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Periodic Traveling Waves in Integrodifferential Equations for Nonlocal Dispersal*
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Abstract. Periodic traveling waves (wavetrains) have been extensively studied for reaction-diffusion equations.
One important motivation for this work has been the identification of periodic traveling wave patterns
in spatiotemporal data sets in ecology. However, for many ecological populations, diffusion is no more
than a rough phenomenological representation of dispersal, and spatial convolution with a dispersal
kernel is more realistic. This paper concerns periodic traveling wave solutions of differential equations
with nonlocal dispersal terms, and with local dynamics of lambda—omega form. These kinetics
include the normal form near a standard supercritical Hopf bifurcation and are therefore significant
for a wide range of applications. For general dispersal kernels, an explicit family of periodic traveling
wave solutions is derived, as well as the condition for waves to be stable to perturbations of arbitrarily
small wavenumber. Three specific kernels are then considered in detail: Laplace, Gaussian, and top
hat. For Laplace and Gaussian kernels, it is shown that stability to perturbations of arbitrarily
small wavenumber implies stability, a result that also applies for reaction-diffusion equations with
lambda—omega kinetics. However, for the top hat kernel it is shown that periodic traveling waves
may be stable to perturbations with small wavenumber but not to those with larger wavenumber.
The wave family for the top hat kernel also shows significant qualitative differences from those for
the Laplace and Gaussian kernels, and for reaction-diffusion equations with the same kinetics.
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1. Introduction. Many natural populations exhibit long-term oscillations in abundance.
Historic data on such cyclic populations is restricted to time series, most famously the data
from the Hudson Bay Trading Company on Canadian lynx populations in the 19th century
[1]. Over the last two decades there has been a pronounced increase in spatiotemporal field
studies for cyclic populations, with a parallel development of new spatiotemporal statistical
methods [2, 3, 4]. In many cases, this has shown that the oscillations are not uniform in
space, but instead are organized into a periodic traveling wave (PTW). This is particularly
well documented for voles [5, 6, 7] and moths [8, 9, 10]; a fuller list of examples is given in
Table 1 of [11].

PTW (wavetrain) solutions of reaction-diffusion equations have been studied since the
1970s because of their relevance to spiral waves and target patterns in oscillatory chemical
reactions [12]. The discovery of their ecological importance in the 1990s was parallelled by
renewed mathematical interest, and the literature on PTWs in reaction-diffusion models for
interacting populations is now extensive (see [13, 14, 15] for recent examples). However, for
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many ecological populations, diffusion is no more than a rough phenomenological representa-
tion of dispersal, and spatial convolution with a dispersal kernel is more realistic. Dispersal
kernels were first proposed in the 1970s [16, 17] and have been widely used since the late
1990s. They reflect the importance of rare long-distance dispersal events, and can be directly
related to empirical data. There is now a wide range of methods for estimating dispersal
kernels, including mark-recapture (e.g., [18]), tracking of dispersing individuals (e.g., [19]),
and, for plants, genotyping of individual seedlings to determine the source plant (e.g., [20]).
Using such methods, dispersal kernels have been estimated for many plants and animals; see
Table 15.1 of [21] for a comprehensive list.

There is a significant literature on PTW solutions of reaction-diffusion models with non-
local terms in the kinetics. This includes work on models with nonlocal delays [22, 23, 24, 25]
and recent work by Merchant and Nagata on predator-prey models with nonlocal prey com-
petition [26, 27]. Also Lutscher [28] has studied PTWs in integrodifferential equation models
for populations in heterogeneous landscapes, but here the wave periodicity simply reflects
the periodic dependence of parameters on space. However, there has been almost no previ-
ous work on PTW solutions of autonomous differential equation models in which dispersal is
represented by an integral term—in marked contrast to the very large literature on PTWs
in standard reaction-diffusion equations. The relevant work that I am aware of comes from
the physics literature and involves brief discussions of plane wave solutions of the complex
Ginzburg-Landau equation with nonlocal coupling [29, 30]. This paper is a first step in a
detailed study of PTWs in models with nonlocal dispersal.

