∓ √

a2 − 4b2

2
. (3.4)

The eigenvalues at (Ũ ±, W̃ ±) satisfy

l2 + (b − 1 − Ũ 2
±)l + b(Ũ 2

± − 1) = 0. (3.5)

Since a > 2b, Ũ − ∈ (0, 1) and Ũ + ∈ (1, ∞). It follows from equation (3.5) that
(Ũ −, W̃ −) is always a saddle point, with the nature of (Ũ +, W̃ +) depending
on parameters. I write x± = (3b − 1) ± √

8b(b − 1); these are the values of
Ũ 2± at which the discriminant of equation (3.5) is zero. Then, laborious but
straightforward investigation of the roots of equation (3.5) shows that the nature
of (Ũ +, W̃ +) is as follows:

b < 1 : (Ũ +, W̃ +) is an unstable node,

1 < b < 2 : Ũ 2
+ > x+ : (Ũ +, W̃ +) is an unstable node,

Ũ 2
+ ∈ (x−, x+) : (Ũ +, W̃ +) is an unstable focus,

Ũ 2
+ ∈ (1, x+) : (Ũ +, W̃ +) is an unstable node,

b > 2 : Ũ 2
+ > x+ : (Ũ +, W̃ +) is an unstable node,

Ũ 2
+ ∈ (b − 1, x+) : (Ũ +, W̃ +) is an unstable focus,

Ũ 2
+ ∈ (x−, b − 1) : (Ũ +, W̃ +) is a stable focus,

Ũ 2
+ ∈ (1, x−) : (Ũ +, W̃ +) is a stable node.

For completeness, I comment that, in the special case a = 2b, the unique positive
steady state (1, b) has eigenvalues 2 − b and 0, with the centre manifold associated
with the latter being unstable.
Proc. R. Soc. A
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A Hopf bifurcation occurs in equations (3.3), initiating a branch of pattern
(periodic) solutions, when Ũ 2+ = b − 1 with b > 2. Using equation (3.4), this
simplifies to

a = ahb ≡ b2

√
b − 1

with b > 2. (3.6)

Rewriting these in terms of the original model parameters, using equation (3.2),
gives the conditions for Hopf bifurcation as

A = Ahb ≡ (1 + n/c)B2√
(1 + n/c)B − 1

and c <
nB

(2 − B)
. (3.7)

(Recall that I am assuming B < 2.) The first of these is the leading order form
(for large n) of the locus of Hopf bifurcation points, which will be important
in determining the range of rainfall levels giving patterns. The second part of
equation (3.7) gives the maximum migration speed for patterns, again to leading
order as n → ∞. This confirms the numerical observation that the maximum
speed is proportional to the slope parameter n, and shows that it is an increasing
function of the plant loss parameter B.

4. Analytical results on pattern solutions

I have been unable to obtain a complete analytical picture of the form of the
periodic solution branch emanating from the Hopf bifurcation point (3.7), but
the following two results give valuable partial information.

Proposition 4.1. The Hopf bifurcation point (3.6) of equations (3.3) is
subcritical if b > 4 and supercritical if b < 4.

Using equation (3.2), this implies that for given values of B, n and c = Os(n),
the periodic solution branch leaves A = Ahb (defined in equations (3.7)) in
the direction of decreasing A when c < nB/(4 − B), and in the direction of
increasing A when c ∈ (nB/(4 − B), nB/(2 − B)). From an ecological viewpoint,
the proposition implies that patterns with low amplitude occur for values of the
rainfall parameter A below/above Ahb when the migration speed c is below/above
the critical value nB/(4 − B).

Proof. This is a standard normal form calculation for the solution amplitude
near a Hopf bifurcation point; see for example Guckenheimer & Holmes (1983,
§3.4). The website www.ma.hw.ac.uk/∼jas/supplements/kl2/ contains a MAPLE
worksheet that performs this calculation. �

Theorem 4.2. For any b > 2, there is a value of a > 2b at which equations
(3.3) have a solution that is homoclinic to the steady state (Ũ −, W̃ −), defined in
equations (3.4).

To avoid interrupting the flow of the manuscript, I present the proof of this
result in §6. Figure 3 shows phase portraits of equations (2.2) for a below, at,
and above the value giving a homoclinic solution, for one value of b.

