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a b s t r a c t

Periodic travelling waves (wavetrains) are an important solution type for many partial dif-
ferential equations. In this paper I review the use of numerical continuation for studying
these solutions. I discuss the calculation of the form and stability of a given periodic trav-
elling wave, and the calculation of boundaries in a two-dimensional parameter plane for
wave existence and stability. I also describe the automated implementation of these
numerical continuation procedures via the software package WAVETRAIN (http://www.ma.
hw.ac.uk/wavetrain). I conclude by discussing ongoing work on numerical continuation
methods for determining the absolute stability of periodic travelling waves.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Periodic travelling waves (wavetrains) are an important solution type for many partial differential equations (PDEs). They
play a fundamental role in the one-dimensional behaviour of self-oscillatory systems [1], for which the complex Ginzburg–
Landau equation is the prototype example [2], and they arise in a wide range of other equations including excitable systems
[3] and reaction–diffusion–advection equations [4]. As well as this fundamental mathematical role, periodic travelling waves
(PTWs) occur in many applications. In physics, PTWs play an important role in hydrodynamics [5–7] and solar cycles [8]. In
chemistry, travelling bands were observed in the Belousov–Zhabotinskii reaction more than 30 years ago [9] and are part
of the wide range of behaviours seen in oscillatory and excitable chemical reactions [10–12]. In ecology, PTWs have been iden-
tified in spatiotemporal data sets on a number of cyclic populations [13–15], and occur on a landscape scale in semi-arid
environments, where bands of vegetation moving slowly uphill on gentle slopes are a characteristic feature [16,17].

Like all travelling wave solutions, PTWs are functions of the single variable z = x � ct; here t and x are the time and (one-
dimensional) space coordinates, and c is the wave speed. This solution ansatz reduces the PDEs to an ordinary differential
equation (ODE) system, and a PTW is a limit cycle solution of these ODEs. However the limit cycle is typically unstable as an
ODE solution in both the positive and negative z directions, meaning that it cannot be calculated by direct numerical integra-
tion of the ODEs. The standard method for calculating a PTW solution is therefore numerical continuation: starting from a Hopf
bifurcation in the travelling wave equations, one follows the limit cycle branch until the required PTW solution is reached.
Extensions of this approach enable calculation of the regions of parameter space in which PTWs exist. Stability of a PTW can
also be determined via numerical continuation, using the method of Rademacher et al. [18] for computing the essential spec-
trum. In this paper, I will review these different applications of numerical continuation to the study of PTWs, illustrating my
remarks via the calculation of boundaries in parameter space for the existence and stability of PTWs in the Klausmeier model
for banded vegetation in semi-arid environments [19].
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Some of the methods that I will describe are relatively difficult to implement, even when using an established numerical
continuation program such as AUTO [20–23], and this has been a significant barrier to their wider use. In Section 4, I will de-
scribe a new software package called WAVETRAIN which uses AUTO to study PTW solutions in an easy-to-use automated way.

2. The Klausmeier model for banded vegetation

In semi-arid environments, vegetation is often self-organised into spatial patterns. A particularly striking manifestation of
this is vegetation banding on gentle slopes, in which stripes of grass, shrubs or trees run parallel to the contours, alternating
with regions of bare ground [16,17]. A number of mathematical models have been developed for banded vegetation, reflect-
ing the various ecological mechanisms that have been proposed. I will illustrate my discussion of the study of PTWs via the
Klausmeier model [19], which has the dimensionless form

