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Generation of periodic
travelling waves in cyclic
populations by hostile
boundaries
Jonathan A. Sherratt

Department of Mathematics and Maxwell Institute for
Mathematical Sciences, Heriot-Watt University,
Edinburgh EH14 4AS, UK

Many recent datasets on cyclic populations reveal
spatial patterns with the form of periodic travelling
waves (wavetrains). Mathematical modelling has
identified a number of potential causes of this spatial
organization, one of which is a hostile habitat
boundary. In this paper, the author investigates
the member of the periodic travelling wave family
selected by such a boundary in models of reaction–
diffusion type. Using a predator–prey model as a case
study, the author presents numerical evidence that the
wave generated by a hostile (zero-Dirichlet) boundary
condition is the same as that generated by fixing the
population densities at their coexistence steady-state
levels. The author then presents analysis showing
that the two waves are the same, in general, for
oscillatory reaction–diffusion models with scalar
diffusion close to Hopf bifurcation. This calculation
yields a general formula for the amplitude, speed
and wavelength of these waves. By combining this
formula with established results on periodic travelling
wave stability, the author presents a division of
parameter space into regions in which a hostile
boundary will generate periodic travelling waves,
spatio-temporal disorder or a mixture of the two.

1. Introduction
Cycles of abundance in natural populations were one
of the first predictions made by mathematical biology
[1,2]. Over the past two decades, field data have shown
that, in many cases, such population cycles are not
synchronous across a habitat, comprising instead spatio-
temporal patterns. The first reported instance of this
was periodic travelling waves (PTWs) in vole population

2013 The Author(s) Published by the Royal Society. All rights reserved.
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numbers [3,4], meaning that there is a regular spatial pattern of abundance that moves across the
domain at a constant speed. Other examples include PTWs and patterns of regional synchrony in
geometrid moths in Northern Fennoscandia [5–9], PTWs and intermittent synchrony in red grouse
[10,11], and PTWs in larch budmoth in the European Alps [12–14]; see Sherratt & Smith [15] for
further examples.

Modelling studies have demonstrated a number of potential causes for this spatial asynchrony,
including invasions [16–21], heterogeneous habitats [13,22–24], migration between subpopulations
[25], migration driven by pursuit and evasion [26] and hostile habitat boundaries [27–30].
This paper concerns the last of these. Hostile boundaries arise naturally at abrupt changes in
landscape: for example, one of the best datasets on (cyclic) red grouse is from Kerloch Moor in
northeastern Scotland, UK [11,31], which is bounded to the north by farms and woodland that is
unsuitable habitat for red grouse, and which they do not cross [32]. I have shown previously that,
for cyclic populations, a hostile boundary generates a PTW [27,28]. In this paper, I will investigate
analytically the form of this PTW in reaction–diffusion models for which the local population
dynamics have a low-amplitude limit cycle. I begin in §2 by discussing the generation of PTWs by
hostile boundaries in predator–prey systems; this acts as an illustrative and motivating example.
In §3, I focus on low-amplitude cycles, and derive the leading-order form of the PTW generated
by a hostile boundary when the local population dynamics are close to a Hopf bifurcation. In §4,
I use this result to determine the stability of the PTW, and I consider the form of the solution
when the PTW is unstable. I conclude in §5 by discussing the basis for hostile boundaries in
behavioural ecology.

2. Boundary-generated periodic travelling waves in predator–prey systems
To provide a specific illustration of PTW generation by hostile boundaries, I consider the
Rosenzweig–MacArthur model [33] for predator–prey interaction,

predators
∂p
∂t

=

dispersal︷︸︸︷
∂2p
∂x2 +

benefit from
predation︷ ︸︸ ︷
(C/B)hp
(1 + Ch)

−
death︷︸︸︷

p
AB

(2.1a)

and

prey
∂h
∂t

= ∂2 h
∂x2︸︷︷︸

dispersal

+ h(1 − h)︸ ︷︷ ︸
intrinsic

birth & death

− Cph
1 + Ch

.︸ ︷︷ ︸
predation

(2.1b)

This is a dimensionless formulation of the model in which p and h denote, respectively, predator
and prey densities at space point x and time t; throughout the paper, I will consider only one-
dimensional spatial domains. I will also assume throughout that the two populations have equal
dispersal rates. This is appropriate for most aquatic systems, but many terrestrial predators
disperse more rapidly than their prey. The prospects for extending the results in this paper to
unequal dispersal rates will be discussed in §5.

In (2.1), the prey consumption rate per predator is an increasing saturating function of
prey density with Holling type II form: C> 0 reflects how quickly the function saturates.
Parameters A> 0 and B> 0 are dimensionless combinations of the birth and death rates. Provided
A> 1 + 1/C, equations (2.1) have a unique homogeneous coexistence steady state (hs, ps), where
hs = 1/(AC − C) and ps = (1 − hs)(1 + Chs)/C. This is stable as a solution of the kinetic ODEs only
if C<CHopf = (A + 1)/(A − 1), with population cycles for C>CHopf.

