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a b s t r a c t

Self-organised patterns of vegetation are a characteristic feature of semi-deserts. On hillsides, these
typically comprise vegetation bands running parallel to the contours, separated by regions of bare ground
(‘‘tiger bush’’). The present study concerns the Klausmeier mathematical model for this phenomenon
[C.A. Klausmeier, Regular and irregular patterns in semiarid vegetation, Science 284 (1999) 1826–1828],
which is one of the earliest and most influential of the various theoretical models for banded vegetation.
The model is a system of reaction–diffusion–advection equations, and after rescaling it contains three
dimensionless parameters, one of which (the slope parameter) is much larger than the other two. The
present study is the third in a series of papers in which the author exploits the large value of the slope
parameter to obtain leading order approximations to the parameter regions inwhich patterns exist, and to
the form of these patterns. The boundary of the parameter region giving patterns consists in part of two
loci of homoclinic solutions, that are homoclinic to different steady states. The present paper concerns
behaviour for parameters close to the intersection point of these loci. The author shows that this part of
parameter space divides naturally into three regions, with a different solution structure in each. In one
region, the solution corresponds to a limit cycle of a reduced systemof ordinary differential equations; the
other two regions involvemultiplematched layers. As part of the analysis, the author derives formulae for
the homoclinic solution loci, and for the location of their intersection. All of the results are valid to leading
order for large values of the slope parameter. The author presents a detailed numerical verification of his
analytical results. The paper concludes with discussions of the ecological implications of the results, and
the main outstanding mathematical questions.

© 2012 Published by Elsevier B.V.

1. Introduction

Self-organised patterns of vegetation are a characteristic fea-
ture of semi-deserts. The most striking and best studied example
is striped patterns on gentle slopes (see [1,2] for a review). These
occur in many parts of the world, and are particularly well doc-
umented in Australia [3,4], Mexico/South-Western USA [5,6] and
sub-Saharan Africa [7–9]. Bands of grass, shrubs or trees run along
contours, separated by bare ground;wavelengths of about 1 kmare
typical for trees and shrubs, with shorterwavelengths observed for
grasses.

Field studies of banded vegetation are difficult and expensive
because of poor infrastructure near potential study sites. More-
over vegetation bands have never been generated successfully in
a laboratory setting, and the slow timescale of pattern evolution
(decades) makes observational data of limited use for investigat-
ing the implications of environmental changes such as altered lev-
els of rainfall. Therefore a number of authors have used theoretical

∗ Tel.: +44 131 451 3249; fax: +44 131 451 3249.
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models to study banded vegetation (reviewed in [10]). One influ-
ential modelling approach has been led by Lefever and co-workers
(e.g. [11–14]), and is based on the different length scales of the
tree/shrub crowns and root systems. These models exhibit pattern
formation via short range activation and long range inhibition. The
other major class of models is based on water redistribution. The
first studies of this type used cellular automata [15–17]. A shift to
partial differential equations as the main modelling tool was initi-
ated by Klausmeier [18], and his model is the subject of this paper.
When suitably nondimensionalised [18,19], the equations are

∂u/∂t =

plant
growth
wu2

−

plant
loss
Bu +

plant
dispersal  

∂2u/∂x2 (1a)

∂w/∂t = A
rainfall

− w
evaporation

− wu2
uptake

by plants

+ ν∂w/∂x  
flow

downhill

. (1b)

Here u(x, t) is plant density,w(x, t) is water density, t is time and x
is a one-dimensional space variable running in the uphill direction.
Although they represent a combination of ecological quantities, the
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(dimensionless) parameters A, B and ν can be most usefully inter-
preted as reflecting rainfall, plant loss and slope gradient respec-
tively. Note that (1) assumes that the slope is constant. A variant
of (1) with a spatially varying slope parameter, consisting of small
oscillations about zero, was used by Klausmeier [18] to study two-
dimensional mosaic patterns of vegetation on (approximately) flat
ground.

Klausmeier’s equations (1) were the first of a large number
of partial differential equation models for patterning due to
water redistribution (e.g. [20–32]). Taken together, these studies
have had a major impact on the current understanding of
banded vegetation. However, in all cases the authors have relied
on numerical simulations of their equations, with little or no
underlying analytical theory. Even for (1), previous analysis does
not extend beyond linear stability of spatially homogeneous
solutions [18,19]. This paper is the third in a series whose objective
is a detailed analytical understanding of pattern solutions of the
Klausmeier model (1).

The advection term in (1b) means that spatial patterns are not
stationary; rather they move in the positive x direction (uphill)
at a constant rate. There has been a long-running debate in
the ecological literature about this uphill migration, with some
field studies reporting stationary patterns (e.g. [3]). However,
the majority of data sets spanning a time period sufficient to
address this issue do indicate uphill migration, with speeds in
the range 0.2–1 m year−1 (see Table 5 of [1]). Moreover, a recent
and very detailed study using photographic data from satellites
[33, Chapter 10] confirms migration, with speeds in this range,
for three different geographical locations. The ecological cause of
uphill migration is that moisture levels are higher on the uphill
edge of the bands than on their downhill edge, leading to reduced
plant death and greater seedling density [34,35].

Since they move at a constant speed, pattern solutions of (1)
are periodic travelling waves (wavetrains), with the mathematical
form u(x, t) = U(z), w(x, t) = W (z). Here z = x − ct , with c > 0
being the migration speed. Substituting these solution forms into
(1) gives

d2U/dz2 + c dU/dz + WU2
− BU = 0 (2a)

(ν + c)dW/dz + A − W − WU2
= 0. (2b)

Patterns correspond to periodic solutions of (2), and in the many
simulation-based studies of (1) (e.g. [18,19,36]) such patterns are
the only non-constant solutions that have been found at large
times.1 Previously, Gabriel Lord and I used numerical bifurcation
analysis to study these periodic solutions [37]. We showed that for
a given value of the migration speed c , patterns occur for a range
of values of the rainfall parameter A. Fig. 1 shows a typical example
of the part of the A–c parameter plane inwhich patterns occur. The
thick curve at the upper end of the rainfall range giving patterns is
the locus of a Hopf bifurcation point in (2), while the thin curves
are the loci of homoclinic solutions.

Note that the parameter region giving patterns extends signif-
icantly above c = 18, which is the upper limit in Fig. 1. For some
larger values of c , the lower end of the rainfall range giving pat-
terns consists of the locus of a fold in the pattern solution branch,
rather that the locus of a homoclinic solution [38]; however this is
not relevant to the behaviour considered in this paper. Intuitively,
spatially uniform vegetation occurs at high levels of rainfall, and no

1 I mention in Section 2 that throughout this paper I restrict attention to B < 2,
and all previous studies that I am aware of do likewise. For B > 2, the local
dynamics of (1) can be more complex, and this is likely to result in more complex
spatiotemporal behaviour, but this parameter regime is not relevant to applications.

Fig. 1. An illustration of the region in the A–c parameter plane in which there
are patterned solutions of (1). The thick curve is the locus of Hopf bifurcation
points of (2) and the thin curves are the loci of homoclinic solutions. These curves
bound the illustrated part of the pattern region. The plot is truncated at c ≈ 20.
Patterns actually exist for values of c up to about 54, and details of patterns for
these larger values of c are given in [38]. The numerical solutions were performed
using auto [39–41]; see [37] for further details. Note that I have not attempted to
calculate the loci of actual homoclinic solutions; rather the thin curves are loci of
periodic solutions of a fixed but very long wavelength (2000). The case shown is for
B = 0.45 and ν = 200.

vegetation is possible when rainfall is very low. Intermediate rain-
fall levels cannot sustain uniform vegetation, but patterned vege-
tation is possible.

