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Abstract A variety of numerical methods are available for determining the
stability of a given solution of a partial differential equation. However for
a family of solutions, calculation of boundaries in parameter space between
stable and unstable solutions remains a major challenge. This paper describes
an algorithm for the calculation of such stability boundaries, for the case
of periodic travelling wave solutions of spatially extended local dynamical
systems. The algorithm is based on numerical continuation of the spectrum. It
is implemented in a fully automated way by the software package wavetrain,
and two examples of its use are presented. One example is the Klausmeier
model for banded vegetation in semi-arid environments, for which the change
in stability is of Eckhaus (sideband) type; the other is the two-component
Oregonator model for the photosensitive Belousov–Zhabotinskii reaction, for
which the change in stability is of Hopf type.
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1 Introduction

The stability of spatiotemporal solutions of partial differential equations
(pdes) is fundamental to their mathematical role and to their relevance in
applications. There are various different notions of stability and throughout
this paper I consider spectral stability, defined formally in Section 2 be-
low. In some special cases (e.g. [1, 2]) this can be determined analytically.
Otherwise one must rely on numerical calculation, and a number of nu-
merical methods are available. For wave fronts and pulses, the most estab-
lished method uses shooting to solve the eigenfunction equation (e.g. [3–7],
http://www.amsta.leeds.ac.uk/˜jitse/software.html); the mismatch of solutions
obtained by shooting from plus and minus infinity is characterised by the Evans
function [8–10]. An alternative method due to Deconinck and coworkers
[11, 12] is based on truncating the Fourier–Floquet expansion of the eigen-
function equation (“Hill’s Method”). The method is particularly well suited
to spatially periodic solutions, though it can be applied more generally, and
a “black box” software package implementing the method is available at
http://www.amath.washington.edu/hill/spectruw.html. A third method is due
to Rademacher et al. [13], and involves numerical continuation of the
spectrum using the (imaginary) spatial eigenvalue as a continuation para-
meter. This has been used successfully for both pulse wave and periodic
travelling wave (ptw) solutions of reaction-diffusion systems [14–17], and
for ptw solutions of other equation types [13, 18]. A quite different ap-
proach to the calculation of spectral stability involves pseudospectra [19].
Here one finds points in the eigenvalue complex plane for which the re-
solvent exceeds a threshold value; this provides an approximation to the
spectrum.

These methods all concern the determination of (spectral) stability for a
given pde solution. However in applications it would often be desirable to cal-
culate also curves in parameter space across which pde solutions from a given
family change stability. Plane wave solutions of the complex Ginzburg-Landau
equation provide a rare example for which such curves can be calculated ana-
lytically, and the results have proved invaluable in understanding the complex
spatiotemporal dynamics observed in numerical simulations of this equation
(e.g. [20–22]). Numerically, one can of course obtain an approximation to
such stability boundaries by calculating the stability of the solution family at
a grid of points in parameter space. However numerical methods for more
accurate calculation of stability boundaries are very limited. Rademacher et al.
[13] discuss briefly the extension of their numerical continuation approach
to detect certain types of stability change, and continue them in parameter
space. In this paper I develop this idea further, presenting an algorithm
for the numerical calculation of any stability boundary for ptw solutions of
spatially extended local dynamical systems in one space dimension. Further, I
demonstrate the implementation of the algorithm in the new software package
wavetrain [18].
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2 Stability of periodic travelling waves

I consider pdes of the form

Ji ∂ui/∂t = Fi
(
u, ∂u/∂x, ∂2u/∂x2, . . .

)
(1)

(1 ≤ i ≤ n). Here u ∈ R
n, and Ji = 0 or 1, with Ji = 1 for at least value of i.

Travelling wave solutions of (1) have the form u(x, t) = U(z) where z =
x − ct with c being the wave speed. Such solutions satisfy

c M dU/dz + F
(
U, dU/dz, d2U/dz2, . . .

) = 0 (2)

where M is an n × n matrix with diagonal J and with all off-diagonal entries
zero. Ptws are limit cycle solutions of (2).

To study stability of ptws, it is convenient to reformulate (1) in terms of z
and t. Writing u(x, t) = ũ(z, t), this gives

M ∂ũ/∂t = c M ∂ũ/∂z + F
(
ũ, ∂ũ/∂z, ∂2ũ/∂z2, . . .