@p=@t ¼ xp2
zffl}|ffl{plant
growth

� Bp
z}|{plant

loss

þ @2p=@x2
zfflfflfflfflffl}|fflfflfflfflffl{plant

dispersal

; ð1aÞ

@x=@t ¼ A|{z}
rain-fall

� x|{z}
evaporation

� xp2|ffl{zffl}
uptake

by plants

þ m@x=@x|fflfflfflfflffl{zfflfflfflfflffl}
flow

downhill

: ð1bÞ

This was the first PDE model to be proposed for banded vegetation; p and x are the densities of plant biomass and water,
respectively. The parameters A, B and m are dimensionless combinations of a number of ecological parameters, but can be
most conveniently interpreted as reflecting mean annual rainfall, plant loss including herbivory, and slope gradient, respec-
tively. A key component of (1) is the nonlinear term xp2, which reflects the fact that higher levels of organic matter in the
soil, and the presence of roots, increase the infiltration of rain water into the soil [24,25]. A detailed ecological appraisal of
the Klausmeier model is given in [26], and mathematical properties of the equations are discussed in [27–30]. Before pro-
ceeding, it is important to emphasise that (1) is only one of a number of different mathematical models for banded vegeta-
tion; Refs. [31–35] contain a selection of other models, and [36] reviews the modelling literature in this area.

Banded vegetation corresponds to spatial patterns of (1) that move in the positive x direction (uphill) at a constant speed,
that is, PTWs. Therefore it is important to understand the constraints on the parameters (A, B, m and wave speed) for PTW solu-
tions of (1) to exist, and for them to be stable.

3. Application of numerical continuation to periodic travelling waves

In this section, I will describe the basic uses of numerical continuation to study the form and existence (Section 3.1) and
stability (Section 3.2) of PTW solutions of the partial differential equations

@u=@t ¼ F u; @u=@x; @2u=@x2; . . .
� �

: ð2Þ

I will illustrate my remarks via the Klausmeier model (1); the results I will present on existence of PTWs for (1) have been
shown previously in [4], but those on wave stability are new. Throughout this section I will consider only typical, simple
behaviour, for which the Klausmeier model provides a good example for the parameter values considered. Moreover, to
avoid interfering with readability I will for the most part omit caveats about the possibility of more complicated cases.
Rather, in Section 5, I will describe various complications that can arise, and how they can be overcome.

3.1. Periodic travelling wave form and existence

Travelling wave solutions of (2) satisfy

c dU=dzþ F U;dU=dz;d2U=dz2
; . . .

� �
¼ 0 ð3Þ

where u(x,t) = U(z) with z = x � ct; c is the wave speed. As discussed in Section 1, a PTW is a limit cycle solution of (3). In simple
cases, the limit cycle branch containing this solution is monotonic in the parameters, and has at least one end terminating at
a Hopf bifurcation point. For example, Fig. 1 illustrates the branch of PTW solutions of (1) with speed c = 2, as a function of the
rainfall parameter A. The solution branch emanates from a Hopf bifurcation point at A � 2.78, and terminates at a homoclinic
solution at A � 0.32. To calculate a PTW solution for a value of A between these limits, one therefore begins by performing a
numerical continuation of the steady state, looking for the Hopf bifurcation point. One then switches to the limit cycle solu-
tion branch, and numerically continues this branch until the required value of A is reached.

PTW solutions depend on the parameters in the original PDEs (2) and also on the wave speed c. If PTW solutions exist for a
given set of PDE parameters, then they will do so for a range of values of c [1], with the value of c relevant to a particular PDE

solution depending on initial and boundary conditions. Therefore it is natural to consider PTW existence in a parameter plane
whose axes are the wave speed c and one of the PDE parameters, referred to henceforth as the ‘‘control parameter’’. For exam-
ples of PTW existence visualised in this way, see Refs. [4,39,40].
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Typically, the region of the parameter plane in which PTWs exist will be bordered either by a locus of Hopf bifurcation
points or a locus of homoclinic solutions. (The other possibility is a locus of folds in the limit cycle solution branch: see Sec-
tion 5). These loci can be calculated by numerical continuation. For Hopf bifurcation loci this is straightforward. Actual
homoclinic loci can be calculated by numerical continuation [41,42], but in practice it is usually easier to approximate
the locus by that of a PTW of large period. For example, Fig. 2 illustrates part of the A–c parameter plane for (1); the region
in which PTWs exist is bordered on the right by a locus of Hopf bifurcation points, and on the left by a homoclinic locus, which
is approximated in the figure by a locus of PTWs with period 2000.