The parameters A, B and ν depend on both the type of vegeta-
tion and the physical environment. The rainfall parameter A can
take values between about 0.1 and 3.0 [18,22], and estimates of
the plant loss parameter B lie in the range 0.05–2.0 [18,22]. In
comparison the slope parameter ν is much larger: Klausmeier [18]
estimated its value at 182.5. This large value is not due to the
slope itself being steep: banded vegetation is restricted to slopes
of a few per cent, and on steeper slopes, different processes oc-
cur because rainwater generates gullies. Rather, ν is large because
the plant diffusion coefficient is small compared to the advec-
tion rate of water, and it is the relative values of these quan-
tities that determines the nondimensional parameter ν [18,19].
Mathematically, the large value of ν suggests an investigation of
the asymptotic form of periodic solutions of (2). This paper is the
third in a series in which I take this approach. My objective is to
study the boundaries of parameter space in which patterns occur,
and the form of these patterns, for large ν. Previously [38,42] I have
studied the ‘‘tusk-shaped’’ region that occurs for c greater than
about 7 in Fig. 1. I showed that this region occurs when ν1/2

≪

c ≪ ν and A2c = Os(ν); here I use the notation f = Os(g) to mean
that f = O(g) and f ≠ o(g). This previous work involved a se-
ries of rescalings of the travelling wave equations (2) that yield the
leading order equations satisfied by pattern solutions in the ‘‘tusk-
shaped’’ region. One of the implications of this work was that the
rescalings broke down when c = O(ν1/2); in that case the range of
rainfall levels giving patterns is much wider. In this paper I study
the specific case of c = Os(ν

1/2) and A = Os(ν
1/4). This is a rather

localised part of the A–c parameter plane, but it is a particularly
interesting and important region, containing a fundamental shift
in pattern form. Of special note is that the thin curve in Fig. 1 is
actually the loci of two different homoclinic solutions, which are
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homoclinic to different equilibria, and whichmeet at a point in the
A–c plane that satisfies c = Os(ν

1/2) and A = Os(ν
1/4). I will show

this, andwill calculate the leading order coordinates of themeeting
point.

In Section 2, I describe some preliminary results on the trav-
elling wave equations (2), and discuss the form of patterns close
to the Hopf bifurcation locus in the A–c plane. The solution form
changes as onemoves away from this locus, and two different solu-
tion structures must be considered in other parts of the A–c plane;
these are discussed in Section 3 and Section 4. In Section 5 I sum-
marise my main results and describe their numerical verification.
Finally in Section 6 I discuss the ecological implications of my re-
sults, and comment on possible directions for future work.

2. Rescaling the travelling wave equations

The homogeneous equilibria of (1) are (0, A) and, if A ≥ 2B, also

(uu, wu) =


A −

√
A2 − 4B2

2B
,

2B2

A −
√
A2 − 4B2


(3)

and (us, ws) =


A +

√
A2 − 4B2

2B
,

2B2

A +
√
A2 − 4B2


. (4)

The ‘‘desert’’ steady state (0, A) is always stable, while (uu, wu) is
always unstable, even to homogeneous perturbations. Pattern so-
lutions originate from (us, ws), which is stable to homogeneous
perturbations when B < 2, and unstable to inhomogeneous per-
turbations for some values of A. The condition B < 2 holds for any
realistic parameter set [18], and I assume that it holds throughout
this paper. When B > 2, (us, ws) can become unstable to homoge-
neous perturbations via a Hopf bifurcation, but the resulting spa-
tially uniform limit cycles have no relevance to applications.

As shown in Fig. 1, one boundary of the A–c parameter region
in which patterns occur is the locus of Hopf bifurcations of (us, ws)
in the travelling wave equations (2). A straightforward calculation
shows that the part of this locus with c = Os(ν

1/2) and A =

Os(ν
1/4) is A2c = B3ν to leading order as ν → ∞ (see [42] for

details). Moreover, along this locus us ∼ A/B and ws ∼ B2/A, with
the period of the neutrally stable oscillations ∼2πc/B, as ν → ∞.
For notational convenience I define

A = A/ν1/4 c = c/ν1/2
; (5)

thus in the part of the A–c plane that I am considering, A and c are
Os(1) as ν → ∞. Then, on the basis of the behaviour near Hopf
bifurcation, I setU = (B/A)ν−1/4U W = (A/B2)ν1/4W

z̃ = (B/c)ν−1/2z.
(6)

Substituting these into (2) gives

ν−1 B/c 2 d2U/dz̃2 + dU/dz̃ +U2W −U = 0 (7a)
1 + cν−1/2

· (B3/cA) dW/dz̃

+ A − ν−1/2(B2/A)W − AU2W = 0. (7b)

As ν → ∞, these equations have the leading order form

dU/dz̃ = U −U2W (8a)

dW/dz̃ = σ 2(U2W − 1) (8b)

where σ = Ac 1/2/B3/2.
Eqs. (8) also arise in the ‘‘tusk-shaped’’ part of the region of the

A–c plane giving patterns (ν1/2
≪ c ≪ 1; see Fig. 1), and I have

studied them in detail previously [42]. I now summarise the key

results of this previouswork, and prove some small extensions that
are required for the present study.

Standard calculations show that the unique steady state of (8),U = W = 1, is stable if and only if σ < 1, with a subcritical Hopf
bifurcation at σ = 1. To investigate (8) in more detail, I follow [42]
and rewrite (8) in terms of

µ = σU φ = UW , (9)

giving

dµ/dz̃ = µ − µφ (10a)

dφ/dz̃ = µ2φ − σµ + φ − φ2. (10b)

There are three steady states of (10): (µ, φ) = (0, 0), (σ , 1) and
(0, 1). For all σ ∈ (0, 1), (µ, φ) = (0, 0) is an unstable node;
(µ, φ) = (σ , 1) is a stable focus; and (µ, φ) = (0, 1) is non-
hyperbolic, with a stable eigenvector (0, 1) and an unstable centre
manifold φ = 1 − σµ + µ2

+ O(µ3) for µ > 0, along which
µ = −1/(σ z̃)+O(1/z̃2) and φ = 1+1/z̃ +O(1/z̃2) as z̃ → −∞.
Therefore there is exactly one trajectory leaving the steady state
(0, 1). I denote this trajectory by T ; it leaves (0, 1) along the centre
manifoldφ = 1−σµ+O(µ2) and enters the half-strip 0 < φ < 1,
µ > 0. Since dµ/dz̃ > 0 throughout this half-strip, one of three
possible cases must apply.

Case 1: T first exits 0 < φ < 1 at a point on φ = 0.
Case 2: T does not leave 0 < φ < 1. The form of the nullclines

of (10) shows that this requires µ → ∞ and φ → 0 as
z̃ → ∞ (see [42] for details).

Case 3: T first exits 0 < φ < 1 at a point on φ = 1.

I define σ ∗
= sup {σ |σ ∈ (0, 1) and case 3 applies}. In [42] I

prove that when σ = σ ∗, (10) has a solution that is homoclinic to
(0, 1). This corresponds to a homoclinic solution of (8) that is
homoclinic to a point at infinity. Numerical calculations show that
σ ∗

≈ 0.9003, and suggest strongly that the limit cycle branch
starting at the Hopf bifurcation point (σ = 1) terminates at
σ = σ ∗, the homoclinic solution; however I have not been able
to prove this. Note that the results in [42] show that case 2 applies
for σ = σ ∗, but they do not exclude the possibility that case 2 also
occurs for isolated values of σ ∈ (σ ∗, 1). However this is not an
obstacle for any of my analysis. In fact numerical solutions suggest
strongly that case 1 applies for all σ ∈ (σ ∗, 1).

I denote by µmax(σ ) the maximum value of µ on the limit
cycle branch of (10) close to its homoclinic limit at σ = σ ∗. In [42]
I prove the following:

Proposition 1 ([42]). µmax(σ ) → ∞ as σ → σ ∗ +, and the
maximum value of φ also → ∞, in proportion to µ2

max. Additionally,
part of the limit cycle solution changes over a z̃ length scale that is
O(µ−2

max) as σ → σ ∗ +.

I have been unable to determine analytically the rate at which
µmax → ∞ as σ → σ ∗ +, but numerical calculations suggest
strongly that the dependence is µmax = Os (log |σ − σ ∗

|) as σ →

σ ∗ + [42].
For the purposes of this paper, I require the following additional

result:

Proposition 2.