)
. (3)

A ptw solution U ptw(z) is an equilibrium solution of (3), and its spectrum is
determined by the eigenfunction equation

λ M Û = c M ∂Û/∂z + ∇F Û (4)

where ∇F denotes the Jacobian matrix of F with respect to ũ and its deriva-
tives, evaluated at U ptw. Note that the eigenvalue λ and the eigenfunction Û
are complex-valued. Appropriate boundary conditions on Û can be derived
using Floquet theory [11, 13, 23] which implies that

Û(L) = Û(0) exp(iγ ) for some γ ∈ R (5)

where L is the period of the ptw. Intuitively, the requirement that the
eigenfunction is bounded for all z ∈ R means that its amplitude cannot change
across one period of the ptw. However there is no restriction on the phase
of the eigenfunction, except that each component must have the same change
in phase across one period of the wave, since they are coupled in the linear
eigenfunction equations. The spectrum S = {λ | (4) and (5) have a non-trivial
solution}. In general the spectra of linear operators consist of a discrete part
(the “point spectrum”) and a continuous part (the “essential spectrum”).
However for ptws the point spectrum is always empty [23, Section 3.4.2], and
the spectrum consists entirely of the (continuous) essential spectrum. The ptw
solution U ptw(z) is defined as spectrally stable if and only if all elements of S
have Re λ ≤ 0. Note that 0 ∈ S in all cases; this reflects the neutral stability of
the wave to translation.

There are two ways in which the stability of a ptw can change as either the
pde parameters or the wave speed c are varied [24]. An Eckhaus (sideband)
stability change occurs when the curvature of the spectrum S at the origin
changes sign, as illustrated in Fig. 1a. Alternatively, a fold in the spectrum can
cross the imaginary axis at a point away from the origin (Fig. 1b); this is known
as a stability change of Hopf type.
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(a) Eckhaus (b) Hopf

Fig. 1 Examples of spectra of ptws on either side of a stability change of a Eckhaus type and
b Hopf type. In a the spectra are for ptw solutions of (19) with A = 1.0, B = 0.45, ν = 182.5
and c = 0.7 (upper panel), c = 0.4 (lower panel). In b the spectra are for ptw solutions of
(20) with ε = 0.05, f = 2.1, ξ = 10−4, q = 0.002, c = 9.85 and φ = 8.21 (upper panel), φ = 8.22
(lower panel). The spectra were calculated and plotted using the software package wavetrain
(http://www.ma.hw.ac.uk/wavetrain). Full details of the wavetrain input files, run commands
and plot commands are given at http://www.ma.hw.ac.uk/˜jas/supplements/stabilityboundaries.
Readers comparing my results on (20) with those in [14] should note that there is a small
error in the legend of Fig. 12 in that paper. The value for ξφ in Fig. 12b of [14] should be
8.22 × 10−4, not 8.23 × 10−4 as stated. I am grateful to Grigory Bordyugov for confirming this
in personal correspondence. The total run time for all of the various computations used for
these plots was 56 min using a 2.83 GHz Intel Core 2 Quad Q9500 processor (see http://www.
ma.hw.ac.uk/˜jas/supplements/stabilityboundaries for details)
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3 The computational algorithm

The eigenfunction equation (4) can be rewritten as a system of first order odes:

dv/dz =
[

Y(z) + λ Z
]
v . (6)

Here v(z) ∈ R
N where N ≥ n depends on the order of the derivatives in (4). Y

and Z are N × N matrices, with Y being a periodic function of z with period
L, the period of the ptw. Following Rademacher et al. [13], I write w(z) =
e−iγ z/Lv(z) and ζ = z/L, so that (6) becomes1

dw/dζ = L
[

Y(ζ ) + λ Z
]
w − iγw (7)

subject to w(1) = w(0). In order to uniquely specify w, it is necessary to
normalise the amplitude:

〈
w, w

〉 = 1 (8)

and to apply a suitable phase-fixing condition (discussed in Section 4 below).
The inner product is defined as