An important contribution to the study of PTWs in reaction-diffusion equations was the
introduction by Kopell and Howard [12] of “A\~w” systems:

(1.1)  Ou/dt = 0*u/0z® + \(r)u —w(r)v, /Ot = 0%v/0x® + w(r)u + \(r)v

(r = vu? +v?). Here A(0) > 0 and A(.) is a strictly decreasing function with a simple zero.
For the case of

(1.2) Ar) = Ao — A\i72, w(r) = wo + wir?,

where Ao, \; > 0, equations (1.1) are simply the complex Ginzburg-Landau equation with
a real diffusion coefficient [31, 32], and they have a special significance as the normal form
of a reaction-diffusion system with scalar diffusion close to a standard supercritical Hopf
bifurcation. For example, Appendix A of [33] presents a derivation of Ao, A1, wp, and w;
as functions of ecological parameters for the classic Rosenzweig-MacArthur [34] model for
predator-prey systems. Such a direct link is an important motivation for the study of (1.1),
which has the great advantage of being analytically tractable. In particular the PTW family
can be written down explicitly: u = Rcos[w(R)t + A(R)Y?z], v = Rsin[w(R)t £+ A(R)Y/?z].
Here R is a parameter that can take any positive value such that A(R) > 0. The existence of a
one-parameter family of PTWs is a general feature of oscillatory reaction-diffusion equations
[12]. However, only some members of the family are stable, and this is a very important issue
because the loss of stability (as a parameter is varied) can herald the onset of spatiotemporal
chaos [35]. Here and throughout this paper I use the term (in)stability to mean spectral
(in)stability. For (1.1) the stability condition can be found exactly [12]:

(1.3) RN(R) +4\(R) [1 + W' (R)?/N(R)*] <0.
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In this paper I will study the equivalent of (1.1) for nonlocal dispersal:

Ou/ot = /y=+oo K(z — y)u(y)dy + A(r)u — w(r)v,

=—00

(1.4) o
oot = / K(z — yo(y)dy + w(r)u+ A
Yy

=—00
(as above r = Vu? +v2). Again, when \(.) and w(.) are given by (1.2) these equations are
the normal form close to a standard supercritical Hopf bifurcation for any model with scalar
nonlocal dispersal [29, 36]. Consequently, results for (1.4) are significant for any ecological
model with low amplitude populations cycles and with dispersal terms that are nonlocal with
the same dispersal coefficient for each population.

Any dispersal kernel K(y) must be > 0 for all y and must satisfy f_t;o K(y)dy =1 so
that the dispersal term conserves population. For most of the paper (sections 2 and 3) T will
restrict attention to kernels that are “thin-tailed,” i.e., exponentially bounded, meaning that
there exist § > 0 and L > 0 for which K(s) < exp(—d|s|) for |s| > L. There is a significant
literature on “fat-tailed” kernels, especially in the context of invasion fronts (e.g., [37, 38, 39]).
Such kernels are of clear ecological relevance [21, 40], and in section 4 I consider PTWs for
one example, the Cauchy kernel. In keeping with the symmetry of positive and negative x
directions in (1.1), I will further assume that K(.) is an even function; asymmetric kernels
correspond to biased dispersal, such as occurs in populations living in rivers [41].

In section 2 I present results on wave existence and stability for general kernels. I derive an
explicit family of PTW solutions, but my results on wave stability are only partial. In sections
3.2 and 3.3 I consider the special cases of the Laplace and Gaussian kernels, with A(.) and w(.)
given by (1.2). The main results of the paper are explicit conditions for wave stability in these
cases. As part of my derivation, I show that for these two kernels, waves are stable if they are
stable to perturbations with sufficiently small wavenumber. This result also applies for (1.1),
and was fundamental to Kopell and Howard’s [12] derivation of the stability condition (1.3).
In section 3.4 I show that this result is not generally true for the integrodifferential equations
(1.4) by considering the example of the top hat kernel, again with A(.) and w(.) given by (1.2).
The PTW family for this kernel also has major qualitative differences from that for (1.1), (1.2).