At a boundary that is hostile for the prey (say), the correct condition is in most cases of Robin
type, ∂h/∂x = Qh [34,35]. Here, the parameter Q is large, reflecting the high mortality rate that
would be experienced by individuals outside the habitat. It follows that the Robin condition can
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Figure 1. (a) The PTW generated by the hostile boundary condition p= h= 0 at x = 0 in the Rosenzweig–MacArthur model
(2.1) with A= 3, B= 4 and C = 4. (b) The PTW generated by the boundary condition p= ps, h= hs for the same parameter
values. Equations (2.1) were solved on 0< x < 800with the zero-flux condition∂p/∂x = ∂h/∂x = 0 at x = 800. At t = 0,
values of p and h were chosen randomly between 0 and 1 at 60 evenly spaced points, with linear interpolation between these
points; the details of the initial conditions do not affect the solution at large times [27]. The solution is plotted at 40 equally
spaced times between t = 23 850 and t = 24 000, with the vertical spacing of the solutions proportional to the time interval.
Details of the numerical method are given in appendix A.

be approximated by h = 0, and this approximation is in widespread use. In fact, I have shown
previously [36] that, for PTW generation, the Robin condition is particularly well approximated
by the Dirichlet condition, which I will use throughout this paper.

Figure 1a illustrates a typical solution of (2.1) for C>CHopf, on a large domain with h = p = 0
at the left-hand (hostile) boundary and the zero-flux condition ∂p/∂x = ∂h/∂x = 0 at the other
boundary. After transients have decayed, the solution settles to a form that is independent of
initial conditions (see [27]). There is a PTW in the bulk of the domain, moving in the positive x
direction, with thin transition layers near the two boundaries. Detailed numerical investigation
[27,28] shows that this behaviour is driven by the left-hand (hostile) boundary condition, with
the zero-flux condition at the right-hand boundary playing no significant role. Intuitively, one can
regard the hostile boundary condition as the factor that forces the solution away from spatially
uniform oscillations.

For any given values of A, B and C>CHopf, (2.1) has a one-parameter family of PTW solutions;
Kopell & Howard [37] showed that this is a general property of oscillatory reaction–diffusion
systems with scalar diffusion, meaning that the diffusion coefficient is the same in each equation.
Figure 2 illustrates this family for the parameter values used in figure 1, plotting the wavelength
as a function of the prey amplitude. One particular wave in this family (indicated by the large dot)
is selected by the condition at the hostile boundary. There is currently no analytical solution to this
wave-selection problem for almost all oscillatory systems, including (2.1). However, Sherratt [41]
obtained the solution for the system

ut = uxx + (1 − r2)u − (ω0 − ω1r2)v (2.2a)
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Figure 2. The family of PTW solutions of (2.1) for A= 3, B= 4 and C = 4. These parameter values are the same as in figure 1,
and I have superimposed the prey amplitude and wavelength found in those simulations (grey dot corresponds to boundary
condition p= h= 0; black cross corresponds to boundary condition p= ps,h= hs). Themethodused to calculate thesewave
properties in simulations is described in appendix A. To determine the wave family, I studied the ODEs satisfied by travelling
wave solutions, that is, solutions of the form (p(x, t), h(x, t))= (P(x − st), H(x − st)), where s is the wave speed. Using
the software package Auto [38–40], I increased s from zero until the coexistence steady state underwent a Hopf bifurcation: this
is the starting point of the PTW family. Using s as the principal continuation parameter, I then numerically continued the limit
cycle branch emanating from this Hopf bifurcation point: this is the PTW family.

and

vt = vxx + (ω0 − ω1r2)u + (1 − r2)v, (2.2b)

where r =
√

u2 + v2, with subscripts x and t denoting partial derivatives. This belongs to the ‘λ–ω’
class of equations [37,42]. Sherratt [41] considered (2.2) on a semi-infinite domain with u = v = 0 at
the boundary. I showed that, as transients decay, the solution away from the boundary approaches
the PTW

u = rPTW cos θPTW v= rPTW sin θPTW, (2.3a)

where rPTW =
{

1
2

[
1 +

√
1 + 8

9
ω2

1

]}−1/2

(2.3b)

and
∂θPTW

∂x
= −sign(ω1)

⎧⎨
⎩
√

1 + (8/9)ω2
1 − 1√

1 + (8/9)ω2
1 + 1

⎫⎬
⎭

1/2

. (2.3c)

The system (2.2) is not a model for any particular physical or biological phenomenon. Rather,
its significance is as the normal form of a reaction–diffusion system with scalar diffusion and
oscillatory kinetics close to a standard supercritical Hopf bifurcation. For example, the reduction
of the Rosenzweig–MacArthur model (2.1) to normal form is described in the appendix of
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Sherratt [18]. This gives equations of the form (2.2) with ω0 and ω1 depending on A, B and C
as follows:

ω0 = 2
C − CHopf

[
A(A + 1)
(A − 1)B

]1/2
+
[

A − 1
A(A + 1)B

]1/2
(2.4a)

and

ω1 = 4A2B2 + (A2 − 1)(A2 + 5)AB + (A2 − 1)2

6A5/2(A2 − 1)1/2B3/2 . (2.4b)

Equations (2.2) and (2.4) determine the leading-order behaviour of (2.1) as C → C+
Hopf.