(i) For σ ∈ (σ ∗, 1) with case 1 applying, denote by (µcross(σ ), 0)
the point at which the trajectory T crosses the φ = 0 axis.
Then for σ above and sufficiently close to σ ∗, case 1 applies, and
µcross → ∞ as σ → σ ∗ +.

(ii) For σ ∈ (0, σ ∗), any trajectory crossing the µ > 0 part of the
φ = 0 axis originates from the steady state (µ, φ) = (0, 0), and
satisfies φ/µ ∼ −σ z̃ as z̃ → −∞.
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Fig. 2. An illustration of various lines and regions in the µ–φ plane that are referred to in the proof of Proposition 2(ii). (a) A typical case for σ ∈ (
√
16/27, σ ∗); (b)

σ =
√
16/27; (c) a typical case for σ ∈ (0,

√
16/27). The solid shading indicates the region A1 in (a) and A2 in (b), (c). The grey dots indicate the region B1 in (a) and B2

in (b), (c). The three large black dots in each part of the figure indicate the three steady states of (10), which are (0, 0), (σ , 1) and (0, 1). Thin solid lines denote solution
trajectories of (10): C1 (in (a)) and C2 (in (b), (c)) are representative trajectories crossing the φ = 0 axis with µ > 0, and T (in (a)) is the unique trajectory leaving (1, 0)
into the µ > 0 half-plane. Thick solid lines denote the φ nullcline. The solution trajectories were calculated by solving (10) numerically using the routine dlsoda [43,44],
which is part of the odepack collection, and is freely available at www.netlib.org. The solver automatically switches between an Adams predictor–corrector method and a
backward differentiation formula method.

Part (i) of this proposition was proved in [42] but part (ii) is a new
result.

Proof of (ii). In [42] I showed that σ ∗
∈
√

16/27 ≈ 0.77, 1

;

in fact numerical solutions of (10) show that σ ∗
≈ 0.9003.

The significance of
√
16/27 is that at this value of σ there is a

qualitative change in the φ nullcline. Calculation of this nullcline
(standard and omitted for brevity) shows that it has two branches.
For σ >

√
16/27 these branches are separated by a µ interval on

which there is no nullcline; for σ <
√
16/27 they are separated by

a φ interval on which there is no nullcline; and for σ =
√
16/27

the two branches meet (Fig. 2).
I will consider separately the cases

√
16/27 < σ < σ ∗ and σ ≤√

16/27. In the former case, I showed in [42] that the trajectory
T leaves (µ, φ) = (0, 1) between the left-hand branch of the φ
nullcline and the lineφ = 1, and subsequently intersects the right-
hand branch of the φ nullcline. I denote by A1 the open part of
the µ–φ plane between the two branches of the φ nullcline, the
trajectory T , and the line φ = 0 (illustrated in Fig. 2(a)). Also, I
denote by B1 the open region between µ = 0 and the left-hand
branch of the φ nullcline (Fig. 2(a)). Consider now a trajectory C1
that leavesA1 through the φ = 0 axis. ThroughoutA1, dφ/dz̃ < 0
and dµ/dz̃ > 0. Therefore C1 must enter A1 through the left
hand branch of the φ nullcline, i.e. from B1. (Recall that entry from
(µ, φ) = (0, 1) is not possible sinceT is the only trajectory leaving
this steady state and going intoµ > 0).WithinB1, dφ/dz̃ > 0 and
dµ/dz̃ > 0. Nowµ = 0, 0 < φ < 1 is a solution trajectory, and all
trajectories crossing the left-hand part of the φ nullcline do so out
ofB1. ThereforeC1 must enterB1 from the steady stateµ = φ = 0
(illustrated in Fig. 2(a)).

I consider now the case σ ≤
√
16/27. I denote by A2 the

open region in the µ–φ plane between φ = 0 and the lower
branch of the φ nullcline, and by B2 the open region between
µ = 0, the lower branch of the φ nullcline, and the line φ = φmax
(illustrated in Fig. 2(b) and (c)). Here φmax is the φ coordinate
of the (unique) local maximum of the lower branch of the φ
nullcline; note that for σ =

√
16/27, this local maximum is the

intersection point of the two nullcline branches. Consider now a
trajectory C2 leaving A2 through φ = 0. Since dµ/dz̃ > 0 and
dφ/dz̃ < 0 throughout A2, C2 must enter A2 from B2; note that
all trajectories crossing the lower branch of the φ nullcline to the
right of the local maximum do so out of A2. But dµ/dz̃ > 0 and
dφ/dz̃ > 0 throughout B2, and µ = 0, 0 < φ < 1 is a solution
trajectory; thus C2 must enter B2 from µ = φ = 0 (illustrated in
Fig. 2(b) and (c)).

The final part of the proposition concerns the slope of the
trajectories C1 and C2 at (0, 0). The stability matrix of (10) at this

Fig. 3. A schematic illustration of the subdivision of the part of the A–c parameter
plane in which pattern solutions exist; recall that A = A/ν1/4 and c = c/ν1/2 . The
solid lines indicate the boundaries of the region in which pattern solutions exist,
and the dashed lines separate the three regions inwhich the patterns have different
mathematical structures. The large central dot indicates the point (Acrit, ccrit), which
is defined in the main text.

steady state is


1 0
−σ 1


.Therefore it is a degenerate unstable node,

and standard theory implies that µ = Os

ez̃

and φ = Os


−σ z̃ez̃


as z̃ → −∞ on any trajectory originating from this steady state.
This completes the proof of part (ii) of Proposition 2. �

Proposition 1 implies that for σ sufficiently close to σ ∗, (8) is
not the leading order form of (7). Since the limit cycle solution
changes over a length scale that is O(µ−2

max) as σ → σ ∗ +, the
term ν−1(B/c 2)d2U/dz̃2 can only be neglected to leading order as
ν → ∞ if µ2

max ≪ ν. Similarly since W = Os(µmax) as σ → σ ∗ +,
the term ν−1/2(B2/A)W can only be neglected if µmax ≪ ν1/2.
As σ is increased towards σ ∗, both of these conditions fail when
µmax = Os(ν

1/2).
I will show that the part of the A–c plane with A = Os(ν

1/4)
and c = Os(ν

1/2) subdivides naturally into three regions; these are
illustrated schematically in Fig. 3. In each of these regions, limit
cycle solutions of (2) (i.e. patterns) have different mathematical
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structures. My results thus far enable the characterisation of
patterns in ‘‘region I’’, which is the part of the A–c plane to the left
of the locus of Hopf bifurcations (A

2
c = B3) and in which µmax ≪

ν1/2. In this region, pattern solutions of (2) are limit cycle solutions
of the reduced system (8), to leading order as ν → ∞. Note that the
numerical evidence that µmax = Os (log(σ − σ ∗)) as σ → σ ∗ +

suggests that the transition between region I and regions II and III
in Fig. 3 lies exponentially close (in ν, as ν → ∞) to the curve
A

2
c = σ ∗ 2B3 (i.e. σ = σ ∗).
The remainder of the paper considers patterns in regions II and

III of the A–c plane.

3. Pattern solutions in region II

In comparison to the patterns in region I of the A–c plane (see
Fig. 3), patterns in the other parts of the plane are significantly
more complicated. They must be considered in matched layers,
each ofwhich has a different scalingwith respect to ν. The patterns
in region II have some similarities to those in part of the ‘‘tusk-
shaped’’ region, which I have studied previously in [42], although
there are important differences in detail; those in region III are
quite different. For notational convenience, I make the substitution
ϵ = (c/B)ν−1/2, so that (7) becomes

ϵ2(B3/c4) d2U/dz̃2 + dU/dz̃ +U2W −U = 0 (11a)

(1 + Bϵ) dW/dz̃ + σ 2(1 −U2W ) − ϵW = 0. (11b)

(Recall that σ 2
= A

2
c/B3.) The region II solution consists of four

layers, which I present in a clockwise order going round the limit
cycle in theU–W plane; this is the direction of decreasing z̃.

3.1. The solution in layer 1

There are no rescalings in this layer, so the variables are U =U1, W = W1, z̃ = z̃1, with the governing equations being (8).