Before proceeding, I introduce notation that I will use throughout the paper:

s§=+400 s=+00
(1.5) Cn = / s"K(s) cos(as) ds, Sy = / s"K(s)sin(as)ds.
S§=—00 S§=—00
2. Periodic traveling wave family. In this section I will derive an explicit form for a family
of PTW solutions of (1.4) and make some preliminary remarks concerning wave stability.
Following standard practice for (1.1), I begin by rewriting (1.4) in terms of polar coordinates

in the u—v plane, 7, and 6 = tan~!(v/u):

r Y=-+00
O [ Kty = ) oslot) ~ 00 g+ )

(2.1)

=400 r
% = /y K(y—az)% sin[0(y) — 0(x)] dy + w(r).
Yy=—00

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/06/14 to 137.195.26.108. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1520 JONATHAN A. SHERRATT

Motivated by the form of PTW solutions of (1.1), I look for solutions of (2.1) with the form
r=R, 0 =ax+ pt, where R > 0, a > 0, and [ are constants, giving

(2.2) AMR)=1-Cy,  w(R)=5.

Note that (2.2) is only valid for even kernels K(.). Figure 1 shows various examples of such
PTW solutions, when K(.) is the Laplace kernel (defined in (3.1) below).

2,=0.8 a=0.3 A,=2 a=0.3
1 | d1
s 0ofF Ho =
-1 F 4 -1
- A,=0.8 a=0.9 ]
1 F 1
- SV
-1F 1-1
F - A,=0.8 a=1.8 A,=2 a=35
1 F 11
5 0 BAVVVVVNVV VY 0 s
-1F 4 -1
:I L1 11 I L1 11l I L1 11l I L1 11l |IIII|IIIIIIIIIIIIII:
0 10 20 30 0 10 20 30
X X

Figure 1. Ezamples of PTW solutions of (1.4) for the Laplace kernel (3.1) with a = 1, plotted as a function
of space . The functions A(.) and w(.) are given by (1.2) with A1 = 1; the values of Ao and « are as shown
in the figure. Note that the values of wo and w1 do not affect the PTW as a function of space. The left- and
right-hand columns illustrate wave families for A(0) < 1 and X(0) > 1, respectively. In both cases, waves for
small o have large wavelength and high amplitude, approaching a spatially homogeneous oscillation as o — 0T,
When A(0) < 1, the wave amplitude is zero at a finite value of o, which is 2 for the value of Ao used in the
left-hand column of the figure. In contrast when A(0) > 1 there is no upper bound on the values of « giving
waves, and the wavelength — 0 with the amplitude remaining nonzero as o — <.

Since A(.) is strictly decreasing, (2.2) has a (unique) solution for R and f if and only if
Co € [1—A(0),1]. Intuitive understanding of this is helped by considering the cases a = 0 and
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a — 0o. My assumptions of nonnegativity and exponential boundedness for K imply that

0<1-Cy= /SZOO K(s)[1 = cos(as)] ds

sj:_[(?o S$=00
—Ids
< /s:—L K(s)[1— cos(as)] ds + 2 /s:L e % [1 — cos(as)| ds

s=L 1  asin(aL) — d cos(aL)
B B o (L
= /S K(s)[1 — cos(as)] ds + 2e <5 + o2 1 52 > ;

which — 0 as « — 0T. Therefore Cy — 1 as @ — 0+, implying A(R) — 0. Therefore for
sufficiently small positive « there is a PTW solution, which approaches the spatially uniform
oscillations in the population kinetics as o — 07. This is illustrated by the top row of panels
in Figure 1.

