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A B S T R A C T

Spatial patterns at the landscape scale have been documented in a wide variety of ecosystems across

many parts of the world. Mathematical models have played an important role in understanding the

causes of these patterns, and their implications for ecosystem change as environmental parameters vary.

Preliminary results from simulation studies suggest the possibility of hysteresis, meaning that the

wavelength and other properties of the pattern will vary in a history-dependent manner. This paper

presents a detailed study of this phenomenon for two established models of landscape-scale patterns:

the model of Klausmeier (Science 284 (1999) 1826–1828) for banded vegetation in semi-arid

environments, and the model of van de Koppel et al. (American Naturalist 165 (2005) E66–E77) for

patterning in young mussel beds. In both cases, the author demonstrates history-dependent patterns.

Moreover, he shows how a knowledge of pattern existence and stability enables a detailed

understanding of this hysteresis.

� 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Spatial patterns at the landscape scale were first reported via
aerial photographs of sub-Saharan Africa, which revealed large-
scale patterns in which vegetation alternated with regions of bare
ground (MacFadyen, 1950; Hemming, 1965). Spotted, striped and
labyrinthine patterns of vegetation have now been documented in
semi-arid parts of Africa, Australia, North and South America, and
Asia (Valentin et al., 1999; Rietkerk et al., 2004; Deblauwe et al.,
2008). Moreover, landscape-scale patterns are now known to occur
in a wide variety of other ecosystems (see Rietkerk and van de
Koppel (2008) for review), including patterns of open-water pools
in peatlands (Belyea, 2007; Eppinga et al., 2009), banded and
labyrinthine patterns in mussel beds (Paine and Levin, 1981; van
de Koppel et al., 2005, 2008), regular isolated spots of trees and
shrubs in savanna grasslands (Lejeune et al., 2002; Ben Wu and
Archer, 2005), tussock patterns in freshwater marshes (van de
Koppel and Crain, 2006; Yu, 2010), and striped patterns of tree
lines (‘‘ribbon forests’’) in the Rocky Mountains (Hiemstra et al.,
2006; Bekker et al., 2009). Mathematical models have played an
important role in understanding the ecological mechanisms
responsible for these various patterns, and in predicting how they
will change as environmental parameters vary. For vegetation
patterns in semi-arid regions, many different mathematical
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models have been proposed, reflecting different hypotheses on
the key aspects of the underlying ecology. The papers of Lefever
and Lejeune (1997), Klausmeier (1999), HilleRisLambers et al.
(2001), von Hardenberg et al. (2010), Rietkerk et al. (2002) and
Gilad et al. (2007) contain some of the key models, and a detailed
review of the modelling literature in this area is given by Borgogno
et al. (2009). For other landscape-scale patterns, mathematical
modelling is less well established but has nevertheless made a
significant contribution to our current understanding. A detailed
review is outside the scope of this paper, but some examples help
to illustrate this contribution. For peatland surface patterning,
Eppinga et al. (2009) predicted that different mechanisms could be
distinguished by data on the underlying patterns of nutrients and
hydrology, but not by the surface patterns of vegetation and peat
thickness. By comparing three alternative models for regular
tussock spacing in a freshwater marsh, van de Koppel and Crain
(2006) showed that scale-dependent inhibition provides the best
explanation for the observed patterning. For savanna grasslands,
Lejeune et al. (2002) used a mathematical model to show that the
observation of isolated, regularly spaced vegetation patches can be
explained via a Turing-like symmetry breaking instability. As a
final example, van de Koppel et al. (2005) used a mathematical
model to study the way in which spatial patterning in young
mussel beds affects the overall mussel biomass, and the resilience
of the mussel population to changes in the concentration of algae.

In a number of models for landscape-scale patterns, a given set
of ecological parameters permits multiple pattern solutions,
raising the possibility of hysteresis. Indeed, a preliminary
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Fig. 1. A typical example of a pattern solution of the model (1) for vegetation in

semi-arid environments. The alternating peaks and troughs of u correspond to

vegetation bands and the gaps between them, respectively. The solution is plotted

at three different times, 3 dimensionless time units apart, to illustrate the uphill

migration of the pattern. The parameter values are A = 2.3, B = 0.45 and n = 182.5.

The spatial domain is of length 100 with periodic boundary conditions. The initial

conditions are small random perturbations (amplitude �5%) to the vegetated steady

state (3), and the first solution is plotted after 2400 dimensionless time units; this long

time ensures that transients have decayed. The equations were solved numerically as

described in Section 4 and Appendix B.
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simulation study by Sherratt and Lord (2007) demonstrated a
history dependence of pattern wavelength in a model for banded
vegetation in semi-arid environments. The present paper is a
detailed study of this type of hysteresis. I consider two established
models for landscape-scale patterning: the Klausmeier model for
banded vegetation (Klausmeier, 1999), and the model of van de
Koppel et al. (2005) for pattern formation in mussel beds. For both
models, I demonstrate history-dependent patterning. Moreover, I
will show that a detailed study of the existence and stability of
pattern solutions provides an appropriate context for understand-
ing the switches that occur in pattern wavelength as environmen-
tal parameters are varied.

In Section 2 I describe the phenomenon of banded vegetation
patterning in semi-arid environments, and the model of Klaus-
meier (1999). I then discuss the use of the software package
WAVETRAIN (http://www.ma.hw.ac.uk/wavetrain; Sherratt, 2012) to
determine regions of parameter space in which there are pattern
solutions, and additionally those regions in which these patterns
are stable. In Section 3 a present an analogous discussion for
mussel bed patterns, and the model of van de Koppel et al. (2005).
In Sections 4 and 5 I describe simulation-based studies of the two
models, demonstrating hysteresis and explaining the results using
my WAVETRAIN calculations. Finally in Section 6 I discuss the
ecological implications of my results.

2. Banded vegetation and the Klausmeier model

Banded vegetation is by far the best documented type of
landscape-scale pattern. It occurs on gentle slopes in semi-arid
regions, with stripes of grass, shrubs or trees running parallel to the
contours, alternating with regions of bare ground (Valentin et al.,
1999; Rietkerk et al., 2004). Banded vegetation occurs in many
parts of the world, with particularly detailed data from sub-
Saharan Africa (MacFadyen, 1950; Valentin and d’Herbès, 1999;
Couteron et al., 2000), Australia (Dunkerley and Brown, 2002; Berg
and Dunkerley, 2004), and Mexico/South-Western USA (Montaña,
1992; McDonald et al., 2009). Typical wavelengths are about 1 km
for trees and shrubs, with shorter wavelengths observed for
grasses.