3.2. Periodic travelling wave stability

In applications, it is important to know not only when PTWs exist, but also whether they are stable as solutions of the PDEs
[15,43]. To study stability, it is convenient to reformulate (2) in terms of z and t. Writing ~uðz; tÞ ¼ uðx; tÞ, (2) becomes

@~u=@t ¼ c@~u=@zþ F ~u; @~u=@z; @2~u=@z2; . . .
� �

: ð4Þ

For a PTW solution ~uðz; tÞ ¼ UptwðzÞ of (4), the equations governing the leading order behaviour of small perturbations are

k bU ¼ c@ bU=@zþ J � bU : ð5Þ

Here J denotes the Jacobian matrix of F with respect to ~u and its derivatives, evaluated at Uptw. Note that the eigenfunction bU
and eigenvalue k are complex-valued. Eq. (4) are formulated on one period of the PTW, say 0 < z < L, and the boundary con-
ditions are of key importance. The PTW solution satisfies Uptw(0) = Uptw(L) by definition, but the eigenfunction need not be
periodic: a phase shift is permissible across one period of the wave. Thus the appropriate boundary condition is

bUðLÞ ¼ bUð0Þ expðicÞ for some c 2 R: ð6Þ

Formally, this boundary condition can be derived using Floquet theory [18,43–45]. Intuitively, the (complex-valued) compo-
nents of the eigenfunction cannot change in amplitude across one period of the wave, otherwise the eigenfunction would
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Fig. 1. The branch of PTW solutions of (1) with wave speed c = 2, for B = 0.45 and m = 182.5. The branch emanates from a Hopf bifurcation (�) at A � 2.78, and
terminates at a homoclinic solution at A � 0.32. Part (a) shows the L2 norm of the solution of the travelling wave ODEs, and (b) shows the period of the wave;
both are plotted as a function of the rainfall parameter A. The curves were calculated and plotted using the software package WAVETRAIN [37]. Full details of
the WAVETRAIN input files, run commands and plot commands are given at [38].
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grow without bound if (5) were considered on �1 < z <1. The phase difference must be the same for all components since
they are coupled in the linear eigenfunction equations, but otherwise it is unconstrained.

The set of eigenvalues k for which (5) and (6) has a non-trivial solution is known as the spectrum of the PTW. In general the
spectra of linear operators consist of a discrete part (the ‘‘point spectrum’’) and a continuous part (the ‘‘essential spectrum’’).
However for PTWs the point spectrum is always empty [45, Section 3.4.2], and the spectrum consists entirely of the (contin-
uous) essential spectrum. The PTW is unstable if and only if the essential spectrum extends into the right hand half (Rek > 0)
of the complex plane.

For c = 0, (5) can be discretised in z to give a matrix eigenvalue problem, which can be solved by standard numerical
methods. Since one is only interested in whether or not there are solutions of (5) and (6) with Rek > 0, it is sufficient to cal-
culate a few matrix eigenvalues (10, say) with largest real part, and there are a number of software packages intended for
exactly this purpose, for example ARPACK [46,47] which uses a variant of the Arnoldi process. Alternatively, one can simply
calculate all of the matrix eigenvalues, for example using routines from LAPACK [48,49], and then select those with the largest
real part.

For c – 0, (5) and (6) cannot be reduced to a matrix eigenvalue problem, but the numerical continuation method of Radem-
acher et al. [18] can be used. This is a relatively new method, but has proved successful in a variety of different cases (for exam-
ple [39,50]). One considers the Eqs. (3) and (5) in combination, and performs a numerical continuation in the phase difference
c. The matrix eigenvalues and eigenfunctions calculated for c = 0 can be used as starting points for the continuation, which
must be done over 0 < c < 2p for each of the selected matrix eigenvalues (for example the 10 with the largest real part). This
traces out the full essential spectrum provided that each of its parts contains a point with c = 0. In principle there remains the
possibility of islands of spectrum composed entirely of points with 0 < c < 2p. However I am not aware of an example of this,
and for many systems including reaction–diffusion equations it can be proved that such islands do not exist [18,45].