Rewriting the integral in the definition of Cy using the integration variable sa shows
immediately that Cp — 0 as a — oo. Moreover Cy is a continuous function of «. Therefore
if A(0) < 1, there must be at least one a > 0 for which Cy = 1 — A\(0), implying that R = 0.
This is illustrated by the left-hand column of panels in Figure 1. The top hat kernel discussed
in section 3.4 provides an example for which there are multiple « values for which R = 0.
A zero amplitude endpoint of a PTW family is a standard feature for (1.1), corresponding
to a Hopf bifurcation in the traveling wave ODEs. In fact, branches of PTW solutions of
reaction-diffusion equations must end either at such a Hopf bifurcation point, or at infinity, or
at a homoclinic solution of the traveling wave ODEs. However, for (1.4) there is an additional
possibility. If A(0) > 1, then there are PTW solutions for all sufficiently large values of «, and
as a — oo the PTWs approach a singularity in which the speed and spatial period of the waves
— 0, with their amplitude remaining finite and nonzero. This is illustrated by the right-hand
column of panels in Figure 1. The limiting (singular) PTW form is not differentiable, which
would not be permitted for reaction-diffusion equations, but is allowable for (1.4) provided
that the wave speed — 0.

For partial differential equations, families of PTWs typically subdivide into solutions that
are stable and unstable as solutions of the original model equations. Wave stability is a key
issue in applications where a given set of boundary and initial conditions selects a particular
member of the PTW family [42, 43]. As parameters are varied, the selected PTW can lose
stability, often heralding the onset of spatiotemporal chaos [35, 44, 45]. Following Kopell and
Howard’s [12] work on (1.1), I will begin my investigation of stability by determining the
conditions for PTW solutions of (1.4) to be “Eckhaus stable,” i.e., stable to perturbations
of sufficiently small wavenumber. This is clearly a necessary but not sufficient condition for
stability; however, the condition is relatively easy to obtain since it requires only Taylor series
expansion of the eigenvalue for small wavenumbers. In the remainder of this section I will
derive a condition for Eckhaus stability. The investigation of whether Eckhaus stability implies
stability is much more difficult, and I will consider this only for particular dispersal kernels.
Specifically, in sections 3.2 and 3.3 I will prove that Eckhaus stability implies stability for the
specific cases of Laplace and Gaussian kernels, with A(.) and w(.) given by (1.2).

Linearizing (2.1) about the PTW r = R, § = ax + w(R)t and substituting (r — R,6 —

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/06/14 to 137.195.26.108. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1522 JONATHAN A. SHERRATT

az — w(R)t) = (ro,0p)e“* M gives

[~A+Z+ A(R) =1+ RN(R)| ro — iRJ by =0,

(2.3)
(W' (R)+iJ/R]ro+ [-A+ I+ A(R) —1]6y =0,

where

(2.4) 7= / K (s)cos(&s) cos(as) ds, J = / K (s)sin(€s) sin(as) ds.
Note that (2.3) depends on the kernel K(.) being even. The condition for nontrivial solutions
is therefore a quadratic in the eigenvalue A, whose solutions are

(2.5) Ae =T+ AR) — 1+ IRN(R) + {AR2N(R)® + 72 — iR (R) T}

This formula simplifies considerably when £ = 0 and in the limit as £ — oo. In the latter
case, the Riemann-Lebesgue lemma implies that Z = 7 = 0, so that A_ = A(R) — 14+ RN (R)
and Ay = A(R) — 1. When the wavenumber £ = 0, A_ = RN (R) < 0 and A, = 0. The
zero eigenvalue reflects the neutral stability of the PTW to translations. The PTW will be
Eckhaus stable if and only if Re A < 0 for |£] sufficiently small but nonzero. Expanding (2.5)
in a Taylor series in £ gives (after much algebraic manipulation)

(w'(R)? + N (R)?)S2

mvap|© O

ReA+ = — [%CQ +

This implies the first part of the following.
Theorem 2.1. (i) The PTW r = R, 0 = ax + w(R)t is stable to perturbations with suffi-
ciently small wavenumber <

(2.6) TRN(R)Cy + 87 [1 + (W'(R) /)\’(R))2] < 0.

(i) If A(0) < 1, then PTWs with sufficiently small R are unstable.