Many authors have used mathematical models to study banded
vegetation, since there are no laboratory replicates, and field work
is difficult and expensive; the modelling literature is reviewed by
Borgogno et al. (2009). To be specific, I will consider only one
model, due originally to Klausmeier (1999). A detailed ecological
appraisal of this model is given by Ursino (2005), and mathemati-
cal properties of the equations are discussed by Sherratt (2005,
2010, 2011, 2013a,b). The model consists of conservation
equations for the plant biomass u(x, t) and the water density
wðx; tÞ, and when suitably non-dimensionalised it has the form

@u

@t
¼ wu2
zffl}|ffl{growth
plant

� Bu
z}|{loss
plant

þ @2
u

@x2

z}|{dispersal
plant

(1a)
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@t
¼ A|{z}
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� w|{z}
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� wu2
|ffl{zffl}

by plants
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þ n@w=@x|fflfflfflffl{zfflfflfflffl}

downhill
flow

: (1b)

Here t is time and x is distance, measured in the uphill direction; the
slope of the hillside is assumed to be constant. Although they
represent a combination of ecological quantities, the (dimension-
less) parameters A, B and n can be most usefully interpreted as
reflecting rainfall, plant loss and slope gradient respectively. For full
details of the dimensional model and the nondimensionalisation,
see Klausmeier (1999) or Sherratt (2005).
For all parameter values, (1) has a stable ‘‘desert’’ steady state
u = 0, w ¼ A. When A � 2B, there are also two other homogeneous
steady states:

u ¼ u1�
2B

A �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 4B2

p ; w ¼ w1�
A �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p

2
(2)

and u ¼ u2�
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 4B2

p ; w ¼ w2�
A þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 4B2

p

2
: (3)

The first of these (2) is always unstable to homogeneous
perturbations, while (3) is linearly stable to homogeneous
perturbations whenever B < 2. For larger values of B and small
A, (3) can become unstable, giving complicated local dynamics
including a limit cycle. However realistic parameter values for
semi-arid environments imply that B < 2 (Klausmeier, 1999), and I
will restrict attention to this case. The linear stability analysis
presented by Sherratt (2005) then shows that for some parameter
values, (3) is unstable to spatially inhomogeneous perturbations,
giving rise to patterns.

Fig. 1 shows an example such a pattern. The solution is periodic
in space, with alternating peaks and troughs of u, corresponding to
the vegetation bands and the gaps between them; there is a
corresponding pattern of water density w. Fig. 1 also shows that
the pattern moves at a constant speed in the uphill direction.
Mathematically, this movement is a consequence of the advection
term in (1b). In the ecological literature, there is a long-running
debate on the migration of banded vegetation patterns (see
Tonway and Ludwig (2001, pp. 24–26) for a detailed discussion). A
considerable number of field studies do report uphill migration
(Valentin et al., 1999, Table 5; Deblauwe, 2010, Chapter 10) with
the proposed cause being higher moisture levels on the uphill edge
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Fig. 2. Existence and stability of pattern solutions of the model (1) for vegetation in

semi-arid environments, as a function of the rainfall parameter A and the migration

speed c, with B = 0.45 and n = 182.5. The thin lines are contours of constant pattern

wavelength. The thick solid grey line is the locus of Hopf bifurcations of the non-

trivial steady state (3) in the travelling wave equations (4). The thick solid black line

is the an approximation to the locus of homoclinic solutions, given by the locus of

solutions of a fixed large wavelength (=2000). Patterns exist in the parameter region

enclosed by these thick solid lines. However these patterns are only stable in the

parameter region between the thick dashed black lines; outside this region

the patterns are unstable. Details of the stability change are given in Appendix A.

The plot has been truncated at c = 10, and the parameter region giving patterns

actually extends up to c � 50 (Sherratt, 2011). Moreover for c above about 14 there

is a fold in the solution branch as A is varied with c fixed, implying two different

patterns for given values of A and c (see Sherratt (2011) for details); however, all

patterns with c > 10 are unstable as solutions of (1). There is also a fold in the

solution branch as A is varied with c fixed at less than about 0.004 (Sherratt, 2013b);

again this leads to two different pattern solutions, but both are unstable as solutions

of (1). All calculations and plotting were done using the software package WAVETRAIN

(http://www.ma.hw.ac.uk/wavetrain; Sherratt, 2012, in press; Rademacher et al.,

2007). Full details of the WAVETRAIN input files, run commands and plot commands

are given at http://www.ma.hw.ac.uk/~jas/supplements/hysteresis/.
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of the bands compared to their downhill edge, leading to reduced
plant death and greater seedling density (Montaña, 1992; Tong-
way and Ludwig, 2001). However, there is also contradictory data,
reporting stationary patterns (Dunkerley and Brown, 2002;
Mabbutt and Fanning, 1987; Couteron et al., 2000). Possible
explanations for this include changes in the structure of bare soils
that inhibit seed germination (Dunkerley and Brown, 2002), and
preferential dispersal of seeds in the downhill direction, due to
transport in run-off (Saco et al., 2007; Thompson and Katul, 2009).

The uphill migration of pattern solutions means that they are
periodic travelling waves, and can be studied via the ansatz
uðx; tÞ ¼ ũðzÞ and wðx; tÞ ¼ w̃ðzÞ, where z = x � ct and c is the
migration speed. Substituting these solution forms into (1) gives
the travelling wave equations

d2ũ

dz2
þ cdũ

dz
þ w̃ ũ2 � Bũ ¼ 0 (4a)

ðn þ cÞdw̃

dz
þ A � w̃ � w̃ ũ2 ¼ 0 : (4b)

Pattern solutions correspond to limit cycles in this system of ODEs.
General theory (Kopell and Howard, 1973; Sherratt and Smith,
2008) implies that if such pattern solutions exist for a given set of
ecological parameters A, B and n, then they will do so for a range of
values of the migration speed c; the value of c relevant to a
particular case depends on the initial and boundary conditions.
Therefore it is natural to consider the existence of pattern solutions
in a parameter plane whose axes are the wave speed c and one of
the ecological parameters.

From an environmental viewpoint, the key control parameter is
the rainfall, and an important role for mathematical models is to
predict how ecosystems with banded vegetation will change in
response to changes in rainfall. Therefore I focus attention on the
A–c parameter plane. The region of this plane giving patterns can
be calculated using numerical bifurcation analysis. The new
software package WAVETRAIN (http://www.ma.hw.ac.uk/wavetrain)
is specifically designed for this purpose and can be used without
any previous experience of numerical continuation. Full details of
WAVETRAIN are given in Sherratt (2012), and I give only a brief
summary of the overall approach. One begins by performing a loop
over a grid of points in the A–c parameter plane; for each parameter
pair, WAVETRAIN determines whether or not there is a periodic
travelling wave solution, i.e. a pattern. For any system of PDEs, the
parameter region giving patterns is bounded by either a locus of
Hopf bifurcations in the travelling wave equations, a locus of
homoclinic (infinite period) travelling wave solutions, or a locus
of folds in the solution branch of periodic travelling waves. Using
the results from the parameter grid run as a guide, WAVETRAIN can be
used to locate and trace Hopf bifurcation and homoclinic loci,
giving a detailed account of the parameter region giving patterns.
Although this is a key step in understanding pattern solutions, it is
of limited use by itself because it does not contain any information
about stability. For any set of ecological parameters giving periodic
travelling wave (pattern) solutions, these patterns will typically be
stable for some values of c and unstable for others. Here I use the
term (un)stable to denote linear (in)stability on an infinite domain.
WAVETRAIN can be used to determine the regions of stable and
unstable patterns. Again, one first performs a loop over a grid of
points in the parameter plane, calculating pattern stability in each
case via numerical continuation of the essential spectra (Rade-
macher et al., 2007). Using these results as a guide, WAVETRAIN can
then be used to trace the loci of boundaries in the parameter plane
between stable and unstable patterns (Sherratt, in press).