〈
h1, h2

〉 =
∫ ζ=1

ζ=0
h1 · h2

∗ dζ

with the asterisk denoting complex conjugation.
In the following, it will be necessary to consider wγ and wγγ , where the

subscript γ denotes partial differentiation with respect to γ . These quantities
satisfy

dwγ /dζ = L
[

Y(ζ ) + λ Z − iγ I
]
wγ +

[
Lλγ Z − iI

]
w (9)

dwγγ /dζ = L
[

Y(ζ ) + λ Z − iγ I
]
wγγ + 2

[
Lλγ Z − iI

]
wγ

+ Lλγγ Z w (10)

subject to

wγ (1) = wγ (0) (11)

wγγ (1) = wγγ (0). (12)

Here I is the N × N identity matrix. As formulated above, wγ and wγγ are not
uniquely determined because they can contain arbitrary components lying in

1Equation (3.11) in [13] corresponds to (7) in this paper, but contains a small error: a factor
of L is included in the final term. Equations (3.12) in [13] are correspondingly incorrect. These
errors actually have no effect on the calculation of Eckhaus points, which is the context in which
these equations are considered in [13]; however they are important for the calculation of stability
changes of Hopf type.

Author's personal copy



180 J.A. Sherratt

the null space of (7). To prevent this, I follow [13] and impose the orthogonality
conditions

〈
w, wγ

〉 = 0 (13)
〈
w, wγγ

〉 = 0 . (14)

At changes of stability of Eckhaus type λ = Re λγ = Re λγγ = 0, while at
those of Hopf type Re λ = Re λγ = 0 with Im λ �= 0. Note that these conditions
are necessary, but for sufficiency one must also add a transversality condition,
namely that the derivative of Re λ with respect to the parameter being varied
is non-zero.

The starting point for my algorithm is two parameters sets P1 and P2 such
that a ptw solution exists for each, stable in one case and unstable in the other.
Further, I require that these ptws are on the same solution branch of (2). Note
that P1 and P2 include both the pde parameters and the wave speed c. For
some equations there may be more than one ptw solution for a given set of
pde parameters and wave speed, due to folds in the solution branch. If this
is the case then the parameter specifications P1 and P2 must also include the
choice of ptw. Additionally, in the case of a stability change of Hopf type, my
algorithm requires that P1 be sufficiently close to the stability boundary; this
will be discussed below. Finally I comment that there is no requirement to
know a priori whether the stability change is of Eckhaus or Hopf type.

Stage 1 The initial step is to calculate the ptw solution for parameter set
P1. Usually the ptw will lie on a solution branch emanating from a Hopf
bifurcation point, in which case it is most easily calculated via numerical con-
tinuation along the branch, starting from the Hopf bifurcation point [18, 25].
Note however that the solution branch containing the ptw may not have a
Hopf bifurcation as an end point, for example if it connects two homoclinic
solutions; an example of this is given in [26]. In such a case it will be necessary
to provide a starting point for the continuation externally, for example via a
pde simulation.

Stage 2 Having calculated the ptw solution, one must then calculate the
rescaled eigenfunction w for the zero eigenvalue. This eigenvalue corresponds
to the neutral stability of the ptw to translations, and therefore the eigenfunc-
tion is proportional to the derivative of the ptw with respect to the travelling
wave coordinate. Numerical differentiaton of the (numerically calculated) ptw
solution does not usually give a sufficiently accurate approximation to the
eigenfunction, but the numerical continuation in Stage 1 can be augmented
to include equations for both the ptw and its derivative. Alternatively one can
calculate solutions of (4) and (5) with γ = 0, including an approximation to
the zero eigenvalue and the corresponding eigenvector, by discretising in z
and using finite difference approximations for the derivatives [27–30].
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Stage 3 This stage of the algorithm is described in [13]. When λ = 0, γ = 0
also and therefore one can take the eigenfunction w to be real; as mentioned
above, it is in fact proportional to the derivative of the ptw. Therefore in
(9), (10), (11) and (12) the equations for the unknown quantities Im λγ ,
Im wγ , Re λγγ and Re wγγ decouple. Here the vectors Im wγ and Re wγγ each
constitute Nm scalar unknowns, where m is the number of mesh points in
the numerical discretisation used in the calculation of w in Stage 2. One now
solves these decoupled equations, which can be done using Newton’s method:
as noted in [13], almost any initial guess will converge to the correct solution
since the equations are linear in the unknowns.