From an ecological viewpoint, the theorem concerns patterns for given values
of the slope parameter n and the plant loss parameter B (<2), and for a fixed
migration speed c that is large enough that c = Os(n), but is below the upper limit
Proc. R. Soc. A
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Figure 3. Phase portraits of the rescaled leading order travelling wave equations (3.3) for
a below, at and above the value giving a homoclinic solution. Filled circles indicate the
steady states (0, a), (Ũ+, W̃ +) and (Ũ−, W̃ −); Ũ± and W̃ ± are defined in equations (3.4).
For clarity, I omit trajectories close to (Ũ−, W̃ −) in (b); these spiral out from the steady
state towards the homoclinic trajectory. Arrows indicate the evolution of the solution as
z̃ increases. The equations were solved numerically using the routine DLSODA (Hindmarsh
1983; Petzold 1983), which is part of the ODEPACK collection, and is freely available at
www.netlib.org. The solver automatically switches between an Adams predictor–corrector method
and a backward differentiation formula method. (a) a = 6.3, b = 3; (b) a = 6.46194, b = 3; (c)
a = 6.65, b = 3.

for patterns (see equations (3.7)). Then, the theorem implies that as the rainfall
parameter A is varied, there is no upper limit on pattern wavelength. In practice,
this translates into a marked sensitivity of pattern wavelength to changes in the
rainfall, and this is discussed further in §5.

An important caveat to the theorem is that the proof in §6 gives no information
on the relative locations, in parameter space, of the Hopf bifurcation point and
the homoclinic solution. To investigate this important issue, I have had to rely
on numerical study.
Proc. R. Soc. A

http://www.netlib.org
http://rspa.royalsocietypublishing.org/


10 J. A. Sherratt

 on June 30, 2011rspa.royalsocietypublishing.orgDownloaded from 
0.1

2

m
ax

 (
U~ )

m
ax

 (
U~ )

m
ax

 (
U~ )

4

6

2

4

2

3

(a)

(b)

(c)

(d)

0

–0.1
2

11.10

9.85

7.70 7.75 7.80 7.85
a

a

a

a 
– 

a
hb

9.86 9.87 9.88 9.89

11.12 11.14 11.16

3 4 b*
b

5

Figure 4. Numerical results on periodic solutions of the leading order travelling wave
equations (3.3). (a–c) The steady state (Ũ+, W̃ +) and the periodic solution branch emanating
from the Hopf bifurcation point (circles) of that steady state, which occurs at a = ahb, defined
in equation (3.6). The values of b are (a) 3.5, (b) 4.2 and (c) 4.6. The periodic solution branch
terminates at a homoclinic solution (squares). Solid/dashed lines indicate stability/instability in
the travelling wave equations (3.3), respectively. (d) The loci of the Hopf bifurcation point (dotted
line), the homoclinic solution (thin line) and the fold in the periodic solution branch (thick line);
for clarity, I plot a − ahb against b. All computations were done using the software package AUTO
(Doedel 1981; Doedel et al. 1991, 2006).

5. Numerical investigation of pattern solutions

Using the analytical results of §4 as reference points, I undertook a detailed
numerical study of periodic solutions of equations (3.3), using the continuation
software AUTO (Doedel 1981; Doedel et al. 1991, 2006). It is most instructive to
consider behaviour as a varies, with b fixed. Then, for b ∈ (2, 4), the periodic
solution branch proceeds monotonically as a increases from ahb (defined in
equation (3.6)), terminating at the homoclinic solution, at a = ahc say (illustrated
in figure 4a). For b > 4, the Hopf bifurcation is subcritical (see proposition 4.1
Proc. R. Soc. A
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Figure 5. The variation in the period along the branches of periodic solutions illustrated in
figure 4a–c. The period increases monotonically along each solution branch from its start at the
Hopf bifurcation point (circles), tending to infinity as a approaches the value giving a homoclinic
solution (dotted line). For clarity, I use only solid lines, omitting information on stability in the
travelling wave equations (3.3). As for figure 4, computations were done using the software package
AUTO (Doedel 1981, Doedel et al. 1991, 2006). Note that, for given values of the slope n and the
migration speed c, a is proportional to the rainfall parameter A (see equations (3.2)). (a) b = 3.5;
(b) b = 4.2; (c) b = 4.6.