Under the reduction to normal form, it is the coexistence steady state (p, h)= (ps, hs) that
maps to (u, v)= (0, 0). Therefore, the boundary condition u = v = 0 in the λ–ω system corresponds
to p = ps, h = hs in the predator–prey system. This boundary condition is relevant to some
applications, for example when there is an abrupt change in habitat causing a transition
from cyclic to non-cyclic dynamics [43], but such transitions are very much rarer than hostile
boundaries. Figure 1b illustrates the generation of PTWs by this boundary condition for (2.1). The
solutions in figure 1a (p = h = 0 at x = 0) and figure 1b (p = ps, h = hs at x = 0) are for the same
values of the parameters A, B and C. Although there are many qualitative similarities between
the two solutions, a fundamental difference is that the PTWs are not the same in the two cases
(figure 2).

I performed a detailed numerical study of the members of the PTW family selected by the
boundary conditions (p, h)= (0, 0) and (p, h)= (ps, hs). I calculated the wavelength and prey
amplitude of these PTWs for a range of different C values, with A and B fixed. A quantitative study
such as this demands careful investigation of numerical accuracy, and I present full details of my
numerical method and convergence tests in appendix A. Figure 3 illustrates my calculations, with
results for (p, h)= (0, 0) and (p, h)= (ps, hs) plotted in grey and black, respectively. Although the
PTWs generated by the two boundary conditions are in general different, they appear to become
the same as C approaches CHopf. This suggests that, although the formula (2.3) was derived for
a boundary condition equivalent to (p, h)= (ps, hs), it might also be relevant for the much more
widespread condition (p, h)= (0, 0). In §3, I will present an analytical study showing that (2.3)
does indeed give the PTW selected by the hostile boundary condition (p, h)= (0, 0), to leading
order as C → C+

Hopf.

3. Periodic travelling wave generation for C near CHopf
(a) Analytical investigation
The Hopf bifurcation in the kinetics of (2.1) is of standard supercritical type [44, example 3.1],
so that (2.2) is the appropriate normal form. More precisely, there are invertible coordinate and
parameter changes and a time reparametrization that together transform (2.1) into

∂U
∂T

= ∂2U
∂X2 + (μΛ0 −Λ1R2)U − (Ω0 + μΩ1 +Ω2R2)V (3.1a)

and

∂V
∂T

= ∂2V
∂X2 + (Ω0 + μΩ1 +Ω2R2)U + (μΛ0 −Λ1R2)V (3.1b)

with correction terms that are O(R4) [44, §3.5; 45, pp. 150–152]. Here, R = (U2 + V2)1/2 and μ=
C − CHopf. The constants Λ0, Λ1, Ω0, Ω1 and Ω2 depend on the parameters A and B.

From the viewpoint of the normal form, the coordinate change involved in transforming (2.1)
to (3.1) is relevant only in the vicinity of the coexistence steady state (ps, hs). However, it can be
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Figure 3. A comparison of the PTWs generated by the boundary conditions (p, h)= (0, 0) (grey linewith circles) and (p, h)=
(ps, hs) (black line with crosses). The figure shows that the waves selected by the two boundary conditions are different in
general, but become the same as the parameter C approaches CHopf . Note that formulae for the leading-order wavelength and
amplitude as C → C+Hopf follow from (2.3) and (2.4). Equations (2.1) were solved on 0< x< 800 with the Dirichlet condition
at one boundary and the zero-flux condition ∂p/∂x = ∂h/∂x = 0 at the other, with initial conditions as in figure 1. I solved
for a time period sufficiently long to allow transients to decay, and then calculated the prey amplitude and average wavelength
in 200< x < 600. To improve numerical accuracy, I solvedwith six different space–time discretizations at each value of C, and
then used convergence acceleration; details are given in appendix A. The parameters were A= 3 and B= 4. The solution time
was 24 000 except for C = 2.1, when I used 96 000; these times and also the domain length were chosen sufficiently large that
the effect of any further increase was smaller than the numerical error (see appendix A). Readers considering reproducing this
figure should note that the total run time for all of the simulations was about 5 days on a Linux PC with a 2.83 GHz Intel Core 2
Quad Q9500 processor.

applied globally to (2.1), and I denote by (Ubdy, Vbdy) the image of p = h = 0 under this coordinate
change. I now rescale (3.1) using

α = Ω0

Λ0
, β = Ω1

Λ0
, ω1 = −Ω2

Λ1

x = X
√
μΛ0, t =μΛ0T, u = U

√
Λ1

μΛ0

and v = V

√
Λ1

μΛ0
, ubdy = Ubdy

√
Λ1

Λ0
, vbdy = Vbdy

√
Λ1

Λ0
,

which gives (2.2) with

ω0 =
(
α

μ

)
+ β. (3.2)
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It follows that, for small μ, the leading-order behaviour of (2.1) subject to the hostile boundary
condition p = h = 0 is given by the solution of (2.2), (3.2) subject to the boundary condition

(u, v)= (μ−1/2ubdy,μ−1/2vbdy). (3.3)

Here, I am assuming a semi-infinite spatial domain, which I will take as x> 0. I will present formal
arguments showing that, away from the boundary, this leading-order behaviour consists of the
PTW (2.3). It is important to emphasize that my arguments are not rigorous, and a rigorous proof
is a natural challenge for future work.