Stage 4 Stages 1–3 provide the starting point for a numerical continuation
in parameter space, searching for a change in stability of Eckhaus type. The
equations to be continued are the travelling wave equation (2), the rescaled
eigenfunction equation (7) (with λ = γ = 0), the imaginary part of (9), and the
real part of (10). Continuation occurs along the ptw solution branch linking
P1 and P2, and the principal continuation parameter must be one of the
pde parameters or the wave speed, as appropriate. Secondary continuation
parameters must include Re λγγ , and one searches for a zero of this variable
along the ptw solution branch.

Stage 5A A zero of Re λγγ corresponds to a change in stability of Eckhaus
type. If such a point is detected during Stage 4, one can fix Re λγγ = 0, replace
it as a continuation parameter by a second pde parameter/the wave speed,
and then perform a continuation that will trace out a two-parameter locus
of Eckhaus points. Since P1 will typically be in the interior of the parameter
region under consideration, this continuation will have to be performed twice,
with opposite initial directions. This will generate the stability boundary as
required, and the algorithm then terminates.

Stage 5B If Re λγγ remains of constant sign between P1 and P2, then the
stability change must be of Hopf rather than Eckhaus type.

Stage 6 I mentioned previously the requirement that P1 be sufficiently close
in parameter space to the stability change. This ensures that the spectrum at P1

contains at least one fold with strictly positive imaginary part, and that amongst
such folds, that with the largest real part will cross the imaginary axis at the
stability change, as one varies parameters between P1 and P2. One now locates
this fold via numerical continuation of (2), (7) and (9); note that both the real
and imaginary parts of (9) must be considered, in contrast to the situation in
Stage 3. The principal continuation parameter is γ , and secondary continuation
parameters must include Re λγ : this is zero at a fold. Of course there may be
many such folds, and it is the fold with the largest real part and strictly positive
imaginary part that is of interest. In practice one restricts attention to the part
of the spectrum with Re λ greater than a suitable (negative) lower limit.
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182 J.A. Sherratt

There are two basic problems with this continuation process: it is potentially
very time-consuming, and one requires an appropriate starting point. Both of
these problems can be overcome by first performing a numerical continuation
of (2) and (7) alone, again with γ as the principal continuation parameter,
tracing out the spectrum. From this one can determine the approximate
location of the required fold, enabling the subsequent continuation of (2),
(7) and (9) to be confined to a small region of the spectrum. Moreover the
initial numerical continuation of (2) and (7) alone generates estimates of the
derivatives of λ, w and γ along the solution branch, from which initial solutions
for λγ and wγ can be obtained.

Stage 7 The calculations in Stage 6 determine a point in the spectrum of
the ptw at P1 with Re λγ = 0, which will cross the imaginary axis along the
ptw solution branch between P1 and P2. This crossing point corresponds to a
stability change of Hopf type, and one locates it by numerical continuation of
(2), (7) and (9), with the principal continuation parameter being one of the
pde parameters or the wave speed, as appropriate. Secondary continuation
parameters must include Re λ, and one searches for a point on the solution
branch at which Re λ = 0.

Stage 8 In Stage 7, one has determined a parameter set at which there is a
stability change of Hopf type. This can be used as a starting point for calcu-
lating a two parameter locus of such points, by fixing Re λ = 0 and replacing
Re λ as a secondary continuation parameter by a second pde parameter/the
wave speed. As in Stage 5A, this continuation must be performed twice, with
opposite initial directions, since P1 is (usually) in the interior of the parameter
region under consideration.

The early stages of this algorithm have been used previously to calculate
stability boundaries of Eckhaus type [16, 31]. However Stages 5B-8 are new,
and their integration into a single unified algorithm provides a comprehensive
approach to the calculation of stability boundaries. Note that the difference
in stability between the ptws at P1 and P2 does not guarantee that the
change in stability between them is unique; there could be any odd number
of stability changes. The algorithm described above will determine the locus of
the stability change closest to P1.