3.2. The solution in layer 2

I will show in Section 3.6 that the solution of (8) required
for (U1, W1) corresponds to the trajectory T of (10). Further, I
will show in Section 3.7 that on the limit cycle in region II, the
minimum ofU occurs at the point of matching between ‘‘layer 2’’
and ‘‘layer 3’’. The first of these layers reflects the slow increase ofU from its minimum, mirroring the algebraic departure of T from
(µ, φ) = (0, 1). Therefore it involves slow changes with respect to
z̃, and the appropriate rescalings areU2 = U/ϵ W2 = ϵW z̃2 = ϵz̃ (12)

⇒ ϵ4 B3/c4

d2U2/dz̃22 + ϵ dU2/dz̃2 +U2

2
W2 −U2 = 0

(1 + Bϵ)dW2/dz̃2 + σ 2 1 − ϵU2
2
W2

− W2 = 0.

This implies that the leading order equations areU2
U2W2 − 1


= 0 dW2/dz̃2 + σ 2

− W2 = 0, (13)

and thus to leading order,W2 = σ 2
− k2ez̃2 (14a)

and either U2 =


σ 2

− k2ez̃2
−1

(14b)

or U2 = 0; (14c)

here k2 is a constant of integration. Since z̃1 and z̃2 involve different
scalings, it is necessary that the behaviour of (U1, W1) as z̃1 →

−∞ matches that of (U2, W2) at a finite matching point, which
I arbitrarily take as z̃2 = 0. The solution (14a) for W2 can easily
be expanded as a power series about z̃2 = 0. Using the scalings
(12), it follows that the behaviour of W1 as z̃1 → −∞ must match
(σ 2

− k2)/ϵ − k2z̃1 + · · ·. Since W1 cannot contribute an Os(1/ϵ)
term, this requires k2 = σ 2. Then if (14b) applies, matching ofU1 and U2 requires U1 ∼ 1/(−σ 2z̃1) as z̃1 → −∞, while if U2

is given by (14c) then the matching condition is simply U1 → 0
as z̃1 → −∞. Using (9), the corresponding solution of (10) must
approach µ = 0 as z̃1 → −∞. The only solution satisfying
this condition is the trajectory T , defined in Section 2; this holds
regardless of which of (14b) and (14c) applies in layer 2.

3.3. The solution in layer 3

The limit cycle has a slow departure from the point at whichU
has its minimum, and this is reflected in the rescaling of z̃ in layer
2. By contrast, the decrease ofU to its minimum does not require a
rescaling of z̃, althoughU and W must be rescaled as in Section 3.2:U3 = U/ϵ W3 = ϵW z̃3 = z̃
⇒ ϵ2(B3/c4)d2U3/dz̃23 + dU3/dz̃3 +U2

3
W3 −U3 = 0 (15a)

ϵ−1
+ B


dW3/dz̃3 + σ 2 1 − ϵU2

3
W3

− W3 = 0. (15b)

Intuitively, the difference in the scalings of z̃ in layers 2 and 3
reflects the fact that the stable manifold of (10) at (µ, φ) = (0, 1)
is an eigenvector, while the unstable manifold involves algebraic
dependence on z̃. To leading order as ϵ → 0, the solution of (15) isW3 = k3 (16a)

and either U3 =

k3 − h3 exp(−z̃3)

−1 (16b)

or U3 = 0 (16c)
where k3 and h3 are constants of integration. The condition for
matching (16) to the layer 2 solution is limz̃2→−ζ (U2, W2) =

limz̃3→+∞(U3, W3) for some finite ζ > 0. Therefore k3 = σ 2(1 −

e−ζ ), and if (14b)/ (14c) applies in layer 2 then (16b)/ (16c) is the
required solution forU3.

3.4. The solution in layer 4

Layers 1–3 are very similar to those in the layered solution
presented in [42], which is relevant for some values of A when
ν1/2

≪ c ≪ 1. The key differences between that case and the one
considered here are in layer 4, which is a transition layer linking
layer 3 and layer 1, and inwhich variationwith respect to z̃ is rapid.
The appropriate scalings areU4 = ϵU W4 = ϵW z̃4 = z̃/ϵ2

⇒

B3/c4


d2U4/dz̃24 + dU4/dz̃4 +U2

4
W4 − ϵ2U4 = 0

(1 + Bϵ)dW4/dz̃4 + σ 2 ϵ3
−U2

4
W4

− ϵ3W4 = 0.

Therefore the leading order equations are

(B3/c4)dU4/dz̃4 +U4 + W4/σ
2

= k4 (17a)

dW4/dz̃4 − σ 2U2
4
W4 = 0 (17b)

where k4 is a constant of integration. I require a solution of
these equations whose limiting form as z̃4 → +∞ matches the
behaviour of the layer 3 solution as z̃3 approaches an arbitrary
finite matching point, which I take as z̃3 = 0. This implies thatW4 → k3 as z̃4 → +∞, but the corresponding condition for U4
requires more careful consideration. There are three possibilities.
Possibility 1: If (16b) holds with h3 ≠ k3, thenU3 = 1/(k3 −h3)+

O(z̃3) as z̃3 → 0. This cannot match withU4 because
of the different scalings forU in the two layers.
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Possibility 2: If (16b) holds with h3 = k3, then U3 = 1/(k3z̃3) +

O(z̃23) as z̃3 → 0. Then matching requires thatU4 ∼ 1/(k3z̃4) as z̃4 → +∞.
Possibility 3: If (16c) holds, then matching requires that U4 =

o

1/z̃4


as z̃4 → +∞.

3.5. A detailed study of Eqs. (17)

In order to proceed with the construction of the matched
asymptotic solution, I require the following result concerning
Eqs. (17).

Proposition 3.

(i) For all values B, c, σ and k4, there are infinitely many solutions of
(17) for whichU4 → 0+ and W → k4σ 2 as z̃4 → +∞. These
solutions can be divided into two categories:
Type I: The approach to (0, k4σ 2) is exponential in z̃4. There is

exactly one such solution.
Type II: The approach to (0, k4σ 2) is algebraic in z̃4, withU4 ∼

1/

k4σ 2z̃4


as z̃4 → +∞. There is a one-parameter

family of such solutions.
(ii) There is a number δ∗

∈ (0, 4/
√
3 ≈ 2.31) such that the beha-

viour of these solutions as z̃4 → −∞ is as follows.
If σk4B3/2 < δ∗c 2: The type I solution→ (+∞, 0). Exactly one
of the type II solutions → (k4, 0); the remainder → (±∞, 0).
If σk4B3/2

= δ∗c 2: The type I solution→ (k4, 0), and the type II
solutions → (−∞, 0).
If σk4B3/2 > δ∗c 2: The type I solution and all of the type II
solutions → (−∞, 0).

Numerical solutions of (17) show that δ∗
≈ 1.16.

Proof. Rescaling and proof of (i). I begin by rescaling (17) via the
substitutionsU4 = k4P W4 = σ 2k4Q z̃4 = Z/(σ 2k24)

δ = σk4B3/2/c 2

giving the equations

dP/dZ = (1 − P − Q )/δ2 (18a)

dQ/dZ = P2Q . (18b)

The steady state (0, 1) of (18) is non-hyperbolic. Standard calcula-
tions show that it has a stable eigenvector (1, 0) and a stable centre
manifold on which P = 1/Z + O(1/Z2),Q = 1 − 1/Z + O(1/Z2)
as Z → +∞. Part (i) of the proposition follows immediately from
these results.

Definition of the function F . I denote by Γ (δ) the (unique) tra-
jectory of (18) that approaches (0, 1) along the stable eigenvec-
tor from the P > 0 half-plane. Since dQ/dZ > 0 throughout
the first quadrant, this trajectory approaches (0, 1) from within
the open triangular region R1, illustrated in Fig. 4 and defined by
P < 1,Q < 1, P + Q > 1.

Since dQ/dZ > 0 on the part of the boundary of R1 formed by
P + Q = 1, with dP/dZ < 0 on the part of the boundary formed
by P = 1, any trajectory leaving R1 must do so through Q = 1.
Noting that dQ/dZ > 0 whenever Q > 0, it follows that Γ (δ)
must enter R1 exactly once. I define

F (δ) =


Q ∗ if Γ (δ) enters R1 at (1,Q ∗)
−Q ∗ if Γ (δ) enters R1 at (1 − Q ∗,Q ∗).