Following standard practice [37,42], I rewrite (2.2) in terms of the amplitude r = (u2 + v2)1/2

and phase θ = tan−1(v/u). This gives

rt = rxx − rθ2
x + r(1 − r2) (3.4a)

and
θt = θxx + 2

( rx

r

)
θx + μ−1α + β − ω1r2, (3.4b)

on x> 0, with the hostile boundary condition being

r =μ−1/2rbdy =μ−1/2(u2
bdy + v2

bdy)
1/2 (3.5a)

and

θ = θbdy = tan−1

(
vbdy

ubdy

)
(3.5b)

at x = 0. A typical numerical solution of (3.4) subject to (3.5) is shown in figure 4. Numerical
solutions must of course be done on a finite domain, and I impose the zero-flux condition rx = θx =
0 at x = L for some suitably large L, but this only affects the solution in the immediate vicinity of
that boundary. Otherwise, the solution at large times consists of a thin region near x = 0 in which
r and θx vary spatially and oscillate in time, with the majority of the domain having constant r
and θx, corresponding to a PTW in u and v.

The spatial variations in r and θx become increasingly localized near x = 0 as μ (> 0) is
decreased, with the frequency of the temporal oscillations also increasing. Therefore, I consider
separately the ‘outer’ solution in the bulk of the domain, and a boundary layer near x = 0. Figure 5
presents detail of the solution near x = 0 for a small value of μ. This shows that the temporal
oscillations in r and θx are more localized to x = 0 than the spatial variation. Therefore, I look for
outer solutions in which r and θx are independent of time, with the form

r = r̄(x)+ o(1) θ(x)= Ψ̄ (x)+ (μ−1α + β + K)t + o(1) (3.6)

as μ→ 0+. Here, K is a constant, independent of μ; the μ−1αt term arises as a consequence of the
corresponding term in (3.4b). Substituting (3.6) into (3.4) gives

r̄xx − r̄ψ̄2 + r̄(1 − r̄2)= 0 (3.7a)

and

ψ̄x + 2
(

r̄x

r̄

)
ψ̄ − ω1r̄2 = K, (3.7b)

where ψ̄(x)= (d/dx)Ψ̄ (x).
For the boundary layer, I substitute

r =μ−1/2r̃(x̃, t̃)+ O(1) θ = θ̃ (x̃, t̃)+ o(1)
x =μ1/2x̃ t =μt̃

into (3.4). Neglecting terms that are O(1) as μ→ 0+, this gives

μ−3/2r̃t̃ =μ−3/2r̃x̃x̃ − μ−3/2r̃ θ̃2
x̃ − μ−3/2r̃3 (3.8a)

and

μ−1θ̃t̃ =μ−1θ̃x̃x̃ + 2μ−1
(

r̃x̃

r̃

)
θ̃x̃ + μ−1α − μ−1ω1r̃2. (3.8b)
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Figure 4. A typical numerical solution of (2.2) and (3.2) subject to (3.3) at x = 0 and ux = vx = 0 at x = 40. This is equivalent
to (3.4) subject to (3.5) at x = 0 and rx = θx = 0 at x = 40. At t = 0, values of u andv were chosen randomly between 0 and
1 at 60 evenly spaced points, with linear interpolation between these points; the details of the initial conditions do not affect
the solution at large times [41]. I solved for 2000 time units to allow transients to decay. (a,b) The solutions for u and r at evenly
spaced times between t = 2000 and t = 2006; with the vertical spacing of the solutions proportional to the time interval.
(c,d) The solutions for r and θx at t = 2006. Near the left-hand boundary, there are spatio-temporal oscillations in r and θx .
In the bulk of the domain, r and θx are constant, corresponding to PTW solutions for u and v. Near the right-hand boundary,
the solutionmoves away from the PTW to accommodate the zero-flux boundary condition. The parameter values wereα= 1.5,
β = 0,ω1 = 0.8, ubdy = vbdy = 1,μ= 0.5. The equations were solved using a semi-implicit finite difference scheme with
a space step of 0.04 and a time step of 0.0025.

I will not consider the full solution of the boundary layer equations (3.8). Rather I focus entirely
on the behaviour for large x̃. This behaviour must match the outer solution, which is independent
of time. It follows that the oscillations in the boundary layer must decay at a rate that is beyond all
algebraic orders (e.g. exponential) at large x̃. Therefore, for matching between the boundary layer
and outer solutions, it is sufficient to consider time-independent solutions of (3.8). Moreover, any
non-zero value of r̃ at large x̃ could not be matched by the outer solution. It follows that as x̃ → ∞

r̃(x̃, t̃)= r̂(x̃)+ t.s.t. θ̃ (x̃, t̃)= Ψ̂ (x̃)+ t.s.t. + (μ−1α + β + K)t (3.9)

with r̂ → 0 as x̃ → ∞. Here, ‘t.s.t.’ denotes ‘transcendentally small terms’. The constant of
integration K must be the same as in the outer solution (3.6) to enable matching. Substituting
(3.9) into (3.8) and equating leading-order terms gives

r̂x̃x̃ − r̂ψ̂2 − r̂3 = 0, (3.10a)
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Figure 5. Detail of the solution of (2.2) and (3.2) subject to (3.3) at x = 0 forμ= 0.01. Starting from random initial conditions,
I solved up to t = 200 to allow transients to decay, and then superimposed the plots of r and θx at 13 times, with an equal time
separation of 0.0124. This small separation is appropriate because the oscillations in r and θx have very high frequency. The
solutions are visibly different from one another for x less than about 1.3, reflecting the temporal oscillations. However, for larger
x the solutions are (approximately) the same, even though there is a clear spatial dependence up to about x = 2.8. This shows
that the temporal oscillations in r and θx are more localized to x = 0 than the spatial variation. The parameter values were
α = 1.5, β = 0,ω1 = 0.8, ubdy = vbdy = 1, and the equations were solved on a domain of length 10.2 with the boundary
condition ux = vx = 0 at the right-hand end; I show only the behaviour at the left-hand side of the domain. I used a semi-
implicit finite differencenumerical scheme,with space step 7 × 10−3 and time step4 × 10−6. These small values arenecessary
to resolve the high-frequency and highly localized oscillations in r and θx near x = 0. As a result, and despite the small domain
length, the computational time is significant (about 36 h on a Linux PC with a 2.83 GHz Intel Core 2 Quad Q9500 processor).