4 Computational implementation

Wavetrain is a new software package, written by jas, that provides a
suite of commands for studying ptw solutions of pdes. It is freely avail-
able and open-source (though protected by copyright), and can be down-
loaded from http://www.ma.hw.ac.uk/wavetrain. All of the wavetrain com-
mands are based on numerical continuation, which is performed using auto
(http://indy.cs.concordia.ca/auto, [32–34]). The interface with auto is via
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unix shell scripts, which does not cause any reduction in computational
performance. A general description of wavetrain has been given previously
[18]. However that paper deliberately omitted any technical details of the
command stability_boundary, which implements the algorithm given in
Section 3 in a fully automated way. In the wavetrain input files, the user
specifies one of the pde parameters as “control parameter”, and fixes the
values of the others. The arguments to the stability_boundary command
then specify two pairs of control parameter and wave speed values lying either
side of the stability boundary, and the command calculates the stability bound-
ary in the control parameter–wave speed plane. In this section I summarise
key points of computational detail in the implementation by wavetrain of the
algorithm in Section 3.

Stage 1 This is a straightforward numerical continuation; the user can specify
either a parameter range in which wavetrain searches for a Hopf bifurcation
in the travelling wave equations (2), or a starting ptw solution.

Stage 2 Wavetrain discretises (4) and (5) in z with γ = 0, and solves the
resulting matrix eigenvalue problem using routines from lapack (http://www.
netlib.org/lapack, [35]). The order of the finite difference scheme used for
the derivatives is specified by the user. The numerical mesh is inherited from
the continuation of the ptw solution and is therefore non-uniform, and finite
difference weights are calculated using Fornberg’s algorithm [36]. In some
cases (e.g. Example 2 in Section 5 below) run times can be significantly reduced
by increasing the order of the finite difference scheme. Note that since it is
only the eigenvector corresponding to λ = 0 that is required in this stage, the
calculation of a large number of other eigenvalues and eigenfunctions that also
have γ = 0 is highly inefficient; however the results are used in Stage 6 below,
in the case of a stability change of Hopf type.

Stage 3 Following [13], wavetrain implements the Newton’s method solution
of (4), Re (7), Im (9), Re (10), Im (11) and Re (12) by performing a continua-
tion of these equations and boundary conditions in a dummy parameter. As
mentioned in Section 3, the normalisation condition (8) must be supplemented
by a phase-fixing condition for w. This is because the boundary conditions for
w are periodic and therefore permit an arbitrary phase shift. Wavetrain again
follows [13], using

Im
〈
w old, w

〉 = 0 . (15)

Here the subscript old denotes the solution at a previous continuation step. In-
tuitively, (15) implies that the phase of w does not change between successive
continuation steps. In order that the ptw solution is determined uniquely, an
integral condition is also imposed on U ptw:

∫ z=L

z=0

(
dU ptw, old/dz

)
·
(

U ptw, old − U ptw

)
= 0 . (16)
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A phase-fixing condition such as this is required to prevent the ptw solution
containing an arbitrary translation with respect to z. Condition (16) is used
in the homcont extension of auto [37]; more recent applications are given
in [13, 16, 38, 39]. Intuitively, (16) states that the change in U ptw between
continuation steps is orthogonal to the change due to a small translation
in z.

Since there are 5N real equations with 5N (periodic) boundary conditions
and the 5 integral constraints (13), (14), (8), (15) and (16), auto requires
6 continuation parameters. For these, wavetrain uses Re λ, Im λ, Im λγ ,
Re λγγ and L, in addition to the dummy parameter. Here and in all of the
subsequent numerical continuations, the auto parameter itnw is set to 7 rather
than 5, which is recommended for “hard” problems. Also L, Re λγγ , Im wγ

and Re wγγ are excluded from the pseudo-arclength calculation; this is helpful
because these quantities can be very large, an issue also noted in [13]. A
possible alternative strategy might be to use logarithms of these quantities
to avoid large values; an example of this approach is given in [40]. In some
cases the eigenfunction Û ∈ R

n is a subset of v ∈ R
N ; this depends on the way

in which the first order odes (6) are formulated. In such a case, Rademacher
et al. [13] recommend replacing (13) and (14) by the alternative conditions

〈
ŵ, ŵγ

〉 = 0 (17)
〈
ŵ, ŵγγ

〉 = 0 (18)

where ŵ ∈ R
n is composed of the n components of w for which Û matches

v. These alternative conditions also ensure that wγ and wγγ are orthogonal to
the null space of (7). One of the wavetrain input parameters specifies whether
(13), (14) or (17), (18) are to be used; the examples in Section 5 both use the
latter conditions.

Stages 4 and 5A Having established the numerical continuation framework
in Stage 3, Stages 4 and 5A are straightforward. One of either the control
parameter or the wave speed replaces the dummy parameter as the principal
continuation parameter in Stage 4, and the other replaces Re λγγ as a sec-
ondary continuation parameter in Stage 5A.