in §4), and the periodic solution branch leaves the Hopf bifurcation point a = ahb
with a decreasing (figure 4b,c). The branch then folds, at a = afold say, after which
a increases along the branch until it terminates at the homoclinic solution; again
I denote the corresponding value of a by ahc. Figure 4d shows the loci of ahb, ahc
and afold in the a–b plane, showing that ahc = ahb at a critical value b = b∗. Setting
a − ahb ≡ a − b2/(b − 1)1/2 as an (overspecified) parameter in AUTO shows that
b∗ ≈ 4.4036.

The proximity of ahc and ahb implies that the wavelength of pattern solutions
is quite sensitive to the value of the rainfall parameter A, which is proportional
to a. This is illustrated in figure 5, which shows the variation in wavelength with
a for the values of b used in figure 4a–c.

In Sherratt & Lord (2007), we performed a numerical bifurcation study of
the full travelling wave equations (2.2), and concluded that, for all values of c,
the range of rainfall levels giving patterns is bounded by the loci of the Hopf
bifurcation point on the one side and the homoclinic solution on the other side
(see figure 1). The more detailed calculations in figure 4 show that this conclusion
Proc. R. Soc. A
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Figure 6. The loci of Hopf bifurcation points (thick line), homoclinic solutions (thin line) and folds
in the periodic solution branch (dotted line) in equations (2.2), which are the full travelling wave
equations. The other parameters are B = 0.45 and n = 182.5, as in figure 1, and the main part of
the figure corresponds to the inset in figure 1, but with the fold locus added. The inset in this
figure shows detail around the crossing point of the Hopf bifurcation and homoclinic solution loci.
The numerical continuations were performed using AUTO (Doedel 1981, Doedel et al. 1991, 2006).
The loci of homoclinic solutions are approximations; they are in fact the loci of periodic solutions
of a fixed but very long wavelength (3000). Further details of the numerical continuation approach
are given in Sherratt & Lord (2007).

was incorrect, at least to leading order as n → ∞. In fact, the solution region
giving patterns is slightly wider for some values of the migration speed c, being
bounded below by the locus of afold. As an illustration of this, and to confirm
that the same behaviour does occur for finite values of n, I repeated the numerical
continuations used for figure 1, paying careful attention to the detail of behaviour
when c is large. This confirmed that there is a fold in the periodic solution branch,
whose locus is shown in figure 6. One particular implication of this is that there
is a region of parameter space, in between the fold and Hopf bifurcation loci, in
which there are two different pattern solutions.

As b → ∞, ahb, ahc and afold all → ∞ also. However, detailed numerical
investigation suggests that the difference ahc − afold → 0 as b → ∞. The limit
b = ∞ corresponds to c = o(n), suggesting that the Hopf bifurcation remains
subcritical when c � n, but that the periodic solution branch does not fold. This
is consistent with results that I have derived previously for the case n1/2 � c � n
(Sherratt 2010). This suggests that the fold in the periodic solution branch, and
hence the occurrence of two different patterns for a given set of parameters, is a
phenomenon restricted to the case c = Os(n).
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6. Proof of the theorem

(a) Rescaling the equations

Since theorem (4.2) concerns only the case a > 2b, it is possible to rescale (3.3)
via

Û = 2bŨ

a − √
a2 − 4b2

,

Ŵ = 2W̃

a + √
a2 − 4b2

and k =
(

a − √
a2 − 4b2

2b

)2

.

This is convenient because it maps the steady state (Ũ −, W̃ −) to (1, 1), with
(Ũ +, W̃ +) and (0, a) mapping to (1/k, k) and (0, 1 + k), respectively. The
rescaled equations are

dÛ

dz̃
= bÛ (1 − Û Ŵ ) (6.1a)

and

dŴ

dz̃
= kÛ 2Ŵ + Ŵ − 1 − k. (6.1b)

Note that there is a 1–1 correspondence between a ∈ (2b, ∞) and k ∈ (0, 1);
however, at various stages in the proof, I will also consider k = 0, which
corresponds to the limit a → ∞.