Practical implementation of this continuation procedure requires a number of special settings, such as integral con-
straints to ensure normalisation of the eigenfunction, and full details of these are given in [18]. Fig. 3 shows two spectra
calculated in this way for (1); the dots indicate the matrix eigenvalues for c = 0. In Fig. 3a the spectrum is confined to the
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Fig. 2. Existence and stability of PTW solutions of (1) as a function of the rainfall parameter A and the wave speed c, for B = 0.45 and m = 182.5. The symbols
show the results from a loop over a 10 � 10 grid in the parameter plane: N indicates the existence of a stable PTW; indicates the existence of an unstable
PTW; h indicates that a PTW does not exist. The lines show the boundaries between different regions of the parameter plane. The thick black line is a locus of
Hopf bifurcation points in the travelling wave ODEs; the thin black line is a locus of PTWs with period = 2000, which is an approximation to a locus of
homoclinic solutions of the travelling wave ODEs; the grey line is the locus of a change in PTW stability, of Eckhaus type. These various points and lines were
calculated using the continuation methods described in the main text, implemented via the software package WAVETRAIN [37]. Full details of the WAVETRAIN

input files, run commands and plot commands are given at [38].
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left-hand half of the complex plane, indicating that the PTW is stable, whereas in Fig. 3b the spectrum crosses the imaginary
axis, indicating an unstable PTW.

In both parts of Fig. 3, the origin lies in the spectrum. This is always the case for PTWs, corresponding to their neutral sta-
bility to translations. In many cases, including (1), changes from stable to unstable waves as parameters are varied occur via
a change in the sign of the curvature of the spectrum at the origin: that is, the stability change is of Eckhaus (sideband) type
[53]. A stability change of this type can be located via numerical continuation, and can itself then be numerically continued
to give a curve in the control parameter – wave speed plane along which PTW stability changes. This involves numerical
continuation of (3) and (5), and the real parts of the first and second derivatives of (5) with respect to c. Full details of this
algorithm are given in [18]; to my knowledge, the only published example of its use is [39], for a system of two reaction–
diffusion equations modelling a predator–prey interaction. Fig. 2 shows the boundary between stable and unstable PTW

solutions of (1) in the A–c plane, calculated in this way.
To end this section, I mention an alternative method for calculating PTW stability, developed by Deconinck and coworkers

[43,51]. This is based on truncating the Fourier–Floquet expansion of the eigenfunction equation (‘‘Hill’s Method’’), and is par-
ticularly well suited to spatially periodic solutions such as PTWs. A ‘‘black box’’ software package implementing the method is
available at [52].

4. Implementation in WAVETRAIN

Some of the calculations described in Section 3 are relatively complex. For example, the stability boundary shown in Fig. 2
was calculated using 6 continuation parameters for 15 ODEs subject to 15 boundary conditions and 5 integral constraints.
Clearly some previous experience of numerical continuation is necessary before one embarks on a calculation of this type.
For the benefit of researchers less familiar with numerical continuation, I have written the software package WAVETRAIN, which
performs all of the calculations described in Section 3 in an automated way. Full details of the package, which is freely avail-
able and open source (though protected by copyright) are given at [37], and here I provide only a very brief summary.