Stage 6 The first step in this stage is a numerical continuation of (2) and (7)
using γ as the principal continuation parameter. A starting point for this is pro-
vided by the eigenvalues and eigenfunctions with γ = 0 that were calculated in
Stage 2. Wavetrain performs a separate continuation starting from each of
a user-specified number of these eigenvalues, ordered by their real part. The
principal continuation parameter is γ with secondary continuation parameters
being Re λ, Im λ and L; this is the required number of continuation parameters
since there are 3N equations, 3N (periodic) boundary conditions, and the
integral constraints (8), (15) and (16). This preliminary continuation is used
to determine a suitable small range for the more computationally intensive
continuation of (2), (7) and (9), and also to provide suitable starting solutions
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for λγ and wγ . Auto performs continuations with respect to pseudo-arclength
A, and the output files from the preliminary continuation include (numerical
approximations to) ∂λ/∂A, ∂w/∂A and ∂γ /∂A. A starting value for λγ can
therefore be obtained immediately as (∂λ/∂A) / (∂γ /∂A). However for wγ

one must take account of the fact that ∂w/∂A will in general not satisfy the
orthogonality condition (13). Therefore a suitable starting solution is

∂w/∂A
∂γ /∂A − Kw where K =

〈
∂w/∂A
∂γ /∂A , w

〉
∈ R.

Having obtained this starting solution, one can proceed with the continua-
tion of (2), (7) and (9), a total of 5N real equations which are subject to 5N
(periodic) boundary conditions and the 5 integral constraints (8), (15), (16),
and either (13), (14) or (17), (18). The principal continuation parameter is
γ , with secondary continuation parameters Re λ, Im λ, Re λγ , Im λγ and L.
Wavetrain excludes L, Im λγ and wγ from the pseudo-arclength calculation
in this continuation and those in Stages 7 and 8, since these quantities can be
large. An additional advantage of these exclusions, together with the corre-
sponding exclusions in Stages 3-5A, is that the pseudo-arclengths associated
with stability changes of Eckhaus and Hopf type are directly comparable, and
thus the same step sizes can be used for the two cases.

Stages 7 and 8 Having established the numerical continuation framework in
Stage 6, Stages 7 and 8 are straightforward. In Stage 7, either the control pa-
rameter or the wave speed replaces γ as the principal continuation parameter,
and γ replaces Re λγ as a secondary continuation parameter. In Stage 8, the
other of the control parameter or wave speed replaces Re λ as a secondary
continuation parameter.

5 Examples

5.1 Example 1: the Klausmeier model

When suitably nondimensionalised, the Klausmeier model for vegetation dy-
namics in semi-arid environments is

∂p/∂t = ωp2 − Bp + ∂2 p/∂x2 (19a)

∂w/∂t = A − ω − ωp2 + ν ∂ω/∂x (19b)

[41]. Here p(x, t) and ω(x, t) represent plant and water densities at time t and
position x in a one-dimensional domain that is a gentle slope of constant gradi-
ent; x increases in the uphill direction. A, B and ν are positive constants. Plant
growth is proportional to water uptake, which has a nonlinear dependence on
plant density. This reflects the positive correlation between infiltration of rain
water into the soil and vegetation biomass, which results from higher levels of
organic matter in the soil, and from the presence of roots [42–45]. Plant spread
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via seed dispersal is represented by linear diffusion. The plant loss term Bp
represents both natural death and herbivory. Water falls as rain at an average
rate A, is lost by evaporation, and flows downhill; the parameter ν reflects the
steepness of the slope.

The Klausmeier model is used to study banded vegetation patterns, which
are a characteristic feature of gentle slopes in semi-deserts. These patterns
comprise alternating stripes of vegetation and bare ground running parallel
to the contours. They are self-organised, and most data indicates that they
move slowly uphill [45, 46, Chapter 10]. This migration is thought to arise from
moisture levels being higher on the uphill edge of the bands than the downhill
edge, resulting in reduced plant death and greater seedling density [47, 48].
Ecological details of banded vegetation are reviewed in [45]. Mathematical
details of the Klausmeier model are discussed in [49–52]. Ptw stability in an
amended version of (19), with a diffusion term added to (19b), is considered
in [53], and ptw stability has also been considered for the Gray-Scott model,
which has similar kinetics to (19) [54]. Alternative mathematical models based
on different ecological assumptions are given in [55–59].