Now F (.) is a continuous function, because of the continuous de-
pendence of solution trajectories on δ. Moreover away from P +

Q = 1, dQ/dP → 0 as δ → 0+, and thus F(δ) → 1 as δ → 0+.

Fig. 4. An illustration of the regions R1 (solid grey shading) and R2 (grey dots) in
the P–Q plane; these regions are referred to in the proof of Proposition 3. The black
dots indicate the steady states (1, 0) and (0, 1) of Eqs. (18). Part of the trajectory
Γ (δ) near (0, 1) and part of the trajectory Γ (δ) near (1, 0) are also shown.

I will show that F

4/

√
3


< 0 and that F (.) is a decreasing
function. Together these imply that there is exactly one value of
δ ∈


0, 4/

√
3

, which I denote by δ∗, satisfying F (δ∗) = 0, i.e. for

which T (δ∗) enters R1 from the steady state (1, 0).
Proof that F


4/

√
3


< 0. Since dP/dZ has constant sign inR1,
it is appropriate to use P to parametrise the part of Γ (δ) in R1. On
this part of Γ (δ) I define ρ(P) = (1 − Q (P))/P . Then (18) implies
that

dρ/dP =
δ2(1 − Pρ)

1 − ρ
− ρ/P

> δ2(1 − P) − ρ/P since 0 < P, ρ < 1 in R1

⇒ d(Pρ)/dP > δ2(P − P2)

⇒ ρ > δ2

1
2
P −

1
3
P2


since lim
P→0+

ρ = 0.

This inequality holds for all values of P such that Γ (δ) is in R1. But
ρ < 1 throughout R1, with ρ = 1 corresponding to the boundary
P + Q = 1 of R1. Now δ2

 1
2P −

1
3P

2


= 1 when δ = 4/
√
3 and

P = 3/4. Therefore when δ = 4/
√
3, T (δ) must enter R1 through

P+Q = 1 at a value of P ∈ (0, 3/4), implying thatF

4/

√
3


< 0.
Proof that F (.) is decreasing. Suppose that F (δ2) > F (δ1) for

some δ2 > δ1. Recall that by definition Γ (δ) approaches (0, 1)
along the eigenvector (1, 0). Power series expansion shows that
Γ (δ) has the form Q = 1 −

1
2δ

2P2
+ O(P3) as P → 0, implying

that sufficiently close to (0, 1), Γ (δ1) lies above Γ (δ2) in the P–Q
plane. But since F (δ2) > F (δ1), Γ (δ1) and Γ (δ2) must intersect
at one ormore points inR1. Let (Pint,Qint) be the intersection point
with the largest value of Q < 1. Then (0, 1) and (Pint,Qint) are
both on Γ (δ1) and also on Γ (δ2), with Γ (δ1) lying above Γ (δ2) for
0 < P < Pint. It follows that

dQ
dP

(Pint,Qint; Γ (δ1)) ≤
dQ
dP

(Pint,Qint; Γ (δ2)) < 0.

But dividing (18b) by (18a) reveals that dQ/dP is a (negative)
strictly decreasing function of δ throughout R1, which is a contra-
diction.
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Fig. 5. Typical examples of phase portraits of Eqs. (18) for (a) δ < δ∗; (b) δ = δ∗; (c) δ > δ∗ . The large dots indicate the steady states (1, 0) and (0, 1). The equations were
solved numerically using the routine dlsoda [43,44], which is part of the odepack collection, and is freely available at www.netlib.org. The solver automatically switches
between an Adams predictor–corrector method and a backward differentiation formula method.

The region R2. I define R2 as the region 0 < Q < 1, P + Q < 1
(illustrated in Fig. 4). Now dQ/dZ ≥ 0 on the part of the bound-
ary of R2 formed by Q = 1, while dQ/dZ = 0 on Q = 0. Also
dP/dZ > 0 throughout R2. Therefore all trajectories in R2 must
originate from P = −∞, and (18) implies that the corresponding
limiting value of Q must be 0.

Completion of the proof. A few further details of the P–Q phase
plane are needed to complete the proof. Apart from Γ (δ) (which is
the type I solution), all trajectories approaching (1, 0) from P > 0
(the type II solutions) do so along the stable centre manifold, and
therefore lie below T (δ) in the phase plane. Turning to the steady
state (1, 0), this is a saddle point. Therefore exactly one trajectory
leaves (1, 0) and goes into the Q > 0 half-plane; I denote this tra-
jectory by Γ (δ). Standard calculation of the corresponding eigen-
vector shows that Γ (δ) leaves (1, 0) and goes into R1.

I now consider in turn the three cases in the statement of part
(ii) of the proposition; the corresponding phase planes are illus-
trated schematically in Fig. 5.
If σk4B3/2 < δ∗c 2, then F (δ) > 0, implying that Γ (the type I

solution) originates from (+∞, 0). I denote byR1 the part ofR1 lying belowΓ . ThenΓ entersR1, and the only possible exit point is (0, 1),
which Γ must approach along the stable cen-
tre manifold. Type II trajectories lying below Γ
must enter R1 from R2, and thus must origi-
nate from (−∞, 0), while those lying betweenΓ and Γ must enter R1 through P = 1, and
must therefore originate from (+∞, 0).

If σk4B3/2
= δ∗c 2, then F (δ) = 0, implying that Γ and Γ co-

incide. The type II trajectories must all enter
R1 from R2, and thus must originate from
(−∞, 0).

If σk4B3/2 > δ∗c 2, then F (δ) < 0. Thus type II trajectories ap-
proach (0, 1) either from R2 or from the re-
gion enclosed by Γ and P + Q = 1. Hence the
type I trajectory and all of the type II trajecto-
ries enter R1 from R2, and thus originate from
(−∞, 0).

This completes the proof of Proposition 3. �

3.6. The conclusion of the matching process

Armed with Proposition 3, I can proceed with the matching
process. I have shown in Section 3.3 that matching between layers
3 and 4 requires (U4, W4) → (0, k3) as z̃4 → +∞. Since the
only steady state of (17) with U4 = 0 is (0, k4σ 2), this requires
k3 = k4σ 2. Further, if (16b) applies for U3, then the requirement
of an algebraic approach of (U4, W4) to (0, k3) determines the

layer 4 solution to be of type II, while if (16c) applies, the conditionU4 = o

1/z̃4


as z̃4 → +∞ implies that the layer 4 solution must

be of type I.
I now turn to the final stage: matching the layer 4 solution as

z̃ → −∞ with the layer 1 solution as z̃1 approaches an (arbitrary)
finitematching value, which I take to be z̃1 = 0. This is not possible
if U4 → ±∞ as z̃4 → −∞ because of the different scalings
of U and z̃ in the two layers. Proposition 3(ii) then implies that
the layer 4 solution corresponds to the trajectory Γ of (18), with
σk4B3/2

≤ δ∗c 2; the layer 4 solution is of type I if equality holds
and type II otherwise. But from Proposition 3(i), type I solutions
have an exponential approach to (0, k4σ 2), which is inconsistent
with possibility 2 in Section 3.4. Therefore possibility 3must apply,
i.e. (16c) is the relevant solution in layer 3 if σk4B3/2

= δ∗c 2.
Similarly (16b) is the relevant solution if σk4B3/2 < δ∗c 2. In both
cases, the leading order solutions for (U4, W4) → (k4, 0) as z̃4 →

−∞. A matched solution of the type considered in this section is
not possible if σk4B3/2 > δ∗c 2.