The input files for WAVETRAIN are text-based, and WAVETRAIN uses them to construct Fortran subroutines that act as input files
for the program AUTO [20–23]. Therefore there is no requirement for users to have previous expertise with AUTO or any other
programming language or software. WAVETRAIN also includes a plotter, and Figs. 1–5 in this paper were generated by WAVETRAIN.
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Fig. 3. The essential spectra of two PTW solutions of (1). The grey lines show the spectra and the black dots denote eigenvalues corresponding to
eigenfunctions that are periodic with the same period as the PTW. The parameter values are A = 2.0, B = 0.45, m = 182.5, with (a) c = 0.7 and (b) c = 0.35. In (a)
the spectrum is confined to the left hand half of the complex plane so that the PTW is stable; in (b) the spectrum crosses the imaginary axis, implying an
unstable PTW. The spectra were calculated using the continuation method of Rademacher et al. [18], as described in the main text, implemented via the
software package WAVETRAIN [37]. Full details of the WAVETRAIN input files, run commands and plot commands are given at [38].
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The main WAVETRAIN run commands are as follows:

bifurcation_diagram: Performs the computations for a bifurcation diagram, such as that illustrated in Fig. 1. The bifur-
cation parameter can be either the wave speed or the control parameter. Note that the user spec-
ifies which of the PDE parameters is chosen as the control parameter in one of the input files.

hopf_locus: Calculates a locus of Hopf bifurcation points. Two pairs of control parameter and wave speed
values lying either side of the locus must be supplied as command arguments.

period_contour: Calculates a locus of PTWs of constant period. Again, two pairs of control parameter and wave
speed values lying either side of the locus must be supplied as command arguments.

ptw: Calculates the form of the PTW for given values of the control parameter and wave speed, or
returns the information that no PTW exists.

ptw_loop: Runs the PTW command over a grid of values in the control parameter – wave speed plane. This is
useful to provide starting points for the calculation of Hopf bifurcation loci and contours of con-
stant period.

stability: Calculates the form of the PTW for given values of the control parameter and wave speed, and its
stability, or returns the information that no PTW exists.

stability_boundary: Calculates an interface between stable and unstable PTWs in the control parameter – wave speed
plane. Two pairs of control parameter and wave speed values lying either side of the interface
must be supplied as command arguments.

stability_loop: Runs the stability command over a grid of values in the control parameter – wave speed
plane. This is useful to provide starting points for the calculation of stability boundaries.

These basic commands are augmented by a variety of others that assist in the preparation of input files and in the man-
agement of output data.

5. Potential complications

Although the methods described in Section 3 can be applied directly in many cases, they can be subject to complications. I
now summarise these and discuss how they can be overcome.
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Fig. 4. The branch of PTW solutions of (1) with wave speed c = 20.3, for B = 0.45 and m = 182.5. The branch emanates from a Hopf bifurcation (�) at A = 1.0818,
folds at A = 1.0787, and terminates at a homoclinic solution at A = 1.0804. The L2 norm of the solution of the travelling wave ODEs is plotted as a function of
the rainfall parameter A. The solution branch was calculated and plotted using the software package WAVETRAIN [37]. Full details of the WAVETRAIN input files,
run commands and plot commands are given at [38].
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5.1. Equations without time derivatives

One potential complication is that one may wish to study PDEs in which only some equations have time derivatives, with
the form

@ui=@t ¼ Fi ui; @ui=@x; @2ui=@x2; . . .
� �

1 6 i < m; ð7aÞ
0 ¼ Fi ui; @ui=@x; @2ui=@x2; . . .

� �
m 6 i 6 N: ð7bÞ

This does not present any additional difficulty for any of the continuation computations, but it does affect the calculation of
the matrix eigenvalues for c = 0, which is the first stage in the determination of PTW stability. Rather than a standard matrix
eigenvalue calculation, the problem becomes of generalised type:

kY u ¼ Z u; ð8Þ

where Y and Z are N � N matrices.
In practice the additional difficulty caused by this is only slight, since many standard numerical routines are available for

generalised eigenvalue problems. For example, both ARPACK [46,47] and LAPACK [48,49] contain suitable routines. Alternatively
one can reduce (8) to a standard eigenvalue problem. In block form (8) can be written as