The solutions of the Klausmeier model corresponding to banded vegetation
are spatial patterns moving at a constant speed in the positive x direction, i.e.
ptws. With B and ν fixed at ecologically typical values [41], (19) has a ptw
solution for a wide range of values of the rainfall parameter A and the wave
speed c [60]. Figure 2 illustrates the division of part of the A–c parameter
plane into stable ptws, unstable ptws, and no ptws. The stability boundary
is of Eckhaus type (see Fig. 1a), and was calculated using the algorithm
I have described, as implemented by wavetrain’s stability_boundary
command. The required initial pairs of control parameter and wave speed
values were obtained by experimental testing of stability across the parameter
plane. Any of the methods discussed in Section 1 can be used for this; I
used the wavetrain command stability which implements the method of
Rademacher et al. [13].

5.2 Example 2: the two-component Oregonator model

The Belousov–Zhabotinskii reaction exhibits a wide variety of spatiotemporal
dynamics [61–63] including one-dimensional ptws [64]. The two component
Oregonator model

∂α/∂t = ∂2α/∂x2 + (1/ε)
[
α − α2 − ( fβ + ξφ) (α − q)/(α + q)

]
(20a)

∂β/∂t = α − β (20b)

is a simplified dimensionless representation of the photosensitive variant of
the reaction [14, 65]. Here α(x, t) and β(x, t) represent the concentrations of
bromous acid and the oxidised form of the catalyst respectively, at time t and
spatial location x in a one-dimensional domain; ε, f , ξ , φ and q are positive
constants. Equations (20) follow from a quasi-steady state reduction of a three
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Fig. 2 The boundary between stable (S) and unstable (U) ptw solutions of (19) (thick grey
curve). The stability change between these regions is of Eckhaus type (see Fig. 1a). Also plotted
is a locus of Hopf bifurcation points in the travelling wave equations (thick black curve), and a
curve along which there is a ptw solution with constant period 14.74 (thin black dotted curve).
The Hopf bifurcation of the travelling wave equations is supercritical in this part of the A–c
plane, and to the right of the Hopf bifurcation locus there are no ptw solutions. There is exactly
one ptw solution throughout the part of the parameter plane shown, to the left of the Hopf
bifurcation locus. The parameter values are B = 0.45 and ν = 182.5. The curves were calcu-
lated and plotted using the software package wavetrain (http://www.ma.hw.ac.uk/wavetrain).
Full details of the wavetrain input files, run commands and plot commands are given at
http://www.ma.hw.ac.uk/˜jas/supplements/stabilityboundaries. The total run time for all of the
various computations used for this plot was 30 min using a 2.83 GHz Intel Core 2 Quad Q9500
processor (see http://www.ma.hw.ac.uk/˜jas/supplements/stabilityboundaries for details)

variable model, with ( fβ + ξφ)/(α + q) being the quasi-steady concentration
of bromide; ξφ is the rate of bromide release due to light absorption. The
constant ξ = 10−4 is included so that φ has a similar size to the wave speed
c; this is helpful when performing two-parameter continuation in φ and c. The
constant f is a stoichiometric factor reflecting the production rate of bromide
per unit of reduced catalyst.

Mathematical properties of ptw solutions of (20) are discussed by Bor-
diougov and Engel [14]. Their paper includes computations of the spectrum
of ptw solutions of (20) which suggest that as the parameter φ is varied, the
waves can undergo a change in stability of Hopf type. Their results provide
starting parameter sets P1 and P2 for my algorithm, and using wavetrain’s
stability_boundary command I traced the stability boundary in the φ–c
plane (Fig. 3).
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Fig. 3 The boundary between stable (S) and unstable (U) ptw solutions of (20). The sta-
bility change between these regions is of Hopf type (see Fig. 1b). The parameter values are
ε = 0.05, f = 2.1, ξ = 10−4, q = 0.002. There is exactly one ptw solution throughout the
part of the parameter plane shown. The stability boundary was calculated and plotted us-
ing the software package wavetrain (http://www.ma.hw.ac.uk/wavetrain). Full details of the
wavetrain input files, run commands and plot commands are given at http://www.ma.hw.
ac.uk/˜jas/supplements/stabilityboundaries. The total run time for all of the various computa-
tions used for this plot was 3.5 h using a 2.83 GHz Intel Core 2 Quad Q9500 processor (see
http://www.ma.hw.ac.uk/˜jas/supplements/stabilityboundaries for details)