Fig. 2 illustrates a typical result from these various calculations.
The figure shows the region of the A–c parameter plane in which
patterns exist, and also where they are stable, for B = 0.45 and
n = 182.5. The illustrated pattern region is bounded to the right by a
locus of Hopf bifurcations of the steady state (3) in the travelling
wave equations (4), and to the left by a locus of homoclinic solutions
of (4). Note that the information on pattern existence (but not
stability) in Fig. 2 has been presented previously by Sherratt and Lord
(2007). Throughout the parameter region shown there is only one
pattern solution. However for very large and very small values of c

there are small parameter regions with two different patterns for
given values of A and c (see the figure legend for details).

3. Mussel bed patterns and the van de Koppel model

Mussel beds are a dominant feature of many intertidal regions.
They are rarely uniform in space, and typically consist of complex
irregular spatiotemporal patterns (Paine and Levin, 1981; Snover and
Commito, 1998; van de Koppel et al., 2008). In these patterns, dense
aggregations of mussels alternate with gaps that are usually
colonised by subdominant species. The adaptive value of aggregation
is that it reduces losses due to both predation and wave
dislodgement; the latter benefit arises because nearby mussels are
connected to one another via byssal threads (Denny, 1987). Although
irregular patterns are the norm, regular banded patterns occur in
beds of young blue mussels (Mytilus edulis) in the Wadden Sea, an
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intertidal region bordering the North Sea on the coastline of
Denmark, Germany and The Netherlands. The bands are aligned
perpendicular to the tidal flow, and have a wavelength of about 6 m
(van de Koppel et al., 2005). The main food source for the mussel
population in the Wadden Sea is algae. These reside primarily in the
upper water layers, but there is some transport to lower layers where
they become susceptible to predation by mussels. Algae are also
advected with the tidal current. van de Koppel et al. (2005) proposed
a model for mussel dynamics in the Wadden Sea, consisting of
equations for mussel density m(x, t) and algal concentration a(x, t).
When appropriately nondimensionalised (van de Koppel et al., 2005;
Wang et al., 2009), the model has the form

@a

@t
¼ að1 � aÞ
zfflfflfflfflffl}|fflfflfflfflffl{water layers
from upper
transfer to=

� am
z}|{by mussels

consumption

þ b@a

@x

z}|{by tide
advection

(5a)

@m

@t
¼ dam|ffl{zffl}

birth

� gm

ð1 þ mÞ|fflfflfflffl{zfflfflfflffl}

by waves
dislodgement

þ @2
m

@x2|ffl{zffl}
movement

random

: (5b)

Here t is time and x is a spatial coordinate running away from the
shore. The constant b is positive, so that the algal advection term is
unidirectional; this is because the incoming tide is the most
important for the supply of algae to the mussel bed (van de Koppel et
al., 2005). The term g/(1 + m) reflects the reduction in the per capita
loss rate due to the greater interconnectedness of mussels at higher
densities, which gives greater resilience to dislodgement by waves.
The most useful interpretation of the dimensionless parameters is
that a reflects the exchange rate of algae between the upper and
lower water layers, b reflects the strength of the tidal flow, g reflects
the maximum mussel loss rate, and d reflects the algal concentration
Fig. 3. A typical example of a pattern solution of the model (1) for mussel beds. The

alternating peaks and troughs of m correspond to bands of mussels and the gaps

between them, respectively. The solution is plotted at three different times, 50

dimensionless time units apart, to illustrate the migration of the pattern away from

the shore. The parameter values are a = 0.6667, b = 41.5692 and g = 0.1333,

d = 0.16. The spatial domain is of length 500 with periodic boundary conditions. The

initial conditions are small random perturbations (amplitude �5%) to the steady

state (6), and the first solution is plotted after 104 dimensionless time units, which is

sufficient for transients to have decayed. The equations were solved numerically as

described in Section 5 and Appendix B.
in the upper water layers. Eq. (5) were the first PDE model for mussel
bed patterning; there are also a number of cellular automaton and
individual-based models (e.g. Wootton, 2001; Guichard et al., 2003;
van de Koppel et al., 2008; Robles et al., 2010). Recently Liu et al.
(2012) have compared the predictions of (5) with those of a different
PDE model, based on the observation that mussels feed more
effectively on top of mussel-generated hummocks; this provides an
alternative positive feedback mechanism.

For all parameter values, (5) has a steady state a = 1, m = 0,
which is stable to both homogeneous and inhomogeneous
perturbations when d < g, and unstable otherwise. When
d > g > da there is a second steady state

a ¼ g � da
d � da

m ¼ ad � ag
g � da

: (6)

The stability of this non-trivial steady state is parameter-
dependent, but for some parameter values it is stable to spatially
homogeneous perturbations and unstable to inhomogeneous
perturbations (see Wang et al., 2009, for details). Pattern formation
then occurs, as illustrated in Fig. 3. As for the Klausmeier model
discussed in Section 2, the patterns move at a constant speed; in
this case the movement is away from the shore.
Fig. 4. Existence and stability of pattern solutions of the model (5) for mussel beds

as a function of the algae supply d and the migration speed c, with a = 0.6667,

b = 41.5692 and g = 0.1333. The thin lines are contours of constant pattern

wavelength. The thick solid grey line is the locus of Hopf bifurcations of the non-

trivial steady state in the travelling wave equations. The thick solid black line is an

approximation to the locus of homoclinic solutions, given by the locus of solutions

of a fixed large wavelength (=1030). Patterns exist in the parameter region enclosed

by these thick solid lines. However these patterns are only stable in the parameter

region between the thick dashed black lines; outside this region the patterns are

unstable. The short/long dashes indicate that the change in stability is of Hopf/

Eckhaus type (see Appendix A). The results in this figure concern patterns on the

solution branch emanating from the right hand part of the Hopf bifurcation locus.

For the migration speed c between about 0.04 and 0.41 there is a second branch of

pattern solutions emanating from the left hand part of the Hopf bifurcation locus.