(iii) PTWs with sufficiently small o are stable.

Note that the condition A(0) < 1 in (ii) is exactly the condition that the PTW family
includes the trivial wave R = 0, either for a finite a (A(0) < 1) or as the limiting form as
a — oo (A(0) = 1). Intuitively (ii) corresponds to the inheritance of instability from the
equilibrium point © = v = 0, while (iii) corresponds to the inheritance of stability from the
spatially homogeneous oscillation u = cosw(0)t, v = sinw(0)¢t. Note that condition (2.6) is
very similar to condition (1.3) for PTW stability in (1.1). However, no formal link between
the conditions is possible because there is no form of the kernel for which (1.4) reverts to (1.1).
A special case of (2.6) was derived previously by Garcia-Morales, Holzel, and Krischer [30] as
a prelude to a study of complex spatiotemporal patterns in the nonlocal complex Ginzburg—
Landau equation.

Proof of (ii), (iii). Substituting R = 0 into (2.6) immediately implies instability, and (ii)
follows by continuity. For (iii), one cannot use (2.6) since this can only provide a necessary
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condition for stability. Instead I return to (2.5). For a = 0, (1.5) and (2.2) imply that
A(R) = 0, and substituting oo = 0 into (2.5) gives two real eigenvalues with

A <AL =-1+4 /SZOO K(s)cos(&s)ds.
Now
(2.7) /s=oo K(s)cos(€s)ds| < /SZOO K(s)|cos(&s)| ds < /SZOO K(s)ds =1.

Moreover for any given £ # 0, |cos(£s)| < 1 except at a discrete set of s values, implying that
the second inequality in (2.7) is strict unless & = 0. Therefore the PTW is stable when o = 0,
and (iii) follows by continuity. [ ]

3. Three examples of periodic traveling wave families.

3.1. Introduction to the three examples. Having established some general results on the
existence and stability of PT'Ws, I will now present a more detailed study for three particular
cases. | consider the following three kernels:

(3.1) Laplace kernel: K (s) = (1/2a) exp(—|s|/a).
Gaussian kernel: K (s) = (1/ay/7) exp(—s®/a?).
Top hat kernel: K (s) = (1/2a) if |s| < a, 0 otherwise.

The first two examples are chosen because they are probably the most widely used kernels
in ecological and epidemiological models (e.g., [41, 46, 47]). The top hat kernel is included
primarily for mathematical reasons: it provides an example for which the PTW family differs
significantly from that for (1.1). In each case I will consider only A(.) and w(.) with the form
(1.2). This is by far the most important example of A-w kinetics, being the normal form close
to a standard supercritical Hopf bifurcation.

Before proceeding, it may be helpful to make a comment concerning the possibility of
rescaling (1.4), (1.2) to remove parameters in (1.2). The parameter wy only affects the fre-
quency of the temporal oscillations in w and v, and it can be removed via the substitution
Unew+1Vnew = (u+iv)e 0! which is known as a “gauge transformation” in the physics litera-
ture. The parameter A1 can also be removed via the substitutions u,e,, = /\}/ 2u, Unew = )\}/ 21},
Winew = Mw1. However, the parameters Ao and w; cannot be removed via rescaling. This
contrasts with the situation for (1.1), (1.2), for which )¢ can also be removed by rescaling
the spatial coordinate: this is not possible for (1.4), (1.2). Therefore the study of PTWs for
(1.4), (1.2) involves a parameter space of higher dimensionality than for (1.1), (1.2). In the
following analysis I will retain all four of the parameters in (1.2) to emphasize the generality
of my results.

I conclude this subsection by proving a result that I will use for both the Laplace and
Gaussian kernels.