and

ψ̂ x̃ + 2
(

r̂x̃

r̂

)
ψ̂ − ω1r̂2 = 0, (3.10b)

where ψ̂ = (d/dx̃)Ψ̂ .
To remove the singularity in (3.10) at r̂ = 0, I make the change of variables

p = r̂x̃

r̂2 q = sign(ω1)ψ̂

r̂
ξ =

∫
r̂(x̃)dx̃. (3.11)

Note that ξ is an appropriate coordinate because r̂ is a (rescaled) solution amplitude, and must
therefore be non-negative. Substituting (3.11) into (3.10) gives

dp
dξ

= 1 + q2 − 2 p2, (3.12a)

dq
dξ

= |ω1| − 3 p q (3.12b)

and
dr̂
dξ

= r̂ p. (3.12c)
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Figure 6. The phase portrait of (3.12a,b) for ω1 = 2. Arrows indicate the evolution of the solution as ξ increases. The large
grey dots indicate the two steady states. The equations were solved numerically using the routine DLSODA [46,47], which is
part of the ODEPACK collection, and is freely available at www.netlib.org. The solver automatically switches between an Adams
predictor–corrector method and a backward differentiation formula method.

The steady states of (3.12) are (±Γ , ± 1
3 |ω1|/Γ , 0), where

0 ≤ Γ =
⎛
⎝3 +

√
9 + 8ω2

1

12

⎞
⎠

1/2

. (3.13)

I require a solution of (3.12) with r̂ → 0 as x̃ → ∞. However, this does not necessarily imply that
p and q tend towards steady-state levels: a closed p–q loop in the r̂ = 0 plane would also be a
suitable asymptotic solution. I have not proved that there cannot be such a loop, but numerical
calculations of the phase plane for (3.12a,b) show that the end points of trajectories are either
infinity or one of the two steady states (figure 6). Moreover, the steady state with p> 0 is not
a suitable asymptote because r̂ ≥ 0, which means that r̂x/r̂ cannot be bounded away from zero
and positive. Therefore, the required solution of (3.12) must approach (−Γ , − 1

3 |ω1|/Γ ) as x̃ → ∞.
Calculation of the eigenvalues at these steady states shows that there is a unique eigenvalue −Γ
with negative real part.

This discussion implies that, for a solution of (3.12) to have a form suitable for matching to
the outer solution, it must have r̂ ∼ A exp(−Γ ξ) for some constant A> 0 as ξ → ∞. Also ψ̂ =
sign(ω1)q r̂ ∼ −( 1

3ω1/Γ ) · A exp(−Γ ξ). Using the definition of ξ in (3.11), these translate to

r̂ =
(

1
(Γ x̃)

)
+ o

(
1
x̃

)
and ψ̂ = −

(
(1/3)ω1

(Γ 2x̃)

)
+ o

(
1
x̃

)
(3.14)

as x̃ → ∞.
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I turn now to the outer solution. The leading-order behaviour of this as x → 0 must match
(3.14). This requires

r̄ ∼ 1
(Γ x)

and ψ̄ ∼ −
(
(1/3)ω1

(Γ 2x)

)
as x → 0. (3.15)

I have not attempted a systematic investigation of the solution of (3.7). Rather, noting that (r̄/ψ̄)∼
−(3Γ/ω1) as x → 0, I looked for a solution in which (r̄/ψ̄)≡ −(3Γ/ω1). Substituting this constraint
into (3.7) yields the exact solution

r̄ =
(

1

Γ
√

2

)
coth

(
x√
2

)
, (3.16a)

ψ̄ = −
(
(1/3)ω1

Γ 2
√

2

)
coth

(
x√
2

)
(3.16b)

and K = (1/2)ω1

Γ 2 . (3.16c)

Because coth ζ ∼ 1/ζ as ζ → 0, this solution satisfies (3.15). I make no claims of uniqueness for
(3.16), and there may be solutions satisfying (3.15) for either the same or different values of K.
However, numerical results (discussed in §3b) are consistent with (3.16) being the appropriate
solution.

The key implication of (3.16) is that as x → ∞ the solution approaches a PTW with amplitude
(1/Γ

√
2) and phase gradient opposite in sign to ω1. The formula (3.13) for Γ shows that this is

exactly the same PTW as that given in (2.3). Hence, to leading order for small μ, the PTW solutions
of (2.1) generated by the boundary conditions p = ps, h = hs and p = h = 0 are the same. In fact,
my calculations do not depend on the values of ubdy and vbdy, and thus any Dirichlet boundary
conditions select the same PTW to leading order for small μ.