6 Application of stability boundaries: an example

I conclude by giving a brief example of a way in which the calculation of a
stability boundary for ptws can be helpful in understanding pde dynamics. I
return to the Klausmeier model (19). Sherratt and Lord [60] have demon-
strated hysteresis in the wavelength (spatial period) of observed patterns as the
rainfall parameter A is varied. This is illustrated in Fig. 4, in which I plot results
from a numerical simulation of (19) on a domain of length 100 with periodic
boundary conditions. I decreased A slowly from an initial value that is just
below the upper threshold for patterning, which is 3.265 on this domain. A ptw
of wavelength 14.286 (mode 7) develops initially. As A is decreased further,
the form of the pattern (ptw) changes but its wavelength remains constant,
until it switches to 20 (mode 5) at A = 1.9. When A is then increased again,
the pattern wavelength remains at 20.

In the field, banded vegetation patterns typically occur over regions span-
ning many wavelengths. Therefore one is primarily interested in the effects
of rainfall variation for spatial domains that can be reasonably approximated
as infinite. If the rainfall parameter A is gradually decreased on an infinite
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Fig. 4 A numerical simulation of the Klausmeier model (19) with slow variation in the rainfall
parameter A, demonstrating hysteresis. The other parameter values were B = 0.45 and ν = 182.5.
The boundary conditions were periodic in p and ω. The parameter A was changed in steps
of 0.1, with 200 time units between changes, and the average spatial wavelength of the pattern
was measured immediately prior to the decrease. Initially, A was set to 3.2, with p(x, 0) =
ps

[
1 + 0.1δp(x)

]
, ω(x, 0) = ωs [1 + 0.1δω(x)]. Here (ps, ωs) is the unique locally stable steady

state with ps �= 0 (see [50] for details). The quantities δp, δω ∈ [0, 1] denote spatial noise, chosen
randomly and independently from a uniform distribution at each numerical grid point. a shows
the variation in the average spatial wavelength of the solution, measured immediately prior to
the next change in A. b–e show the solutions for p at the four values of A indicated in a; again,
these were recorded immediately prior to the next change in A. For d, the solution was recorded
during the part of the solution in which A was increasing. The arrows indicate the direction of
change in A. The equations were solved using a finite difference scheme applying upwinding to
the convective term, with a uniform grid spacing of 2.5 × 10−2 and a time step of 1.096 × 10−4;
these give a Courant number of 0.8. These discretisations are chosen to give errors of less than 1%
in both p and ω throughout the solution. The simulation took 13 h using a 2.83 GHz Intel Core 2
Quad Q9500 processor

domain, ptws will first develop at A = 3.267, which corresponds to the fold
in the Hopf bifurcation locus (see Fig. 2). The corresponding wavelength is
14.74, and the locus on which ptws have this wavelength is plotted in Fig. 2.
As A is decreased slowly, one expects the solution to remain on this locus
until it becomes unstable. This occurs when the locus crosses the ptw stability
boundary, at A = 2.275 (see Fig. 2). Note that this is significantly larger than
the threshold seen in Fig. 4. The threshold is of course slightly affected by the
small difference in the wavelength of the waves being considered. However the
difference between the two threshold levels of A is due mainly to two other
factors. Firstly the region of stable ptws is larger on the finite domain, because
the boundary conditions restrict the spatial eigenvalues that are admissible.
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Secondly, the finiteness of the time interval between changes in A in the
simulations means that very slowly growing modes are not detected.

The ability to predict accurately the rainfall level at which pattern wave-
length will shift using numerical continuation is valuable since long time nu-
merical studies on large domains are very expensive. For instance, I attempted
to calculate the critical value A = 2.275 to an accuracy of just one decimal
place via simulations of the type used in Fig. 4. This required sufficiently
large domain lengths and time intervals that the run times for each individual
simulation took about a week (with numerical method and processor as given
in the legend to Fig. 4). In comparison, using wavetrain one can calculate the
threshold to four decimal places in about 15 min.
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