P Q

R S

" #
v
w

� �
¼

I 0
0 0

� � v
w

� �
; ð9Þ

where P and S are (m � 1) � (m � 1) and (N �m + 1) � (N �m + 1) matrices respectively, Q and R are rectangular matrices,
and I is the (m � 1) � (m � 1) identity matrix; v 2 Rm�1 and w 2 RN�mþ1. Since S is dominated by its diagonal entries, it will
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Fig. 5. Existence of PTW solutions of (1) as a function of the rainfall parameter A and the wave speed c, for B = 0.45 and m = 182.5, for a different range of A and
c than that used in Fig. 2. Throughout this region of the parameter plane, there is a fold in the PTW solution branch as A is varied for fixed c, as illustrated in
Fig. 4. The symbols show the results from a loop over a 60 � 60 grid in the parameter plane: indicates the existence of a PTW; h indicates that a PTW does
not exist. The thick line is a locus of Hopf bifurcation points in the travelling wave ODEs; the thin line is a locus of PTWs with period = 5000, which is an
approximation to a locus of homoclinic solutions of the travelling wave ODEs. In contrast to Fig. 2, the parameter region in which PTWs exist is not bordered
entirely by the Hopf bifurcation and homoclinic solution loci: rather, the left hand boundary is the locus of the fold in the PTW solution branch (see Fig. 4).
The various points and lines were calculated using the continuation methods described in the main text, implemented via the software package WAVETRAIN

[37]. Full details of the WAVETRAIN input files, run commands and plot commands are given at [38].
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typically be invertible, in which case (9) implies that w = �S�1Rv. Substituting this back into (8) gives the standard eigen-
value problem

P � Q S�1R
� �

v ¼ kv :

5.2. Folds in the periodic travelling wave solution branch

For the purposes of the discussion in Section 3, I assumed that the PTW solution branch was monotone in the control
parameter, so that there is at most one PTW for each pair of control parameter and wave speed values. However, in some cases
the solution branch may fold. An example of this is provided by (1) for larger values of c than those considered in Section 3, as
illustrated in Fig. 4.

(a) (b)

Fig. 6. An illustration of the convergence of matrix eigenvalues to the fourth and fifth eigenvalues (ordered by real part with Imk P 0) of the (unique) PTW

solution of (1), for A = 2.0, B = 0.45, m = 182.5 and c = 0.65. The upper panels show the real part of the matrix eigenvalue as a function of ngrid, which is the
number of grid points in the (non-uniform) mesh used to calculate the PTW solution. Since there are two PDE variables, the matrix arising from the
discretisation has size 2ngrid � 2ngrid. The lower panels show the number of the matrix eigenvalue that is being plotted in the upper panel, with these
eigenvalues being ordered by real part considering only eigenvalues whose imaginary part is positive or approximately zero. In (a), the matrix eigenvalue is
number 4 throughout. However in (b), an increasing number of matrix eigenvalues with real part between �1.249209 and �2.244407 and with very large
imaginary parts (�104) arise as the discretisation becomes finer. Consequently the number of the matrix eigenvalue that is plotted in the upper panel
gradually increases with ngrid. The data for this figure was generated using the WAVETRAIN [37] commands eigenvalue_convergence and
convergence_table; full details are given at [38].
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Two new issues arise when there is such a fold. Firstly, one must keep careful track of which of the multiple PTWs is being
studied at any given pair of control parameter and wave speed values. The WAVETRAIN package achieves this via an input
parameter through which the user specifies whether they wish to study the first/second/third/� � � wave along the solution
branch. Secondly, the region in which PTWs exist may now be bounded in part by the locus of the fold, rather than by the
locus of a Hopf bifurcation point or a homoclinic solution. This is the case for (1) in the range c � 21, as illustrated in
Fig. 5. Further details of PTW solutions of (1) for values of c in this range are given in [29].