ForU , thematching condition is thereforeU1(0) = k4/ϵ. For W ,
the matching condition cannot be determined from leading order
terms alone, because terms of order ϵ and ϵ2 in the asymptotic ex-
pansion of W4 would contribute. However, a detailed investigation
(omitted for brevity) shows that the first term in this expansion
with a non-zero limit as z̃4 → −∞ is Os(ϵ

3). Therefore, I requireW1(0) = 0 to leading order.
I have shown that the solution for (U1, W1) corresponds to the

unique trajectory T of (10) leaving (µ, φ) = (0, 1) and going
into the first quadrant. Therefore case 1 of Section 2 must hold,
and the matching condition is U1,cross = k4/ϵ; recall that U1,cross
is defined in the statement of Proposition 2(i). This is possible
because U1,cross → ∞ as σ → σ ∗ +. I have been unable
to determine analytically the rate at which U1,cross → ∞ as
σ → σ ∗ +, but numerical calculations suggest that U1,cross(σ ) =

Os(log(σ−σ ∗)) [42]. Thiswould imply thatσ is exponentially close
(in ϵ) to σ ∗ as ϵ → 0.

Formally, this concludes the matching process, with all con-
stants of integration determined as follows.
Matching result 1: k2 = σ 2, k3 = σ 2


1 − e−ζ


, k4 = 1 − e−ζ .

Matching result 2: (14c) and (16c) apply in layers 2 and 3 respec-
tively if B3/2σ


1 − e−ζ


= δ∗c 2.

(14b) and (16b) apply in layers 2 and 3 respec-
tively if B3/2σ


1 − e−ζ


> δ∗c 2.

There is no matched solution if B3/2σ(1 −

e−ζ ) < δ∗c 2.
Matching result 3:


1 − e−ζ


= ϵU1,cross(σ ).

These conditions determine k2, k3, k4 and ζ as functions of A, c, B
and ν; note that together, these four parameters specify σ and ϵ.
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3.7. The implication of the matched solution

Matching result 3 in Section 3.6 requires that U1,cross(σ ) ≫ 1
as ϵ → 0, implying that the solution constructed in Sections 3.1–
3.6 is only valid in a strip of the A–c plane close to A

2
c = σ ∗ 2B3

(i.e. σ = σ ∗), whose width → 0 as ϵ → 0. My numerical results
on the rate at which U1,cross → ∞ as σ → σ ∗ + suggest that
the width is actually exponentially small in ϵ as ϵ → 0, but I
have been unable to prove this. Away from σ = σ ∗ (in region I
in Fig. 3) it is the limit cycle solution of (8) that is relevant for
pattern solutions of (1). In the thin strip, the period of the limit
cycles is dominated by layer 2 (‘‘thick’’), and is ζ/ϵ to leading
order. Therefore, as expected, the layer structure breaks down as
ζ → 0+, corresponding to the solution approaching a limit cycle
solution of (8). As ζ → +∞, the period of the limit cycle → ∞,
so the limit cycle approaches a homoclinic solution. This solution
is homoclinic to the limiting location of the point corresponding
to z̃2 = −ζ , as ζ → ∞. This is the point of matching between
layers 2 and 3, which is

(U, W ) =




ϵ

σ 2

1 − e−ζ

 , σ 2

1 − e−ζ


ϵ


if B3/2σ


1 − e−ζ


< δ∗c 2

0,
σ 2

1 − e−ζ


ϵ


if B3/2σ


1 − e−ζ


= δ∗c 2.

Taking the limit as ζ → ∞, this shows that the homoclinic solu-
tion is homoclinic to the point

(ϵ/σ 2, σ 2/ϵ) =


ϵB3

A
2
c
,
A

2
c

ϵB3


=


B2

A
2
ν1/2

,
A

2
ν1/2

B2


if B3/2σ < δ∗c 2

and (0, σ 2/ϵ) =


0,

A
2
c

ϵB3


=


0,

A
2
ν1/2

B2


if B3/2σ = δ∗c 2.

Recall that provided A ≥ 2B, themodel equations (1) have three
homogeneous steady states:

(u, w) = (0, A) ∼ (0, Aν1/4) as ν → ∞,

which corresponds to
U, W =


0,

A
2
ν1/2

B2


(u, w) = (uu, wu) ∼ (Bν−1/4/A, Aν1/4) as ν → ∞,

which corresponds to
U, W =


B2

A
2
ν1/2

,
A

2
ν1/2

B2


(u, w) = (us, ws) ∼ (Aν1/4/B, B2ν−1/4/A) as ν → ∞,

which corresponds to
U, W = (1, 1) .

Therefore in terms of the original model variables, I have shown
that the homoclinic solution is homoclinic to (uu, wu) if A < δ∗c 3/2

and to (0, A) if A = δ∗c 3/2.
Moreover, the homoclinic solution occurswhen σ = σ ∗

+o(1);
recall that σ = Ac 1/2/B3/2. Therefore I am able to conclude that to
leading order as ν → ∞, there is a locus of homoclinic solutions
consisting of the part of the curve A

2
c = B3σ ∗ 2 (i.e. σ = σ ∗) with

c ≥ ccrit = (σ ∗/δ∗)1/2B3/4, i.e. A ≤ Acrit = σ ∗ 3/4δ∗ 1/4B9/8. Again
to leading order as ν → ∞, the solutions are homoclinic to (0, A)
at c = ccrit, and to (uu, wu) when c > ccrit.

4. Pattern solutions in region III

Region III of the A–c plane (see Fig. 3) is defined by σ =

Ac 1/2/B3/2 < σ ∗ and c < ccrit. Recall that for the leading order
pattern equations (8), there are no limit cycle solutions when σ <
σ ∗.Moreover, thematched solution constructed in Section 3 is only
validwhen c ≥ ccrit. Therefore a new solution structuremust apply
in region III. It consists of three matched layers, which correspond
directly to layers 1, 2 and 4 in Section 3, and which I will denote
by 1A, 2A and 4A. Note that when c = ccrit, layer 3 plays no role
at all to leading order, since the solutions for U3 and W3 are just
constants, and for c < ccrit there is no equivalent of this layer in
the solution structure.

4.1. The solution in layer 1A

The rescalings (none) and leading order equations in this layer
are exactly the same as in layer 1. I denote the solution byU1A(z̃1A) and W1A(z̃1A).

4.2. The solution in layer 2A

This corresponds to layer 2 in Section 3: it is a ‘‘thick’’ layer,
reflecting slow changes with respect to z̃. Recall that the leading
order solution for U2 is non-zero when c > ccrit, but changes
to zero at c = ccrit. In fact, U2 = 0 to all algebraic orders in ϵ
when c = ccrit, and this is also the case in layer 2A, for which the
appropriate rescalings areU2A ≡ 0 W2A = ϵW z̃2A = ϵz̃. (19)

Substituting (19) into (11) gives, to leading order as ϵ → 0,

dW2A/dz̃2A + σ 2
− W2A = 0 ⇒ W2A = σ 2

− k2Aez̃2A (20)

where k2A is a constant of integration. I require that the be-
haviour of (U1A, W1A) as z̃1A → −∞ matches that of (U2A, W2A)
at some finite value of z̃2A which I arbitrarily take to be zero.
Therefore I require that there is matching between (U1A, W1A) and
0, (σ 2

− k2A)/ϵ − k2Az̃1A −
1
2ϵk2Az̃

2
1A + · · ·


as z̃1A → −∞. SinceW1A cannot contribute an Os(1/ϵ) term, this requires k2A = σ 2 and

(U1A, W1A) → (0, ∞) as z̃1A → −∞, withU1A approaching zero at
a rate that is beyond all algebraic orders, and with W1A ∼ −σ 2z̃1A.
Using (9), this corresponds to (µ, φ) → (0, 0) as z̃1A → −∞ in
(10), with φ/µ ∼ −σ z̃1A. From Proposition 2(ii) it follows that the
layer 1A solution corresponds to one of the solutions of (10) origi-
nating from φ = µ = 0.

4.3. The solution in layer 4A

This corresponds to layer 4 in Section 3, with the same rescal-
ings and leading order solution forU4A and W4A as forU4 and W4; I
denote by k4A the constant of integration corresponding to k4. For
matching to layer 2A, I require that the behaviour of (U4A, W4A) as
z̃4A → ∞ matches the layer 2A solution at a finite matching point,
which I denote by z̃2A = −ζ (here ζ > 0). Then matching requires
that U4A → 0 and W4A → σ 2

− k2Ae−ζ as z̃4A → ∞. Moreover,
since U2A = 0 to all algebraic orders in ϵ, the approach of U4A to
zero as z̃4A → ∞ must be exponential not algebraic in z̃4A. From
Proposition 3(i) it follows that k4Aσ 2

= σ 2
− k2Ae−ζ , with the so-

lution for (U4A, W4A) being of type I, defined in the statement of
Proposition 3.