This solution branch is very localised in extent within the parameter plane (see

Fig. 5a) and all of its patterns are unstable as solutions of (5). For c above about 0.41,

the two solution branches connect. There is also a second region of parameter space

containing multiple patterns, caused by a fold in the solution branch, roughly

centred at d � 0.125 and c � 0.06 (illustrated in Fig. 5b). Both patterns are unstable

as solutions of (5) in this region of the parameter plane. All calculations and plotting

were done using the software package WAVETRAIN (http://www.ma.hw.ac.uk/

wavetrain; Sherratt, 2012, in press; Rademacher et al., 2007). Full details of the

WAVETRAIN input files, run commands and plot commands are given at http://

www.ma.hw.ac.uk/~jas/supplements/hysteresis/.
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http://www.ma.hw.ac.uk/wavetrain
http://www.ma.hw.ac.uk/~jas/supplements/hysteresis/
http://www.ma.hw.ac.uk/~jas/supplements/hysteresis/


J.A. Sherratt / Ecological Complexity 14 (2013) 8–2012
As in Section 2, the patterns can be studied via the travelling
wave ordinary differential equations satisfied by the solution
forms aðx; tÞ ¼ ãðzÞ, mðx; tÞ ¼ m̃ðzÞ where z = x � ct. Again, this can
be done efficiently using the software package WAVETRAIN. The key
ecological control parameter is d, which reflects the algal
concentration in the upper water layers, and Fig. 4 illustrates
the part of the d–c parameter plane in which patterns exist, and
also where they are stable, for a = 0.6667, b = 41.5692 and
g = 0.1333 (these parameter values are taken from Wang et al.,
2009). All calculations and plotting were done using WAVETRAIN. The
parameter region giving patterns is bounded to the right by a locus
of Hopf bifurcations of the non-trivial steady state in the travelling
wave equations, and to the left by a locus of homoclinic solutions
for ã and m̃. Note that the information on pattern existence (but not
stability) in Fig. 4 has been presented previously by Wang et al.
(2009). As well as forming one boundary of the parameter region
giving patterns, the Hopf bifurcation locus in Fig. 4 also runs
through the middle of this region. An additional solution branch of
patterns emanates from this part of the locus, which remains in the
immediate vicinity of the Hopf bifurcation locus (Fig. 5a). It has a
snaking form, so that there are a large (possibly infinite) number of
coexisting patterns; however all are unstable as solutions of (5).
There is also a small region of parameter space in which the pattern
solution branch folds, implying multiple patterns (Fig. 5b), but
again all of these solutions are unstable as solutions of (5).

From the viewpoint of this paper, the key significance of Figs. 2
and 4 is that they provide a template for understanding the results
of numerical simulations of (1) and (5) as the control parameters A

and d are varied.

4. Hysteresis in the Klausmeier model

The pattern shown in Fig. 1 was generated by applying a small
spatially inhomogeneous perturbation to the vegetated steady
state (3) of the Klausmeier model (1). In reality, the vegetation
Fig. 5. Details of regions of parameter space for which the model (5) for mussel beds has m

each value of the migration speed c for which there are patterns, the travelling wave equ

about 0.04 and 0.41, the branches of pattern solutions emanating from these two Hopf bi

bifurcation with the smaller value of d (&). I plot the wavelength of the pattern as d varie

coexisting patterns, but these are restricted to a very narrow range of d values, which 

Moreover detailed calculations with WAVETRAIN suggest that all of these patterns are unsta

not know whether there are a finite or infinite number of the loops shown in the figure. (b

part of the d–c plane; recall that d reflects the algal concentration in the upper water laye

pairs for which there is/is not a pattern. As in Fig. 4, the grey line is the locus of Hopf bifur

line is an approximation to the locus of homoclinic solutions, given by the locus of solut

locus. The minimum value of d giving patterns corresponds to a fold in the pattern solut

patterns for each parameter pair. Detailed calculations using WAVETRAIN show that all of th

(5). For both (a) and (b), all calculations and plotting were done using WAVETRAIN (http://w

run commands and plot commands are given at http://www.ma.hw.ac.uk/~jas/supplem
patterns that one sees in the field result from long series of
transitions between different patterned states in response to
environmental changes. With this in mind, I undertook a
simulation study of the way in which the solution of (1) evolves
as the rainfall parameter A is varied. I used a domain of length 150,
and imposed periodic boundary conditions in order to eliminate
boundary effects. An important precursor to my study is a detailed
understanding of the accuracy of the numerical solution, and in
Appendix B I present the results of convergence tests of my
numerical method, which is a simple finite difference scheme. On
the basis of these tests, I fixed the spatial grid spacing at 0.025, with
a time step of 1.096 � 10�4; these imply a CFL number of 0.8, and
give an error of about 0.06% in the solution (see Table B.1).

Fig. 6a illustrates the variation in the pattern speed and
wavelength as A is changed slowly. I used initial conditions of a
small spatially inhomogeneous perturbation to the vegetated
steady state (3), with A = 3.2 which is just below the stability
threshold. A pattern develops rapidly, with wavelength 15. I then
decreased A in steps of 0.1 every 2400 time units until A = 0.5,
when I began a corresponding increase in A back to 3.2. Note that
there is no resetting of initial conditions when A is changed: the
results in Fig. 6 are for a single long simulation. The key
phenomenon illustrated in Fig. 6a is hysteresis: for a given value
of A, pattern selection depends on pattern history, with the
patterns that occur when A is decreased being different from those
that occur for increasing A. The speed and wavelength shown in the
figure are measured immediately before each change in A. As A is
decreased below 3.2 the speed of the pattern changes, and there is
a corresponding change in pattern form; in particular the mean
value of the plant density u decreases, as one would expect
intuitively as a consequence of reduced levels of rainfall (Fig. 6b).
However the wavelength initially remains constant as A is
decreased, until there is an abrupt shift in wavelength from 15
to 150/7 � 21.428 at A = 2.0 (note that the periodic boundary
conditions imply that any pattern must have a wavelength for
ultiple pattern solutions. As in Fig. 4, a = 0.6667, b = 41.5692 and g = 0.1333. (a) For

ations have a Hopf bifurcation at two different values of d (see Fig. 4). For c between

furcations are disconnected. This figure shows the branch emanating from the Hopf

s, with c = 0.4 fixed. There is a complicated solution structure with a large number of

becomes even more narrow if one repeats the calculations for smaller values of c.

ble as solutions of (5). The solution branch in the figure has been truncated and I do

) Detail of the existence of pattern solutions of the model (5) for mussel beds in one

rs, and c is the migration speed of the pattern. Grey circles/crosses denote parameter

cations of the non-trivial steady state in the travelling wave equations, and the black

ions of a fixed large wavelength (=1030). Patterns exist to the left of the homoclinic

ion branch, and between this fold and the homoclinic locus there are two different

e patterns in the parameter region considered in the plot are unstable as solutions of

ww.ma.hw.ac.uk/wavetrain; Sherratt, 2012). Full details of the WAVETRAIN input files,

ents/hysteresis/.

http://www.ma.hw.ac.uk/wavetrain
http://www.ma.hw.ac.uk/~jas/supplements/hysteresis/