(b) Numerical verification
The non-rigorous nature of my calculations means that it is important to test them numerically.
Conceptually, this is straightforward: one solves (2.2), (3.2) on a relatively large domain with (3.3)
at one boundary and a zero-flux condition at the other. After a solution time that is sufficiently
long to allow transients to decay, one can then read off the amplitude at the centre of the domain.
I used a semi-implicit finite difference scheme, and, to improve accuracy, I solved using three
different time steps and applied a convergence acceleration formula. Details of this are given in
appendix A, which also discusses the various numerical convergence tests that I performed.

The basic difficulty with this procedure is that, as μ decreases, ω0 increases. In many situations,
the value of ω0 is irrelevant to the solution of (2.2) because ω0 does not feature in the phase-
amplitude equations (3.4), and in the physics literature most authors remove ω0 via a ‘gauge
transformation’ [42]. However, (3.5) is not invariant under a gauge transformation, and the value
of ω0 does affect the solution I am studying. Moreover, my numerical convergence tests show
that preservation of accuracy requires the numerical time step to decrease in proportion to μ2.
Consequently, numerical solutions rapidly become computationally expensive as μ is decreased,
and it is unfeasible to solve for very small values of μ.

Investigation of higher-order terms in the asymptotic expansions of r and θ for small μ shows
that the leading-order correction to (2.3) is O(μ1/2). Therefore, I expect an approximately linear
relationship between PTW amplitude and μ1/2 when μ is small. I used this to circumvent the
inability to determine the PTW amplitude numerically for very small μ. I determined the values
of the amplitude for a number of relatively small μ values and then performed a linear regression
analysis for amplitude as a function of μ1/2. This enabled an effective estimation of the amplitude
when μ= 0. Figure 7 illustrates this procedure, showing that it confirms that (2.3b) gives the
limiting amplitude as μ→ 0+.
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Figure 7. A numerical test of my formula for the amplitude of the PTW generated by the boundary condition (3.3) in the λ–ω
system (2.2), (3.2), in the limit asμ→ 0+. My analysis predicts that the limiting value of the amplitude is rPTW, defined in
(2.3b) and indicated in the figure by the dotted lines. Withα = 1.5,β = 0 andω1 = 0.8, and for various values ofμ, I solved
(2.2), (3.2) numerically subject to (3.3) at x = 0 and ux = vx = 0 at x = 100. I used initial conditions as in figure 4, and I solved
up to t = 2000, which is sufficiently long to allow transients to decay. I then calculated the solution amplitude at x = 50. To
improve numerical accuracy, I solved with three different time discretizations at each value ofμ, and then used convergence
acceleration; details are given in appendix A. I plot the PTW amplitude as a function of (a)μ−1; (b)μ1/2. In the latter case, a
linear dependence is expected for smallμ, and the dashed line is the best-fit regression line through the numerical results with
the four smallest values ofμ. The intercept of this line is 0.9425, which is in very good agreement with rPTW = 0.9423.

4. Periodic travelling wave stability
Figure 2 illustrates the family of PTWs that exist as solutions of (2.1) for a given set of parameters.
An important subsidiary issue is the stability of these solutions. I am not aware of any results
on the stability of solutions, such as those illustrated in figures 1 and 4, that satisfy a Dirichlet
condition at one boundary of a semi-infinite domain, and tend asymptotically to a PTW. However,
stability of PTWs on infinite domains has been well studied. In particular, for oscillatory reaction–
diffusion equations with scalar diffusion, it is a general result that PTWs of sufficiently low
amplitude are unstable, whereas those of high amplitude are stable [37,48]). In figures 1 and 3,
I have chosen parameter values for which the particular member of the PTW family selected by
the hostile boundary condition is stable as a solution of (2.1). However, this is not always the
case. Figure 8 shows two solutions of (2.1) with a hostile boundary for parameter values giving
an unstable PTW: as a result, there are disordered spatio-temporal oscillations.

Unstable solutions of a spatio-temporal system are either ‘convectively’ or ‘absolutely’
unstable [49]. In the former case, all unstable linear modes propagate, whereas an absolutely
unstable solution has stationary unstable linear modes. These two types of instability lead to
qualitatively different solution forms in a domain with a hostile boundary. As well as generating
a PTW, this boundary applies a potentially destabilizing perturbation to that PTW. If the PTW is
convectively unstable, then the unstable components of this perturbation all travel away from the
boundary as they grow. Therefore, the PTW remains intact close to the boundary, with a transition
to spatio-temporal disorder occurring in the interior of the domain. An example of this is shown
in figure 8a. By contrast, if the PTW is absolutely unstable, then growing linear modes remain
fixed in the vicinity of the boundary, and spatio-temporal disorder occurs throughout the domain
(figure 8b).
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Figure 8. An illustration of spatio-temporal disorder generated by a hostile boundary condition in the Rosenzweig–MacArthur
model (2.1). The parameters are (a) A= 6.5, B= 1.5, C = 2.0 and (b) A= 5.0, B= 3.7, C = 2.5. For these values of A and B
the PTW given by (2.3) and (2.4) is (a) convectively unstable and (b) absolutely unstable. Consequently, in (a) PTWs occur on the
left of the domain with spatio-temporal disorder on the right, whereas in (b) there is spatio-temporal disorder everywhere.
The equations were solved subject to a hostile boundary condition p= h= 0 at x = 0 and a zero-flux condition ∂p/∂x =
∂h/∂x = 0 at x = 800. Details of the numerical method are given in appendix A. At t = 0, values of p and h were chosen
randomly between 0 and 1 at 60 evenly spaced points, with linear interpolation between these points; the details of the initial
conditions do not affect the qualitative form of the solution at large times [27]. The solution is plotted at 40 equally spaced times
between t = 23 850 and t = 24 000, with the vertical spacing of the solutions proportional to the time interval.