Turning to matching between layers 4A and 1A, this requires
that the behaviour of (U4A, W4A) as z̃4A → −∞ matches the layer
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1A solution at an arbitrary finite matching point, which I take as
z̃1A = 0. For U , this implies that U1A(0) = k4A/ϵ. Also, since
the layer 4A solution is of type I, it follows from Proposition 3(ii)
that σk4AB3/2

= δ∗c 2. For W , the matching condition cannot
be determined from leading order terms along, because terms
of order ϵ and ϵ2 in the asymptotic expansion of W4A would
contribute. However, as was the case for W4 in Section 3.4, a
detailed investigation (omitted for brevity) shows that the first
term in this expansion with a non-zero limit as z̃4A → −∞ is
Os(ϵ

3). Therefore, I require W1A(0) = 0 to leading order.
The condition (U1A, W1A) ∼ (k4A/ϵ, 0) as ϵ → 0 corresponds

to (µ, φ) ∼ (σk4A/ϵ, 0) in (10). Hence to leading order as
ϵ → 0, the layer 4 solution must correspond to the trajectory
in the phase plane of (10) that crosses the φ = 0 axis at
the point µ = σk4A/ϵ. This uniquely specifies the solution.
Moreover, Proposition 2(ii) shows that this trajectory also satisfies
the requirement established in Section 4.2 that the layer 1A
solution corresponds to a trajectory of (10) originating atµ = φ =

0, with φ/µ ∼ −σ z̃1A as z̃1A → −∞.

4.4. The conclusion of the matching process, and its implications

Taken together, the results in Sections 4.1–4.3 determine all
constants of integration as follows:

Matching result 1A: k2A = σ 2
= A

2
c/B3 and k4A = 1 − e−ζ .

Matching result 2A: the layer 1A solution corresponds to the
(µ, φ) trajectory passing through the point
(σ (1 − e−ζ )/ϵ, 0)

Matching result 3A: σ

1 − e−ζ


B3/2

= δ∗c 2

⇒ ζ = − log

1 − δ∗c 3/2/A


.

The period of the limit cycle formed by the threematched solutions
is dominated by layer 2A (‘‘thick’’). Undoing the rescalings (6) and
(19) shows that the pattern wavelength is therefore given by
cν1/2/B


· (ζ/ϵ) = −ν log


1 − δ∗c 3/2/A


to leading order as ν → ∞. Note in particular that the solution is
only valid when c 3/2δ∗ < A, with an infinite period in the limiting
case c 3/2δ∗

= A. This is a second locus of homoclinic solutions. The
locus applies only for c < ccrit, and the solutions are homoclinic to
the point of matching between layers 2A and 4A, i.e. (U, W ) =

(0, σ 2/ϵ), which corresponds to (U,W ) = (0, A).

5. A summary of results and the numerical verification

The Klausmeier model (1) for banded vegetation in semi-arid
environments has pattern solutions for a wide range of values
of the parameters A and c , which correspond to mean annual
rainfall and migration speed respectively. This paper is part of a
larger study of the existence and form of pattern solutions in the
ecologically relevant case of large values of the slope parameter ν.
In this paper I have focused on the very specific case ofA = Os(ν

1/4)
and c = Os(ν

1/2); from a mathematical point of view this is the
most interesting and most complicated part of the A–c parameter
plane. My key results are as follows; they are valid to leading order
for large values of ν.
1. The part of the A–c parameter plane in which patterns exist is

bounded by three curves: the locus of Hopf bifurcations of (2),
A2c = B3ν, and two loci of homoclinic solutions of (2), A2c =

B3σ ∗ 2ν with c ≥ (σ ∗/δ∗)1/2B3/4ν1/2 and Ac−3/2
= δ∗ν−1/2

with c ≤ (σ ∗/δ∗)1/2B3/4ν1/2. Here σ ∗ and δ∗ are defined in
Section 2 and Section 3 respectively, and numerical calculations
show that σ ∗

≈ 0.9003 and δ∗
≈ 1.16.

2. The homoclinic solutions are homoclinic to (uu, wu) for c >
(σ ∗/δ∗)1/2B3/4ν1/2 and to (0, A) for c ≤ (σ ∗/δ∗)1/2B3/4ν1/2.
Here (uu, wu) is defined in (3).

3. The part of the A–c parameter plane in which patterns exist
divides into three regions (see Fig. 3) inwhich the patterns have
different solution structures.
Region I is defined by σ ∗ 2 < A2c/(B3ν) < 1. Here the pat-

terns correspond to limit cycle solutions of (8).
Region II is a strip of width o(1) as ν → ∞, adjacent to the

curve A2c = B3σ ∗ 2ν with c > (σ ∗/δ∗)1/2B3/4ν1/2.
Here the patterns consist of four matched layers, as
described in Section 3.

Region III is defined by Ac−3/2 > δ∗ν1/2 and c < (σ ∗/δ∗)1/2

B3/4ν−1/2. Here the patterns consist of threematched
layers, as described in Section 4.

For numerical verification of these results, my main focus
is the transition between a homoclinic solution of (2) that is
homoclinic to (U,W ) = (uu, wu) and one that is homoclinic to
(U,W ) = (0, A). Since wu ∼ A as ν → ∞, it is most convenient
to focus on the transition in U . Moreover numerical testing is
facilitated by noting that inmy leading order homoclinic solutions,
the minimum value of U is simply uu and 0 in the two cases.
I have not attempted numerical calculation of the loci of actual
homoclinic solutions of (2); rather, I approximate these via the
loci of solutions of large, fixed period. I will present results on
this for the specific case of B = 0.45 and ν = 104; this case
is chosen arbitrarily but it is typical. Fig. 6(a) shows the period
as a function of the rainfall parameter A, for the wave speed c
fixed at 61, which is significantly above the predicted threshold of
(σ ∗/δ∗)1/2B3/4ν1/2

= 48.39.
The period increases as A is decreased, with the homoclinic so-

lution (period = ∞) occurring at A = 3.96. Fig. 6(b) shows varia-
tion inmin(U) along this curve. I plot min(U) ·A/B; since uu ∼ B/A
as ν → ∞, my analysis predicts that this expression is equal to
1 + o(1) as ν → ∞ on the homoclinic solution (i.e. in the limit as
the period → ∞), and this is confirmed in Fig. 6(b).

The results in Fig. 6(b) also show that a period greater than
about 104.8 is necessary to effectively approximate the homo-
clinic locus. Accordingly, Fig. 6(c) shows the variation in min(U)
along the loci of solutions of periods 104 and 105. In the latter case,
min(U) · A/B remains constant at 1 as c decreases, until a sharp
transition to zero occurs at c ≈ 48.5; this is exactly as predicted
bymy calculations. However a fixed period of 104 is too low to give
this behaviour: the transition to min(U) = 0 occurs significantly
below 48.39, and above it, min(U)·A/B is significantly above 1, and
is not constant.

For the parameter values ν = 104 and B = 0.45 used in Fig. 6,
the transition between min(U) = B/A and min(U) = 0 on the
locus of fixed period 105 occurs very close to, but slightly above,
the predicted value of c = 48.39. My final numerical verification
objective was to investigate the variation of this transition point
with the parameter ν. This requires a precise measure of the
transition point, based on loci such as that plotted for period 105

in Fig. 6(c). In Fig. 6(d) I show a close-up of this locus around the
transition point. This reveals two folds, so for a small range of c
values there are three possible solutions with period 105. These
folds persist as ν is increased, and they are not predicted by my
calculations. However, there is no inconsistency, since numerical
calculations for a range of ν values suggest that the c interval
between the folds is o(1) as ν → ∞, implying that the fold
locations coincide in a single point to leading order as ν → ∞.