Fig. 6. Changes in patterns in the model (1) for vegetation in semi-arid

environments, as the rainfall parameter A is varied slowly, with B = 0.45 and

n = 182.5, on a domain of length 150. I decrease A from 3.2 to 0.5 in steps of 0.1, and

then increase it again, running for 2400 time units at each value of A. Note that there

is no resetting of initial conditions when A is changed: the results in the figure are

for a single long simulation. The boundary conditions are periodic, and the initial

condition is low amplitude noise applied to the vegetated steady state. For the

resulting patterns, the black dots and thin black lines show (a) the wavelength and

speed, and (b) the average value of u, immediately before each change in A; the

arrows indicate the direction in which A is changing. The results provide a clear

demonstration of hysteresis in pattern selection, confirming the results of Sherratt

and Lord (2007). The dashed dark grey line (solid blue online) shows the boundary

of the parameter region in which pattern solutions are stable. The thick light grey

lines (red online) show contours of constant pattern wavelength. The numbers

beside the curves show the corresponding wavelengths, all of which have 150 as an

integer multiple; this condition on the wavelengths is a consequence of the periodic

boundary conditions. Any wavelength 150/n (n 2 Zþ) could arise in the solution, but

in fact only n = 2, 4, 7, 8, 10 occur in this simulation. Wavelength contours for other

values of n are omitted from the plot to aid visual clarity. Also in the interests of

clarity, I only plot the sections of these contours lying below the upper part of the

stability boundary. The wavelength contours and stability boundary were

calculated using the software package WAVETRAIN, as in Fig. 2. The solution follows

a contour of constant wavelength until this leaves the parameter region giving

stable waves, when there is a transition to a new wavelength. Note that at some

stages of the simulation, a pattern arises that lies just outside the stability region;

this is discussed in the main text. Details of the numerical method are given in

Appendix B. Users considering reproducing this figure should note that the

simulation took about 15 days on a Linux PC with a 2.83 GHz Intel Core 2 Quad

Q9500 processor.
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which 150 is an integer multiple). The wavelength then remains
constant at 21.428 while the speed and the mean value of u

decrease, until a second change in wavelength occurs, to 150/
4 =37.5, at A = 1.3. Corresponding behaviour then repeats as A is
decreased further, and also when A is increased.

In Fig. 6a, I superimpose on the simulation data both the
relevant contours of constant pattern period, and also the
boundary of the region of pattern stability; these were shown
previously in Fig. 2 and their calculation was discussed in
Section 2. The abrupt changes that occur in pattern wavelength
correspond to the period contours crossing the stability boundary.
Thus the pattern remains at a constant wavelength until the
pattern with that wavelength loses stability. A new wavelength is
then selected, and I have been unable to identify any systematic
basis for this selection.

A notable feature of Fig. 6a is that some of the observed patterns
lie just outside the stable region of parameter space. For example,
as A is decreased through 2.1 the pattern remains at wavelength 15
(with c � 0.58) even though this solution lies in the unstable
region. There are two separate potential causes of this apparent
discrepancy. Firstly, the division into stable and unstable patterns
in the figure refers to an infinite domain, whereas the simulations
are done on a finite domain (length 150). This puts a restriction on
the possible linear modes that are admissible when investigating
stability, and therefore increases the region of parameter space
giving stability. To illustrate this, I performed a new numerical
study, in which I decreased A from 2.4 in steps of 0.05, with a time
interval of 2500 between decrements. The initial solution was the
pattern for A = 2.4 with wavelength 15, which I calculated using
WAVETRAIN. I performed this simulation on domains of length 15N for
a variety of integer values of N, recording in each case the first value
of A at which the solution is no longer a pattern of wavelength 15.
The results are illustrated in Fig. 7a. For N = 1 there is no result
indicated in the figure because the pattern remains of wavelength
15 as A is decreased down to 1.0, at which point I ended
the simulation. As N is increased above 1, there is an increase in the
value of A at which the wavelength changes, reflecting the
shrinkage of the parameter region giving stable patterns.

Simulations on very small domains are of limited relevance to
real instances of banded vegetation. In order to be observable in
the field the patterns must span a number of wavelengths, and in
practice patterned areas are typically quite extensive. Therefore
the enlargement of the parameter region giving stable patterns due
to the finiteness of the domain is a minor effect in practice.
Moreover, numerical evidence indicates that for A = 2.1 the pattern
with wavelength 15 is in fact unstable on a domain of length 150
with periodic boundary conditions. I draw this conclusion from
simulations with initial conditions consisting of low amplitude
noise applied to a pattern calculated using WAVETRAIN.

The explanation for a pattern of wavelength 15 being observed
for A = 2.1 in Fig. 6 must therefore lie elsewhere, and the cause is in
fact the length of time between changes in the value of A. When a
pattern lies just outside the stable parameter region, the unstable
linear modes will grow very slowly. If the time scale of this growth
is significantly longer that the interval between changes in A, then
the instability will not be manifested in the simulation results. This
is illustrated in Fig. 7b. For this figure, I solved (1) on a domain of
length 300, again decreasing A from 2.4 in steps of 0.05 with the
initial solution being the pattern for A = 2.4 with wavelength 15,
which I calculated using WAVETRAIN. For various values of the time
interval between decrements in A, I again recorded the first value
of A at which the solution is no longer a pattern of wavelength 15.
The results show that the time interval has a significant effect on
the variation in pattern form.

The nondimensionalisation and parameter estimates of Klaus-
meier (1999) imply that one dimensionless time unit corresponds
to about 0.25 years. Therefore the (dimensionless) time interval of
2400 between changes in A that is used in Fig. 6 corresponds to
about 600 years. Fig. 7b shows that 2400 is already sufficiently
short to have an impact on the simulation results; nevertheless, it
is too long to be ecologically relevant. A gap of 600 years between
changes in A means that the entire simulation shown in Fig. 6 takes
about 30 000 years: over such a long period there will be major
shifts in global climate that make a simple model such as (1)
inappropriate. Nevertheless I deliberately used such a long time
interval for the figure because it facilitates understanding of the
relationship between the simulation results and the calculations of
pattern existence and stability.