For a general oscillatory system such as (2.1), even numerical determination of whether a PTW

is convectively or absolutely unstable is a major challenge [50,51]. However, for the λ–ω system
(2.2), detailed calculations can be carried out using the phase-amplitude equations (3.4), for which
PTWs are homogeneous solutions. Using this approach, it has been shown that the PTW solution
(2.3) of (2.2) is absolutely unstable if |ω1|> 1.576465 and convectively unstable if 1.110468< |ω1|<
1.576465 [52]; the condition for stability is |ω1|< 1.110468 [37,41]. The combination of these results
with (2.4) makes it straightforward to predict the stability of the PTWs generated by a hostile
boundary for the model (2.1), when C is close to CHopf. Figure 9 shows the division of the A–
B plane into the three cases of stable, convectively unstable and absolutely unstable PTWs. The
corresponding solutions have the same qualitative form as figures 1, 8a and 8b, respectively.
This ability to make a detailed prediction of the qualitative solution form is an important
consequence of the formula (2.3) for the PTW generated by a hostile boundary for parameters
close to Hopf bifurcation.

5. Discussion
Historically, most field studies on cyclic populations monitored only temporal changes in
abundance. However, the past two decades have seen an increasing number of spatio-temporal
datasets [15], together with advances in spatio-temporal statistics that permit their analysis
[53–55]. In many cases, this has revealed PTWs. Hypotheses on the causes of this spatial
organization are common, but I am not aware of any example in which the cause has been
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Figure 9. The stability of the PTW generated by a hostile boundary in (2.1) for C just above the Hopf bifurcation value CHopf ,
as a function of the parameters A and B. For each (A, B) pair in a regular grid, I calculatedω1 using (2.4). The PTW is stable if
ω1 < 1.110468, absolutely unstable forω1 > 1.576465, and convectively stable for intermediate values ofω1 [52]. Grey squares
denote stable; filled circles denote convectively unstable; open circles denote absolutely unstable.

established empirically. Therefore, mathematical modelling has played a key role, establishing
various factors as viable causes of PTW formation. One of these is a hostile habitat boundary.
Simulation-based studies have shown that this is an effective generator of PTWs in cyclic
populations [27,29,30,41]. However, there remains a pronounced lack of analytical results on
this mechanism. The key contribution of this paper is a formula for the amplitude (and hence
wavelength and frequency) of the PTW generated by a hostile habitat boundary, valid to leading
order as the parameters approach a Hopf bifurcation in the local dynamics. This formula enables,
for the first time, quantitative predictions of the way in which ecological parameters affect
the spatio-temporal oscillations generated by hostile boundaries. Throughout the paper, I have
illustrated my results using the Rosenzweig–MacArthur model for predator–prey interactions.
However, my formula is valid for any reaction–diffusion model of a cyclic population with
scalar diffusion.

The significance of the restriction to scalar diffusion is that the appropriate normal form close
to Hopf bifurcation is the λ–ω system (2.2). More generally, the normal form contains a linear
dispersion (i.e. cross-diffusion) term, making it a complex Ginzburg–Landau equation [42]. Some
relevant results are known for this case. In particular, an exact formula for the PTW generated
by a zero-Dirichlet boundary condition is known: it is the asymptotic wave for a stationary
Nozaki–Bekki hole [56,57]. This boundary condition corresponds to fixing the populations at their
coexistence steady state in the cyclic population model, and it would provide a starting point for
studying the case of non-scalar diffusion. Numerical investigation shows that new phenomena
can occur in this case, including folds in the PTW solution branch and non-trivial stationary waves
[58]. A key step in my calculation is the exact solution (3.16). Bekki & Nozaki [56] calculated their
exact hole solutions using Hirota’s bilinear method [59], and it is possible that this method could
be used to derive the generalization of (3.16).

An example of a cyclic population for which PTWs occur, and for which a hostile boundary is
a plausible cause, is field voles in Kielder Forest (northern England, UK). This population cycles
with a period of about 4 years, and extensive spatio-temporal fieldwork has shown that the cycles
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are organized into PTWs, moving across the forest at about 15–20 km yr−1 [4,60]. Kielder Forest
contains a large (10 km2) reservoir—one of the largest man-made bodies of water in Europe.
Intuitively, one expects that the large open space of the reservoir will facilitate the hunting of
voles by birds. These are a major predator: across the UK as a whole, birds are responsible for
about 30 per cent of vole predation [61], and data for Kielder Forest itself shows that tawny owls
alone remove 10–15% of the vole population per annum [62]. To the best of my knowledge, there
are no data on the spatial distribution of avian predation, but its expected localization near the
reservoir edge would make this habitat boundary very hostile for voles, suggesting that this might
be the cause of the observed PTW in vole abundance.