5.3. Complications in the convergence of matrix eigenvalues

The first stage in the determination of PTW stability is the solution of the matrix eigenvalue problem given by discretising
the eigenfunction equation with c = 0. Intuitively, one would expect this to give successively better approximations to the PDE

eigenvalues and eigenvectors as the discretisation becomes finer, and in many cases there are analytical convergence results
that ensure this [54–57]. However more complicated behaviour can occur for some equations, and the Klausmeier model (1)
provides an example of this, which I illustrate via one particular case. For parameter values A = 2.0, B = 0.45, m = 182.5 and
c = 0.65, high-accuracy numerical calculations indicate that for (5) and (6), the fourth and fifth eigenvalues (ordered by real
part with Imk P 0) are�1.249209 + i0.6226896 and�2.244407 + i0.8923310, to seven significant figures. Fig. 6 plots the real
and imaginary parts of selected eigenvalues of the matrix given by discretising the eigenfunction equation, using standard
three point approximations for the first and second spatial derivatives. As expected, there is convergence in both cases as the
number of points in the discretisation increases. In Fig. 6a, the matrix eigenvalue that is plotted is the fourth eigenvalue for
all discretisations, ordered by real part considering only eigenvalues whose imaginary part is positive or approximately zero.
This is as expected intuitively. However, in Fig. 6b, the eigenvalue that is plotted is only the fifth eigenvalue for relatively
coarse discretisations (see lower panel). As the discretisation becomes finer, new eigenvalues appear with real parts between
�1.249209 and�2.244407, and with very large imaginary parts (�104). These appear to be an artifact of the discretisation. In
a case such as this, the remedy is simply to exclude matrix eigenvalues with very large imaginary parts from those used as
starting points for numerical continuation of the essential spectrum. This facility is available in WAVETRAIN.

5.4. Stability changes of Hopf type

In Section 3.2 I described the use of numerical continuation to calculate the locus of changes in PTW stability of Eckhaus
(sideband) type, meaning that the spectrum changes its direction of curvature at the origin. PTWs can also change stability
through a transition of Hopf type [53], in which a fold in the spectrum crosses the imaginary axis away from the origin.
An example of this is given in [50], in a study of the Oregonator model. Loci of stability changes of Hopf type can also be
traced by numerical continuation; this involves a new numerical algorithm that I will present in a separate paper [58]. This
new algorithm is implemented by the WAVETRAIN command stability_boundary.

6. Discussion

Numerical continuation is a powerful method for studying PTW solutions of PDEs. Moreover the software package WAVETRAIN

makes this approach accessible to those without previous experience of numerical continuation.
One important property of PTWs has not yet been mentioned in this paper: absolute stability. A PTW is unstable if suitable

small perturbations grow when applied to the wave. These perturbations may move in space as they grow. If all growing
perturbations simultaneously move, then the PTW is known as ‘‘convectively unstable’’ – this is a subset of unstable waves.
The term ‘‘absolutely unstable’’ is used for PTWs for which there are perturbations that grow without moving. These different
types of stability have a major effect on the way in which a PTW can feature in PDE solutions. For example, appropriate initial
and boundary conditions can generate solutions containing a permanent moving band of convectively unstable PTWS

[7,59–64].
There are two established numerical methods for determining the absolute stability of a PDE solution. The oldest involves

tracking saddle points of the dispersion relation in a moving frame of reference [65,66]. Though effective and general, this
method is difficult to use in practice. A more recent and simpler alternative method is to calculate the ‘‘absolute spectrum’’
[67,68], which can be done by numerical continuation [18,60]. However the numerical algorithm only applies to spatially
uniform solutions. An extension to PTWs is an important objective for future work: the difficulty is not the numerical contin-
uation itself, but the systematic generation of suitable starting points. Note however that there is one important special case
is which the absolute stability of PTWs can be determined by numerical continuation: the complex Ginzburg–Landau equa-
tion. Here a change of variables can be applied that reduces PTWs to spatially uniform solutions [2]. The resulting absolute
stability information has proved extremely valuable in explaining spatiotemporal dynamics in this equation [60,69,70].
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