Calculation of the eigenvalues of the Jacobian matrix of equations (6.1) shows
that, for all b > 2 and k ∈ [0, 1), (Û , Ŵ ) = (1, 1) is a saddle point. I denote by
Tu/Ts the unique trajectories leaving/entering this steady state into/from the
region Û > 1 (figure 7).

(b) Definition of the functions Fu and Fs

The Û nullclines are Û = 0 and Û Ŵ = 1, while the Ŵ nullcline is Ŵ = (1 + k)/
(1 + kÛ 2) (figure 7). I denote by Ru the open region of the Û–Ŵ plane with Û > 1
and 0 < Û Ŵ < 1 (figure 7a), and by Rs the open region with Ŵ < 1, Û > 1, and
with Ŵ above both 1/Û and the Ŵ nullcline (figure 7b). Then, comparison of
the eigenvectors of the Jacobian matrix of equations (6.1) at (1, 1) with the slopes
of the nullclines shows that, for all k ∈ [0, 1), Tu leaves (1, 1) into Ru, while for
all k ∈ (0, 1), Ts approaches (1, 1) from Rs. Since dÛ /dz̃ > 0 throughout Ru, Tu
Proc. R. Soc. A
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Figure 7. An illustration of various lines, regions and points in the Û–Ŵ plane that are referred
to in §6a,b. The curves are the Û nullcline Û Ŵ = 1, and the Ŵ nullcline Ŵ = (1 + k)/(1 + kÛ 2).
The shaded regions in (a) and (b) are Ru and Rs, respectively.

must leave this region through either the Ŵ = 0 axis or the Û Ŵ = 1 boundary,
except for the intermediate case in which Û → ∞ and Ŵ → 0 as z̃ → ∞ along
Tu. I define Fu : [0, 1) → R by

Fu(k) =

⎧⎪⎨
⎪⎩

−1/Û ∗ if Tu leaves Ru at (Û ∗, 0),
0 if (Û , Ŵ ) → (∞, 0) as z̃ → ∞ along Tu,
Ŵ ∗ if Tu leaves Ru at (1/Ŵ ∗, Ŵ ∗).

(6.2)

In the region Rs, dŴ /dÛ → −k/b as Û → ∞ at each fixed Ŵ ∈ (0, 1), and
thus Ts cannot enter Rs from infinity unless Û → ∞ and Ŵ → 0 as z̃ → −∞ along
Ts. Moreover, on the part of the boundary of Rs composed of the Ŵ nullcline,
dÛ /dz̃ < 0, implying that all trajectories crossing this part of the boundary do
so out of Rs. Therefore, Ts must enter Rs either from (∞, 0) or through Û Ŵ = 1.
I define Fs : (0, 1) → R by

Fs(k) =
{

0 if (Û , Ŵ ) → (∞, 0) as z̃ → −∞ along Ts,
Ŵ ∗ if Ts enters Rs at (1/Ŵ ∗, Ŵ ∗).

(6.3)

Note that Fu(k) is defined at k = 0, but Fs(k) is not: this is because the slope of
Ts → 0 as k → 0+, so that in the limiting case k = 0, Ts approaches (1, 1) along
the boundary of the open region Rs, rather than from the interior.

The points at which Tu leaves Ru and Ts enters Rs vary continuously with
k (Kopell & Howard 1975), and thus Fu and Fs are continuous functions of k.
Exploiting this continuity, I will show that there is a value of k ∈ (0, 1) at which
Fu(k) = Fs(k), corresponding to a homoclinic solution.
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Figure 8. An illustration of various lines, regions and points in the Û–Ŵ plane that are referred
to in §6d(i),(ii). The curve is the Û nullcline Û Ŵ = 1, and the shaded regions in (a) and (b) are
R1 and R2, respectively.

(c) Fs(k) > Fu(k) for k sufficiently small and positive

When k = 0, equations (6.1) can be solved exactly,

Û =
[
1 + G1e−bz̃ + G2bez̃

(1 + b)

]−1

and
Ŵ = 1 + G2ez̃.

Here, G1 and G2 are constants of integration. Therefore, Tu is given by bŴ = (1 +
b)Û −1 − 1, implying that Fu(0) = −1/(1 + b). Since Fu is continuous, Fu(k) < 0
for k > 0 sufficiently small, whereas Fs(k) ≥ 0 for all k ∈ (0, 1), by construction.
Therefore, Fu(k) < Fs(k) for k > 0 sufficiently small.