The response of natural populations to habitat boundaries is an active area of research within
behavioural ecology. The best-studied population type is forest-dwelling birds. Analyses of
movement trajectories in response to call playback and during homing over long distances both
show a strong tendency to use long within-forest paths in order to avoid crossing gaps [63–65].
Butterflies have also been studied extensively, and show a strong preference for moving in habitat
corridors rather than crossing open areas [66–68]. Similarly, some fish travel significant distances
within seagrass or reef habitats to avoid crossing gaps [69,70]. For mammals, most of the relevant
data concern the behavioural response to roads. Hedgehogs [71], voles [72], mice [72], chipmunks
[73] and moose [74] all exhibit significant avoidance of large roads. There are also a few studies
of the response of mammals to natural habitat boundaries. For example, the forest-dependent red
squirrel [75] and the grassland-dwelling Franklin’s ground squirrel [76] both show a preference
for detours over crossing habitat gaps. Detailed study of these various behaviours would require
a much more detailed model than linear diffusion for animal movement [77]. However, within the
context of a reaction–diffusion model, a zero-Dirichlet condition is an appropriate representation
of avoidance of a habitat boundary. Therefore, these various behavioural studies argue strongly
for the importance of understanding in detail the implications of hostile boundary conditions for
overall population dynamics.

Appendix A. Numerical methods
I solved (2.1) and (2.2) using a semi-implicit finite difference (Crank–Nicolson) scheme with a
uniform space step and a constant time step, which I denote by δx and δt, respectively.

A.1. Numerical solution of (2.1)
My simulations were all for A = 3 and B = 4, and all used a Dirichlet condition at the left-hand
boundary x = 0 (either p = h = 0 or p = ps, h = hs) and zero flux (∂p/∂x = ∂h/∂x = 0) at the right-
hand boundary x = L, say. I solved for 0< t< T; the values of L and T were chosen so that the
effect of further increase on the wavelength and prey amplitude of the PTWs was less than that of
errors owing to numerical discretization. For my final choices of space and time steps (discussed
below), L = 800 and T = 24 000 were appropriate provided C ≥ 2.2, but larger values of T were
required for C closer to CHopf = 2.

At the end of the simulation, I calculated the wavelength as the average distance between
points at which h = hs with ∂h/∂x> 0, within the region 1

4 L< x< 3
4 L. For the amplitude of h, I

calculated the mesh points with the largest and smallest values of h, again in the region 1
4 L< x<

3
4 L. For both of these points, I fitted a quadratic through the point and its immediate neighbours;
the turning points of these quadratics gave the maximum and minimum of h, with the amplitude
being their difference.

Convergence tables of the wavelength and prey amplitude for the two Dirichlet boundary
conditions are given in the electronic supplementary material. The error is O(δt + δx2). Based
on these convergence tables, I used δx = 0.25 and δt = 0.003 for figure 1, which give errors of a
little under 0.1 per cent. For figure 3, greater accuracy was required, and I achieved this using
convergence acceleration (see [78, §3.9] for review). Because convergence is linear in δt, I applied
the Aitken acceleration formula using the values given by δt = 0.012, 0.006 and 0.003. I calculated
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these Aitken values for two spatial discretizations, δx = 0.5 and 0.25, and then obtained a final
numerical estimate by applying the Richardson extrapolation formula. This is more appropriate
than the Aitken formula because of the quadratic convergence in δx. The final values given by
this procedure are accurate to within 0.003 per cent for my test case A = 3, B = 4, C = 5.

A.2. Numerical solution of (2.2)
In comparison with the predator–prey model (2.1), estimation of numerical accuracy for (2.2),
(3.2) subject to (3.3) is significantly easier. This is because for ubdy = vbdy = 0 the PTW amplitude
is known to be given by (2.3b). I used the calculated value of this amplitude to assess numerical
convergence for the test case α= 1.5, β = 0 and ω1 = 0.8; these are the parameter values used in
figures 4, 5 and 7. A convergence table of the PTW amplitude for these parameters with μ= 1 is
given in the electronic supplementary material. This also tabulates numerical convergence with
the time step δt (for fixed δx) for μ= 1

2 , 1
4 and 1

8 . This shows that, as μ is decreased, the time
step must also be decreased to maintain accuracy, with δt ∝μ2 giving an approximately constant
accuracy level.

Based on these convergence tables, I used δx = 0.04 and δt = 0.0025 for figure 4, which has
μ= 1

2 ; this gives an error of about 0.2 per cent in the PTW amplitude. For figure 7, greater accuracy
is required, and the small values of μ used in some of the simulations lead to potentially very long
run times. Therefore, I ran for δt = 0.04μ2, 0.02μ2 and 0.01μ2 (with fixed δx = 0.2), after which I
estimated the PTW amplitude using the Aitken acceleration formula [78, §3.9]; this is appropriate
because of the linear convergence in δt. The resulting error is about 0.02 per cent.

Finally, it is important to comment that the case ubdy = vbdy = 0 used for my convergence
tests does have the special feature that there are no spatio-temporal oscillations near the left-
hand boundary. Such oscillations might, in principle, affect the numerical accuracy of the PTW

amplitude, especially for small μ when they become more localized and of higher frequency.
As a test of this I compared the percentage errors in the amplitude of the PTW generated by
ubdy = vbdy = 0 and ubdy = vbdy = 1; in the latter case, I calculated errors relative to a high-
accuracy estimate of the amplitude. This showed that the errors were approximately the same
in the two cases (see the electronic supplementary material for details).
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