A natural numerical measure of the point of transition between
the two min(U) values would be the average of the two fold
locations. However, this proves difficult to implement in practice.
As ν is increased, the value of the period required to effectively
approximate the loci of homoclinic solutions also increases. For
example, for ν = 105 a period of 105 is inadequate, but a period
of 106 is sufficient. However for such a large value of the period, I
have been unable to numerically continue the solution loci around
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a b

c d
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Fig. 6. Numerical verification of the analytical results on the transition between the two homoclinic loci. All numerical solutions were performed using auto [39–41] for
B = 0.45 and ν = 104 . (a) The variation in the solution period with the rainfall parameter A, for wave speed c fixed at 61, showing the approach to the homoclinic solution.
Note that this value of c is significantly above that at which the homoclinic loci intersect. (b) Variation of min(U) with A, again for c = 61. I plot the solution period on the
horizontal axis. My analysis predicts that min(U) ∼ B/A as ν → ∞ in the infinite period case (i.e. for the homoclinic solution) and this is confirmed by the numerical results.
(c) Variation of min(U) with wave speed c along the loci of solutions of period = 104 and period = 105 . My analysis predicts an abrupt transition from B/A to zero on the
homoclinic solution, to leading order as ν → ∞. This is reflected in the numerical solutions for period = 105 but not for period = 104 . (d) Details of the locus of solutions
of period = 105 around the transition point in min(U). This shows that the transition is not monotonic in c; rather, there are two folds. (e) The same plot as in (d), but for
period = 106 . The part of the locus shown is almost indistinguishable from that in (d), but there is a convergence failure in numerical continuation close to the second fold.
I have been unable to overcome this convergence failure despite large increases in the number of mesh intervals and large decreases in step size. The dashed vertical lines
in (c), (d), (e) indicate the leading order approximation to the transition point, which is ν1/2ccrit = (σ ∗/δ∗)1/2B3/4ν1/2 .

both folds. For example, Fig. 6e illustrates an attempt to perform
such a numerical continuation for ν = 104 and period = 106;
the locus is almost indistinguishable from that for period = 105

except that continuation fails close to the fold at c ≈ 48.8.
Changing computational parameters such as the number of mesh
intervals enables continuation to proceed a little further, but the
convergence failure persists. Therefore an alternative measure of
the transition point is required, and I use the value of c at which
min(U) =

2
3 (B/A), which I denote by cnum; the factor of 2/3

is chosen because this point can be reached without numerical
convergence failure for values of ν up to and including 105, but it
is otherwise arbitrary. Fig. 7 illustrates the variation of cnum/ν1/2

with ν, again for B = 0.45, demonstrating convergence to the
analytically predicted value of 48.39.

6. Discussion

A key ecological issue for vegetation patterns is how they are
affected by changes in rainfall. Therefore an important implication
of my results is the prediction of a sudden change in solution form
as the parameter grouping σ = Ac1/2/(B3/2ν) passes through
σ ∗. This critical value separates regions I and III of the A–c plane
(see Fig. 3). Although the predicted transition point will only be
quantitatively accurate at very large values of ν, the sudden change

Fig. 7. Numerical verification of the formula that I have derived for ccrit , which is
the point at which the homoclinic solution of (2) changes from being homoclinic to
(uu, wu) to being homoclinic to (0, A). The value cnum was calculated as described in
the main text: briefly, it is the value of c at which the minimum of U on solutions of
very large fixed period is equal to 2

3 (B/A). The numerical solutions were performed
using auto [39–41]. The dashed line indicates the value of ccrit for this value of B,
which is B = 0.45. I used 107 as the fixed value of the period for all the computations
in this figure; the basis on which this value is chosen is described in the main text.
Note that this is the period for the unscaled coordinate z, not the scaled coordinate z̃.
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Fig. 8. An illustration of the rapid change in solution form as the rainfall parameter A is decreased. The solutions shown are for wave speed c = 6.6, with B = 0.45 and
ν = 200; note that the same values of the latter two parameters were used in Fig. 1. For these parameter values, patterns occur for values of A between 1.745 (the Hopf
bifurcation point) and 1.409 (the homoclinic solution). The plots show the plant density U via greyscale shading. For the largest four values of A, the plant density actually
exceeds the upper limit on the scale bar, reaching about U = 40 in the vegetation stripes; black shading is used for these values. The solutions were obtained by numerical
continuation of (2) as A is varied along the limit cycle branch starting from the Hopf bifurcation point; the numerical continuation was performed using auto [39–41].

in pattern form is reflected in numerical solutions of (2) at much
lower values. Fig. 8 shows an example of this. As the rainfall
parameter A is decreased there is a sharp transition from diffuse
patterns of relatively low amplitude, to much more localised
patterns with higher plant density. The transition is accompanied
by a marked increase in pattern wavelength.

From a mathematical viewpoint, an important and unresolved
mathematical issue is the way in which the homoclinic solution
changes form in the U–W plane as one moves along the homo-
clinic loci close to the critical point A = σ ∗ 3/4δ∗ 1/4B9/8ν1/4c =

σ ∗ 1/2δ∗ −1/2B3/4ν1/2. As discussed in Section 5, my analysis pre-
dicts that at this critical point there is a sudden switch in the min-
imum value of U on the homoclinic solution, from B/A to zero.
However, since solutions of (2) vary continuously with parame-
ters, the minimum value must actually change continuously, and
Fig. 6(d) shows an example of this change, calculated numerically.
The resolution of this apparent inconsistency is that the region II
solution constructed in Section 3breaks downwhen c = ccrit+o(1)
as ν → ∞. I will now give an intuitive explanation of this break-
down, although I will not attempt to investigate analytically the
transition in the minimum value of U: this is a natural area for
future work.

A key building block of the solution constructed in Section 3
is the heteroclinic connection between (P,Q ) = (0, 1) and
(P,Q ) = (1, 0) in Eqs. (18). For δ < δ∗, Proposition 3 shows
that this heteroclinic connection approaches (0, 1) algebraically
in Z . For δ close to (and below) δ∗, the form of the connection
in the P–Q phase plane near (0, 1) is that it has an exponential
approach to a point on the centre manifold, which I denote by
(ξ , 1 − ξ) (illustrated in Fig. 9; recall that the linear part of the
centre manifold is P + Q = 1). Thereafter the trajectory follows
the centre manifold (approximately) to the steady state (0, 1).
Therefore ξ → 0 as δ → δ∗ −, and numerical solutions suggest
that ξ = Os (δ

∗
− δ). (Recall that δ = k4σB3/2/c 2: see the proof of

Proposition 3.)
Consider now a point (A, c) on the homoclinic locus with c >

ccrit. The matching conditions in Section 3.6 (with ζ = ∞) imply
that the associated value of δ is A/c 3/2, which will be <δ∗. If one
then considers ϵ → 0 (i.e. ν → ∞) with c fixed at this value, the
solution constructed in Section 3 will be valid. But if instead one
allows c → ccrit as ϵ → 0, the situation is different. In particular,
if c varies such that ξ = o(ϵ), then the algebraic approach of
(P,Q ) to (0, 1) is restricted to values of P that are o(ϵ), and this
prevents matching betweenU4 andU1. It follows that the solution
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Fig. 9. The form of the heteroclinic connection Γ between (1, 0) and (0, 1) in Eqs.
(18) for δ just below δ∗ . The thick line is the trajectory and the thin line is P+Q = 1,
which is the linearised part of the centre manifold at (0, 1). I define (ξ , 1 − ξ) as
the point on P +Q = 1 to which Γ has exponential approach. The solution plotted
is for δ = 1.0, which compares with δ∗

= 1.16.

structure developed in Section 3 becomes invalid on a part of the
homoclinic locus with 0 < c − ccrit = o(1) as ϵ → 0 (i.e. as
ν → ∞). Calculation of the solution structure in this region is a
natural objective for future work, and the resulting solution must
reflect the decrease in the minimum value of U on the homoclinic
solution, from uu to 0. Similarly on the homoclinic locus bordering
region III, the homoclinic solution must approach (uu, wu) as c →

c −

crit, but I have not investigated the details of this approach.
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