Figs. 8 and 9 show the results of the corresponding simulations
with the time interval between changes in A reduced to 240 and 40,
which correspond to about 60 and 10 years respectively. In both
cases the overall form of the solution is again gradual shifts in
pattern form with the wavelength remaining constant, punctuated



Fig. 7. Illustrations of the way in which the history-dependence of pattern solutions of (1) is affected by simulation details. I decreased A from 2.4 in steps of 0.05, with the

initial solution being the pattern for A = 2.4 with wavelength 15, which I calculated using WAVETRAIN. (This solution has speed 0.706). In (a) I varied the length of the spatial

domain, setting it in each case to be 15 N, with N an integer; the results shown are for N = 2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 20. The time interval between changes in A was fixed at

2500. In (b) I varied this time interval, with the domain length fixed at 300. For each simulation, I plot the last value of A at which the solution had a wavelength of 15, and also

the incremented value of A, which is the first at which the pattern had a wavelength different from 15. As in all of the model simulations in this paper, the boundary conditions

were periodic. Details of the numerical method are given in Appendix B. Users considering reproducing this figure should note that the various simulations for parts (a) and (b)

took totals of 21 days and 32 days respectively, on a Linux PC with a 2.83 GHz Intel Core 2 Quad Q9500 processor.
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by abrupt shifts in wavelength. Also the average value of plant
density u is again a monotonic function of the rainfall A, as one
would expect intuitively. However the relatively short time
intervals between changes in A means that some of the abrupt
shifts in pattern wavelength lie significantly outside the parameter
region giving stable waves. Note that in Fig. 8, the wave speed
recorded as A is decreased through 0.9 does not lie on any of the
contours of constant period. The solution at this point resembles a
pattern of wavelength 50 but has not fully converged to the pattern
solution by the end of the time interval of 240. A similar
phenomenon occurs in Fig. 9 as A is increased through 2.1, and
even more strikingly in the first two simulation outputs, at A = 3.2
and 3.1. In fact in this case the solution does not have the
appearance of a fully periodic pattern until A = 2.8.

The results of this section can be summarised as follows.
Gradual changes in the rainfall parameter A result in a
Fig. 8. The results of a simulation identical to that used for Fig. 6, except for the time

interval between changes in A being 240.
characteristic form of pattern variation, with wavelength remain-
ing constant except for occasional abrupt switches. When the
domain length and the time interval between changes in A are both
large, the switches in wavelength occur when the contour of
constant wavelength crosses the boundary of the parameter region
for stable patterns. Reductions in either the domain length or the
time interval cause the switches to move outside the stability
boundary. In practice, parameter estimates for banded vegetation
in semi-arid environments mean that the domain length is
sufficiently large that its effect on switch location is not significant,
but appropriate values of the time interval between changes in
rainfall level are relatively short, and cause the switches in
wavelength to lie some distance outside the parameter region for
stable patterns.

The slow timescale over which pattern form responds to
changes in rainfall level has an important implication for the use of
Fig. 9. The results of a simulation identical to those used for Figs. 6 and 8, except for

the time interval between changes in A being 40.
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patterns as predictors of catastrophic shifts in ecosystems. In a
highly influential paper, Rietkerk et al. (2004) reviewed evidence
that self-organised patchiness is frequently a prelude to irrevers-
ible shifts between ecosystem states. For example, as rainfall
decreases in semi-arid environments, there is a transition from
homogeenous to patterned vegetation, and then at lower rainfall
levels there is a second and irreversible transition to unvegetated
desert. Rietkerk et al. then argued that ecosystem patterning had
an important potential role as an indicator of subsequent
catastrophic shifts. This argument was a theoretical one, not
supported by simulations of any particular model, and it assumes
that the current vegetation pattern reflects the current environ-
mental state. My results suggest that for semi-arid environments
this assumption may be invalid for reasonable rates of environ-
mental change, and that the predictive power of pattern states is in
fact significantly undermined by the slow timescale at which
patterns respond to changes in rainfall level.

5. Hysteresis in the van de Koppel model

For the van de Koppel model (5) for mussel bed patterning,
Fig. 4 shows that crossings by wavelength contours of the pattern
stability boundary are concentrated at smaller values of d, and
therefore I focused my investigation of pattern hysteresis on this
parameter region. Fig. 10 shows the results of varying d from 0.15
Fig. 10. Changes in patterns in the model (5) for mussel beds as the algal supply

parameter d is varied slowly, with a = 0.6667, b = 41.5692 and g = 0.1333, on a

domain of length 1920. I decrease d from 0.15 to 0.11 in steps of 0.01, and then

increase it again, running for 5 � 104 time units at each value of d. There is no

resetting of initial conditions when d is changed, and the results in the figure are for

a single long simulation. The boundary conditions are periodic, and the initial

condition is the pattern solution of wavelength 80 for d = 0.15, which I calculated

using WAVETRAIN (Sherratt, 2012). For the resulting patterns, the black dots and thin

black lines show (a) the wavelength and speed, and (b) the average value of the

mussel density m, immediately before each change in d; the arrows indicate the

direction in which d is changing. The results provide a clear demonstration of

hysteresis in pattern selection. The dashed dark grey line (solid blue online) shows

the boundary of the parameter region in which pattern solutions are stable. The

thick light grey lines (red online) are contours of pattern wavelength 80 and 128.

The wavelength contours and stability boundary were calculated using the software

package WAVETRAIN, as in Fig. 4. The solution follows the wavelength 80 contour until

this leaves the parameter region giving stable waves, when there is a transition to

the new wavelength of 128. Note that as d is decreased through 0.12, the solution

has not yet settled to a new pattern solution (see Fig. 6c). Details of the numerical

method are given in Appendix B. Users considering reproducing this figure should

note that the simulation took about 15 days on a Linux PC with a 2.83 GHz Intel Core

2 Quad Q9500 processor.
to 0.11 in steps of 0.01, and then increasing it again. Recall that the
parameter d reflects the algal concentration in the upper water
layers. As an initial condition for d = 0.15, I used the pattern
solution of wavelength 80, which I calculated using WAVETRAIN. Note
that there is no resetting of initial conditions when d is changed:
the results in Fig. 10 are for a single long simulation. In view of the
dependence of my results for the Klausmeier model on the domain
length and the time interval between parameter changes, I took
both of these to be relatively large: the domain length was
1920 = 80 � 24, and the time interval was 5 � 104. In contrast to
the Klausmeier model, a long dimensionless time interval such as
this is ecologically relevant in this case: the nondimensionalisation
and parameter estimates of van de Koppel et al. (2005) imply that a
dimensionless time interval of 5 � 104 corresponds to about 14
days.

The behaviour illustrated in Fig. 10 is directly analogous to that
described in Section 4 for the Klausmeier model. As d is decreased
the pattern speed changes in order to keep the wavelength
constant at 80, until the wavelength contour crosses the stability
boundary. There is then a transition in pattern wavelength to 128.
When d is then increased, the wavelength remains at 128: again
this is an instance of hysteresis.

As well as demonstrating these similarities between the
Klausmeier model (1) for semi-arid landscapes and the van de
Koppel model (5) for mussel beds, my various simulations have
also revealed an important difference. In simulations with shorter
time intervals between changes in d, it is common for the
simulated mussel population to die out when the contour of the
current pattern wavelength crosses the stability boundary, rather
than a new pattern wavelength developing. This is illustrated in
Fig. 11, for which all simulation details are the same as for Fig. 10
except that the time interval between changes in d was halved to
2.5 � 104, which corresponds to about 7 days. As in Fig. 10, the
solution proceeds along the wavelength 80 contour until this
crosses the stability boundary; in fact a pattern of wavelength 80
also occurs just beyond the stability boundary, due to the finiteness
of the domain and of the time interval between changes in d (see
Section 4). However, the mussel population density then simply
decays to zero, and it remains at (almost) zero as d is increased
again. Again this is an example of hysteresis in the mussel density,
Fig. 11. The results of a simulation identical to that used for Fig. 10 except for the

time interval between changes in d being 2.5 � 104. The mussel population dies out

when d = 0.11 and does not recover when d is increased again.