(d) Fs(k) < Fu(k) for k sufficiently close to 1

Throughout this subsection, I write k = 1 − e.

(i) 1 − Fs(1 − e) � e as e → 0

Expanding the stable eigenvector of the Jacobian matrix of equations (6.1) at
(1, 1) as a power series in e shows that the slope of Ts at (1, 1) is −2/b + O(e) as
e → 0; a corresponding expansion of the equation of the Ŵ nullcline shows that
its slope at (1, 1) is −1 + O(e). Since these slopes differ by an amount that is
Os(1) as e → 0, one expects intuitively that Ts will remain above the Ŵ nullcline
until its distance from (1, 1) is � e.

Formally, I argue as follows. I define L1 to be the half-line Ŵ = 1 + m1 − m1Û ,
Û > 1, with m1 ∈ (2/b, 1) fixed. I then define R1 to be the open region enclosed
by L1 and the half-line Ŵ = 1, Û > 1 (figure 8a). Consider now a point P1 on L1

given by Û = 1 + ex/m1, Ŵ = 1 − ex, where 0 < x = O(1) as e → 0. Then, power
series expansion shows that dŴ /dÛ |P1 = −2/b + O(e), which is greater than −m1
for sufficiently small e. Therefore, if a trajectory crosses L1 at a point whose
Proc. R. Soc. A
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distance from (1, 1) is O(e) as e → 0, then it must be directed out of R1. Hence,
the point at which Ts (first) crosses L1 must have a distance from (1, 1) that
is � e as e → 0, i.e. 1 − Fs(1 − e) � e as e → 0.

(ii) 1 − Fu(1 − e) = e + O(e2) as e → 0

Power series expansion of the eigenvectors of the Jacobian matrix of
equations (6.1) at (1, 1) shows that the slope of Tu at (1, 1) is −1 − e/(b − 2) +
O(e2) as e → 0. I define L2 to be the line in the Û–Ŵ plane through (1, 1)
with slope −1 − em2, where m2 > 1/(b − 2) (figure 8b), and I define R2 to be
the open region enclosed by L2, the Û nullcline Û Ŵ = 1, and the line Ŵ = 1 − e
(figure 8b). Then, Tu enters R2, by construction. Now consider a point P2 on L2

given by Û = 1 + ex/(1 + em2), Ŵ = 1 − ex, where 0 < x = O(1) as e → 0. Then,
power series expansion shows that

dŴ

dÛ

∣∣∣∣∣
P2

= −1 + (b − 2)m2 − 1
b(m2 + x)

+ O(e) > −1 − em2

for sufficiently small e, since m2 > 1/(b − 2) > 0. Therefore, for sufficiently small
e, all trajectories crossing the L2 part of the boundary of R2 are directed into R2.
Also, on the Û Ŵ = 1 part of the boundary of R2, dÛ /dz̃ = 0 and dŴ /dz̃ < 0,
so that again all trajectories are directed into R2. Therefore, Tu must leave R2

through the line Ŵ = 1 − e (figure 8b). The point Q at which this occurs has

1
1 − e

> Û |Q > 1 + e

1 + em2
⇒ 0 <

1
1 − e

− Û |Q < (1 + m2)e2 + O(e3).

Recall that the only constraint on m2 is m2 > 1/(b − 2). Since the point Q is
independent of the choice of m2, it follows that

0 <
1

1 − e
− Û |Q ≤

(
1 + 1

b − 2

)
e2 + O(e3).

This estimate is actually more precise than needed: I will only use the fact that
0 < 1/(1 − e) − ÛQ = O(e2) as e → 0.