Fig. 12. Solutions at selected time points for the simulation illustrated in Fig. 10. The imposed temporal variation in the parameter d is shown in (a), and (b)–(d) show the

solution at the times indicated, which are chosen so that the corresponding d values lie either side of the intersection of the wavelength 80 contour and the stability boundary

for patterns. The patterns in (b) and (c) have wavelength 80; in (b) this is stable, while at the smaller d value in (c) it is unstable although the instabilities have not yet grown

large enough to be visible. At the later time in (d), the instabilities are clearly visible. In (e) the solution has almost settled to a pattern with the new wavelength of 128. Full

details of the simulation are given in the legend to Fig. 10.
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but involving a pattern and the mussel-free state, rather than
patterns of different wavelengths. During my extensive series of
simulations for the Klausmeier model (1), I have only observed the
plant-free state when the rainfall parameter A is reduced
sufficiently far that no patterns are possible.

The trivial (‘‘mussel-free’’) steady state of the van de Koppel
model is locally stable to both homogeneous and inhomogeneous
perturbations when d < g. Therefore once stability of a pattern
with a particular wavelength is lost with d < g, the trivial state and
a pattern of a different wavelength are both possible new solutions,
in principle. The same is true for the Klausmeier model, for which
the trivial (‘‘desert’’) steady state is locally stable to both
homogeneous and inhomogeneous perturbations for all parameter
values. The selection between these outcomes will depend on the
size of the basin of attraction of the trivial state, relative to those of
the stable patterns. The implication of my results is that the
mussel-free state has a relatively large basin of attraction in the
van de Koppel model (at least for d = 0.11), while that of the desert
state in the Klausmeier model is relatively small. I have not
attempted to quantify these basins of attraction, and this would be
a natural target for future work, with the main difficulty being the
computational expense of the large number of simulations that
would be required. Another natural area for future work would be
to compare the results I have described for the van de Koppel
model (5) with corresponding predictions from the model of Liu et
al. (2012), which is based on the increased efficiency of mussel
feeding on top of mussel-generated hummocks. This would help to
highlight key similarities and differences between patterns
generated by the different positive feedback mechanisms that
are represented in the two models.

It is instructive to compare the behaviours in Figs. 10 and 11
after the wavelength 80 contour crosses the pattern stability
boundary, and this is done in Fig. 12. At d = 0.12 the pattern of
wavelength 80 is unstable, even on the finite domain of length
1920 which is used in both figures. However, the growth rate of the
unstable modes is very small. Over a dimensionless time period of
25 000, the solution does not deviate significantly from a pattern of
wavelength 80 (Fig. 12b and c). In Fig. 11, d is then changed to 0.11,
for which the pattern of wavelength 80 lies within the basin of
attraction of the mussel-free state, so that the mussel population
collapses. However in Fig. 10, d remains at 0.12 for a further
dimensionless time of 25,000. This is sufficiently long to allow the
unstable modes to grow and dominate the solution (Fig. 12d). For
d = 0.11, this irregular transient solution lies in the basin of
attraction of a pattern of wavelength 128 (Fig. 12e), rather than the
mussel-free state.

6. Discussion

I have demonstrated history-dependent landscape-scale pat-
terning in two established mathematical models. A natural
question is whether such history dependence occurs in real
ecosystems, and the answer is that I am not aware of any data
indicating this phenomenon. However there are very few data sets
on landscape-scale patterns that cover an appropriate span of time.
For vegetation in semi-arid environments, a number of authors
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have presented data on pattern dynamics. Some of these studies
involve measurements of pattern location relative to ground
benchmarks (Worrall, 1959; Leprun, 1999), while others use aerial
photographs (Barbier et al., 2006; Lesschen et al., 2008) or satellite
images (Deblauwe, 2010; Deblauwe et al., 2011). However for
banded patterns, almost all studies simply compare the patterns at
two time points, in order to assess the extent of uphill migration. A
notable exception is the work of Valentin and d’Herbès (1999), who
compared data from several sites in south-western Niger, collected
on 6 occasions between 1950 and 1995. The most recent data set
was from ground measurements, with the previous 5 being from
aerial photographs. They looked specifically at the way in which
the pattern varies with rainfall, and showed that the wavelength
did indeed remain constant, with the widths of the vegetation
bands and the bare interbands changing so that their ratio is an
increasing function of rainfall. These results are in direct accord
with my simulations, but since the pattern wavelength remains
constant during the study period, this data set does not permit an
assessment of history-dependence. For mussel beds, the only data
that I am aware of on banded patterns comes from aerial
photographs taken above the Wadden Sea on two different days,
one in 1994 and the other in 2001 (van de Koppel et al., 2005). The
patterns in these two data sets are completely unrelated: mussel
beds in the Wadden Sea are either removed or severely damaged
by Winter storms, so that considerations of pattern dynamics are
only meaningful within a single year. In contrast to vegetation
patterns in semi-arid regions, it has been possible to replicate self-
organised patterns of mussel beds in laboratory settings (van de
Koppel et al., 2008); however the patterns are labyrinthine rather
than banded.

In view of this lack of relevant field data, what is the ecological
significance of the work in this paper? The answer is that it
provides a focal point for future data gathering and analysis. As a
consequence of climate change, environmental parameters are
liable to much greater variation now and in the near future than
has previously been the case. My results suggests that one
consequence of this will be history-dependent patterning.
Moreover the sophisticated methods of data acquisition and
analysis that are now available at the whole ecosystem scale offer
real prospects of identifying occurrences of pattern hysteresis in
the field.
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Appendix A. Details of stability changes

In this Appendix I give some details of the changes in pattern
stability that occur in the Klausmeier model (1) and the van de
Koppel model (5). These details have no significance for the
hysteresis results that are the focus of this paper, and I include
them for mathematical completeness.

Periodic travelling wave solutions of partial differential
equations can change stability in two different ways (Rademacher
and Scheel, 2007). An Eckhaus (sideband) stability change occurs
when the curvature of the essential spectrum at the origin changes
sign. Alternatively, a fold in the spectrum can cross the imaginary
axis at a point away from the origin; this is known as a stability
change of Hopf type. For the Klausmeier model (1), all points on the
boundary of the pattern stability region are of Eckhaus type (see
Figure 3 of Sherratt (2012) for typical plots of the essential
spectrum). However for the van de Koppel model (5) the lower part
of the stability boundary is of Eckhaus type, while the upper part is
of Hopf type. This is indicated in Fig. 4 by dashed lines with long
and short dashes respectively. Fig. A.1 shows the essential
spectrum of the pattern with d = 0.155, and with a, b and g as
in Fig. 4, for 4 different values of the migration speed c. The pattern
is unstable for the values of c used in (a) and (d), and it is stable for
(b) and (c). The stability change between (a) and (b) is of Hopf type,
while that between (c) and (d) is of Eckhaus type.