The remainder of this section is the most delicate part of the proof. Recall
from §3 that the steady state (1/(1 − e), 1 − e) is a focus. The basic argument is
that after the point Q, Tu rotates around (1/(1 − e), 1 − e), and reaches the Û
nullcline Û Ŵ = 1 at a point whose distance from (1/(1 − e), 1 − e) is still O(e2).
The complication is that, as e decreases, not only does Q approach (1/(1 − e),
1 − e), but also equations (6.1) change, and in fact e → 0 is a singular limit. It is
most convenient to work in polar coordinates centred at (1/(1 − e), 1 − e),

r =
{(

Û − 1
1 − e

)2

+ (Ŵ − (1 − e))2

}1/2

and

q = tan−1

[
Ŵ − (1 − e)

Û − 1/(1 − e)

]
.
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It is straightforward to reformulate equations (6.1) in terms of r and q. I then
substitute r = e2r, where r = O(1) as e → 0, and expand the equations as power
series in e, giving

dr

dz̃
= O(1) (6.4)

and
dq

dz̃
= (2b2 + 8)1/2 cos(q − f) cos

(
q − p

4

)
+ O(e), (6.5)

where f = tan−1(b/2) with f ∈ (p/4, p/2). At the point Q, q = p ⇒ dq/dz̃ > 0
for sufficiently small e, and q continues to increase with z̃ provided 7p/4 − q � e.
Along this part of Tu, dq/dz̃ = O(1) as e → 0, implying that there is an O(1)
increase in z̃ and hence an O(1) increase in r, using equation (6.4). Moreover, I
have shown that r = O(e2) at the point Q, and thus r remains O(e2) throughout
this part of Tu.

I must now consider how q changes along Tu in the vicinity of 7p/4, specifically
when 7p/4 − q = O(e) as e → 0. This is an important region because power
series expansion shows that close to (1/(1 − e), 1 − e), and for Û > 1/(1 − e), the
polar coordinate equation of the Û nullcline Û Ŵ = 1 is q = 7p/4 + e + O(e2). To
consider the solution for q(z̃) in this region, it is necessary to include the Os(e)
contribution to dq/dz̃ as well as the Os(1) terms given in equation (6.5). I omit
the details for brevity; writing d = q − 7p/4, the result is

dd

dz̃
= −(b − 2)d +

(
b − 3

2

)
e + o(d) + O(e2).

Therefore, dd/dz̃ > 0 whenever d ≤ e, for sufficiently small e, implying that Tu

continues to rotate around (1/(1 − e), 1 − e) until it crosses the Û Ŵ = 1 nullcline.
Moreover, dq/dz̃ = O(e) whenever q − 7p/4 = O(e). Therefore, during the part of
Tu in which q − 7p/4 = O(e), there is an O(1) increase in z̃ and hence an O(1)
increase in r, using equation (6.4). Therefore, r = O(e2) throughout this part of
Tu, also.

Taken together, these results imply that the (first) point at which Tu intersects
Û Ŵ = 1 is located at a distance from (1/(1 − e), 1 − e) that is O(e2) as e → 0,
implying that Fu(1 − e) = 1 − e + O(e2).

(iii) Comparison of Fs(1 − e) and Fu(1 − e)

The results in §6d(i), (ii) together imply that 1 − Fs(1 − e) > 1 − Fu(1 − e) for
e sufficiently small, i.e. Fs(1 − e) < Fu(1 − e).

(e) Completion of the proof

Since the functions Fs(·) and Fu(·) are continuous (see §6b), and recalling
that e = 1 − k, §6c,d together imply that there is a value of k ∈ (0, 1) for which
Fu(k) = Fs(k). Then, the trajectories Tu and Ts are the same, and constitute a
solution of equations (6.1) that is homoclinic to (Û , Ŵ ) = (1, 1).
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7. Discussion

The Klausmeier model for banded vegetation in semi-arid environments is the
oldest and simplest of a number of continuous models for patterning due to water
redistribution. In this paper, I have focussed on patterns with migration speeds
close to the maximum possible value, for large values of the slope parameter.
I have shown that the mathematical origin of patterns is a Hopf bifurcation in
the travelling wave equations that can be either subcritical or supercritical, and
I have shown that the branch of pattern solutions terminates at a homoclinic
solution, whose existence I have proved. From an ecological viewpoint, the most
important implications of my results concern the way in which pattern solutions
vary with the rainfall parameter. I have shown that, for a fixed migration speed,
pattern wavelength depends sensitively on rainfall (see figure 5). In fact, field data
(e.g. Valentin & d’Herbès 1999) and simulations of equations (2.1) (Sherratt &
Lord 2007) both suggest that pattern wavelength remains constant when rainfall
varies. My results then imply a significant variation in migration speed; moreover,
this variation is very insensitive to the constant value of the wavelength (figure 9).
The available field data on migration speeds are not sufficiently detailed to enable
this to be tested. Moreover, the practicalities of measuring band migration (see
Deblauwe 2010, ch. 10) mean that it can only be assessed over period of at
least 5–10 years, so that measured speeds can only reflect multi-year averages of
rainfall. Nevertheless, my prediction may be a possible explanation for the long-
standing and on-going debate on the extent of migration in banded vegetation
patterns (e.g. Tongway & Ludwig 2001).

Pattern solutions of the Klausmeier model (2.1) are periodic travelling waves,
also known as wavetrains. Over the last decade, it has become increasingly clear
that periodic travelling waves play an important role in spatial ecology. They
have been studied almost exclusively for cyclic populations, meaning that even
in the absence of spatial variation, the populations would exhibit multi-year
oscillations in abundance. Field data on a number of cyclic populations reveal
periodic travelling waves (see Sherratt & Smith 2008 for review). Moreover,
periodic travelling waves are predicted by various types of mathematical models
for cyclic ecological systems: reaction–diffusion equations (Sherratt et al. 1995;
Petrovskii & Malchow 1999; Smith et al. 2008); integro-differential equations
(Gourley & Britton 1993; Ashwin et al. 2002); integro-difference equations
(Kot 1992); and cellular automata (Sherratt 1996). In the case of oscillatory
reaction–diffusion equations, mathematical theory has enabled a detailed
understanding of how a particular periodic travelling wave solution is selected
from the wave family by initial and boundary conditions (Petrovskii et al.
1998; Sherratt 2001; Sherratt et al. 2003; Garvie 2007). A corresponding
investigation for the Klausmeier model (2.1) is an important objective for
future research. Preliminary results (Sherratt & Lord 2007) indicate that wave
selection is dependent not only on initial and boundary conditions, but also
on pattern history, suggesting that this will be a complex problem requiring
careful study.

Compared to the substantial literature on periodic travelling waves in
oscillatory reaction–diffusion systems, research on these solution forms in
advection–reaction–diffusion equations such as equations (2.1) is very much
in its infancy. The largest body of work concerns ‘differential flow-induced
Proc. R. Soc. A
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Figure 9. Loci of periodic solutions of equations (3.3) with fixed periods of 2, 3, 4, 5 and 6, plotted
in the a/b − 1/b plane. Away from the Hopf bifurcation points (squares), the loci are almost
coincident. The axes are chosen because for fixed values of the plant loss B and the slope n, a/b is
proportional to the rainfall parameter A, while 1/b is an increasing function of the migration speed
c (see equations (3.2)). Therefore, this figure shows that wave speed increases significantly as the
rainfall parameter A is decreased, for solutions of a given wavelength. Moreover, the variation in
wave speed is very insensitive to the fixed value of the wavelength, making it an effective target
for empirical study. As for figure 4, computations were done using the software package AUTO
(Doedel 1981; Doedel et al. 1991, 2006).

chemical instability’, where the advection term is due simply to fluid flow in
an aqueous system of reactants. For a number of specific chemical systems,
conditions for patterning have been derived, and in some cases tested against
experiment (Merkin et al. 2000; Nekhamkina & Sheintuch 2003; Taylor
2003). There has also been some work on pattern formation in advection–
reaction–diffusion equations applied to developmental biology (Perumpanani
et al. 1995; Bernasconi & Boissonade 1997; Satnoianu & Menzinger 2002);
in that context, a key issue is the phase difference between two interacting
morphogens, which depends on the advection coefficients. In oscillatory
reaction–diffusion equations, periodic travelling waves are important both in
their own right, and because they play a key role in the transition to
spatio-temporal chaos (Petrovskii & Malchow 2001; Sherratt et al. 2009).
This suggests that a fuller understanding of periodic travelling waves in
ecological models of advection–reaction–diffusion type has the potential not
only to reveal details of periodic patterning, but also to provide new insights
into other, more complex types of spatio-temporal dynamics in ecological
systems.

This work was supported in part by a Leverhulme Trust Research Fellowship. I am grateful to Jack
Carr (Heriot–Watt University) for helpful discussions.
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