Appendix B. Error estimation for numerical simulations

This paper depends heavily on the results of numerical
simulations of (1) and (5), and therefore a detailed estimation of
the errors in the numerical scheme is essential. For both systems of
equations I used a simple finite difference scheme, in which the
diffusion terms are evaluated semi-implicitly, with explicit
evaluation of the reaction and advection terms, using upwinding
for the latter. I used a uniform grid spacing Dx and time step Dt. As
is typical for such a scheme, numerical tests showed that
convergence requires that the Courant number C satisfies the
CFL condition C < 1; here C ¼ n Dt=Dx for the Klausmeier model (1)
and C ¼ b Dt=Dx for the van de Koppel model (5). To investigate
numerical accuracy when this condition is satisfied, I used test
problems. I fixed the domain length at 50 for (1) and 100 for (5),
with periodic boundary conditions. I solved for 0 � t � 300, with
initial conditions consisting of a small perturbation (the same for
each run) to the homogeneous steady state (3) for (1) and (6) for
(5). The parameter values were A = 2.5, B = 0.45, n = 182.5 for (1)
and a = 0.6667, b = 41.5692, g = 0.1333, d = 0.15 for (5). As a
measure of error, I used the spatial average of the L2 norm of the
relative error of the solution, compared to a reference solution
calculated with high accuracy. Typically the difference in numeri-
cal discretisation between the solution being considered and the
reference solution results in a spatial translation of the pattern. It is
not appropriate to regard this ‘‘phase shift’’ as numerical error, and
therefore I performed an appropriate spatial translation before
comparing the solutions.

Tables B.1 and B.2 show the way in which the error varies with
the space and time steps. As is typical for reaction-diffusion-
convection problems, the error decreases linearly with Dx and Dt

when these are varied in a constant ratio, so that the Courant
number is constant (<1). Moreover, for given Dx the error is
essentially independent of Dt (compare the columns within Tables
B.1 and B.2). To investigate this further, I studied numerical
convergence in the Klausmeier model (1) as Dx and the parameter
n were varied, with Dt chosen to maintain a CFL number of 0.8. I
also changed A in proportion to

ffiffiffi
n
p

, which maintains the
qualitative form of the solution (see Sherratt, 2013b); B and the
other solution details were constant, as discussed above. The
results in Table B.3 show that the error is proportional to Dx but is
essentially independent of n.

For the long-term simulations discussed in the main text, the
choice of numerical parameters is of course a trade-off between
accuracy and CPU time. All of the simulations shown in the main
part of this paper used a CFL number of 0.8, with Dx = 0.025 for (1)
and Dx = 0.08 for (5). In my test problems, this gives errors of about
0.06% for (1) 0.055% for (5).



Fig. A.1. Eigenvalue spectra for pattern solutions of the model (5) for mussel beds, for d = 0.155 and (a) c = 0.485; (b) c = 0.48; (c) c = 0.15; (d) c = 0.08. In (a) and (d) the

spectrum extends into the right hand half plane, so that the pattern is unstable; in (b) and (c) the pattern is stable. The change in stability in c 2 (0.48, 0.485) is of Hopf type,

meaning that the spectrum passes through the imaginary axis away from the origin; for c 2 (0.08, 0.15) the change in stability is of Eckhaus type, meaning that it occurs via a

change in the sign of the curvature of the spectrum at the origin. As in Figs. 4 and 5, the other parameters are a = 0.6667, b = 41.5692, g = 0.1333. All calculations and plotting

were done using WAVETRAIN (http://www.ma.hw.ac.uk/wavetrain; Sherratt, 2012, in press; Rademacher et al., 2007). Full details of the WAVETRAIN input files, run commands and

plot commands are given at http://www.ma.hw.ac.uk/~jas/supplements/hysteresis/.

Table B.1
Convergence of my numerical scheme for the model (1) for pattern formation in

vegetation in semi-arid environments. I tabulate the spatial average of the L2 norm

of the relative error of the solution, compared to the most accurate solution, as a

function of the grid spacing Dx and the CFL number. Details of the test problem are

given in the text.

CFL = 0.90 CFL = 0.75 CFL = 0.50 CFL = 0.25

Dx = 0.20000 0.00561208 0.00561397 0.00561704 0.00562029

Dx = 0.10000 0.00280671 0.00280784 0.00281000 0.00281220

Dx = 0.05000 0.00133085 0.00133163 0.00133286 0.00133407

Dx = 0.02500 0.00057433 0.00057479 0.00057540 0.00057600

Dx = 0.01250 0.00019202 0.00019218 0.00019246 0.00019276

Dx = 0.00625 0.00000129 0.00000099 0.00000050 0.00000000

Table B.2
Convergence of my numerical scheme for the model (5) for pattern formation in

mussel beds. I tabulate the spatial average of the L2 norm of the relative error of the

solution, compared to the most accurate solution, as a function of the grid spacing

Dx and the CFL number. Details of the test problem are given in the text.

CFL = 0.90 CFL = 0.60 CFL = 0.30

Dx = 0.40000 0.00287475 0.00285581 0.00284171

Dx = 0.20000 0.00142499 0.00141306 0.00140840

Dx = 0.10000 0.00069432 0.00068832 0.00068598

Dx = 0.05000 0.00032489 0.00032188 0.00032071

Dx = 0.02500 0.00013977 0.00013826 0.00013767

Dx = 0.01250 0.00004696 0.00004621 0.00004591

Dx = 0.00625 0.00000053 0.00000015 0.00000000
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Table B.3
Convergence of my numerical scheme for the model (1) for pattern formation in

vegetation in semi-arid environments. I tabulate the spatial average of the L2 norm

of the relative error of the solution, compared to the most accurate solution, as a

function of the grid spacing Dx and n, with A varied in proportion to
ffiffiffi
n
p

, which

maintains the qualitative form of the solution (see Sherratt, 2013b). Details of the

test problem are given in the text.

n = 100.000 n = 200.000 n = 400.000

A = 1.768 A = 2.500 A = 3.535

Dx = 0.20000 0.00565860 0.00576688 0.00580979

Dx = 0.10000 0.00282260 0.00287261 0.00289530

Dx = 0.05000 0.00133843 0.00136279 0.00137368

Dx = 0.02500 0.00057829 0.00058899 0.00059313

Dx = 0.01250 0.00019344 0.00019689 0.00019847

Dx = 0.00625 0.00000000 0.00000000 0.00000000

J.A. Sherratt / Ecological Complexity 14 (2013) 8–20 19
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