Lemma 3.1. When A(.) and w(.) have the form (1.2), the PTW r = R, 0 = ax + w(R)t is
stable as a solution of (1.4) if the following conditions hold:

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/06/14 to 137.195.26.108. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1524 JONATHAN A. SHERRATT

(i) Z is a decreasing function of & > 0.
(ii) (Co — I) /J? is an increasing function of & > 0.
(iii) Condition (2.6) holds.
Here T and J are defined in (2.4) and Cy is defined in (1.5).
Note that conditions (i)—(iii) are sufficient for stability, but not necessary.
Proof. Suppose that (i)—(iii) hold. Since the kernel K(.) is exponentially bounded, it is
straightforward to expand Z and J in Taylor series for small &:

IT=Co— 102 +0(EY, JT=8E+0().

Therefore as € — 0T

Co—1 — G -1 + wi
72 2 TR\ N

using (iii). Therefore (ii) =

Co—1 1 w?
4 14+
(34) 77 IR ( " A%)

for all £ > 0. I now define
(3.5) I=Z+X~-1)/(\R) and J=J/(MR?;
recall that A\; R? = Cy + Ao — 1. Then

1-7 w?
(3.6) = MR2(Co—1T)/T%> 1 (1 + T%)

using (3.4). Also (i) = Z < Z|¢=9 = Cp for all £ > 0, = 7< (Co+Xo—1)/(MR?) =1, using
(2.2). Together these imply
<2 _f)2 (3 —I)A(l -7)
72
= @DTP< (2-0)°[2-D)° - (1+ 7]

— 1] > wi/\?

~. ~o\ 2 ~ —~ 2
= 4T+ (1+7%) < [2(2-0)° - (1+ 77|
~ ~ ~ ~ 12
(3.7) - [12 P+ Q-T)7 - I)] .
Now (3.6) = (1-1)/J% > 3. Also 7 —1 > 6. Therefore

_T _T T2 _7 _7
(-D0-D+T (-DO-T) _,
J? J?

=P -T*+(1-1)(7-1)>27°>0.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/06/14 to 137.195.26.108. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

PERIODIC WAVES IN INTEGRODIFFERENTIAL EQUATIONS 1525

Therefore the inequality in (3.7) is preserved when taking the square root of both sides, giving

(3.8) (2 - i)z > 1

L4 7 a2+ (1 +f2)2] .

Since Z < 1, the inequality in (3.8) is also preserved when taking the square root of both sides.
Undoing the substitutions (3.5) and using the identity Re(p 4 iq)'/? = [% (\/p2 +q%+ p)] 1/2,
this implies Re Ay < 0 for all £ > 0. Since ReA_ < Re A} with both being even functions of
&, it follows that the PTW is stable. |

3.2. Periodic traveling waves for the Laplace kernel with (1.2). For the Laplace kernel
(3.1) with (1.2), (2.2) gives \g — M R? = a?a?/(1 + a®a?). Therefore the PTW amplitude R
is a strictly decreasing function of «. As always, the case a = 0 corresponds to the spatially
homogeneous oscillations of the population kinetics (R = y/Ag/A1). If A\g < 1, then the wave

family terminates at a = a} = [)\0/(1 - )\0)] 1/2/a when the wave amplitude R = 0. If \g > 1,
then there are PTWs for all values of «, and the speed and spatial period of the wave — 0 as
the end of the wave family is approached. These two cases are illustrated in the two columns
of Figure 1.

The condition (2.6) for Eckhaus stability is easily calculated as

(3.9) Hi(a) = <ﬁ - 3> [T+ (N —1) (1+a%?)] >2 <1 + C:é) :
1

Figure 2 illustrates the form of Hy («) for different values of A\g. For all Ay > 0, H;, — oo as
a — 07, and HL(l/ax/g) = 0. When \g > 1, Hy, is a decreasing function of a. For \g € (%, 1),
Hy, is decreasingon 0 < o < 1/ (a\/g ), beyond which it has a local minimum, passing through
zero again at o = «j (defined above). The significance of \g = % is that at this value
o =1/(av3), and Hp(c) then has a double root (local minimum) at o = o = 1/(av/3).
For \g € (0, %), Hyp is decreasing on 0 < o < af < 1/((1\/3). Recall that for A\g < 1, o] is the
value of o at which R = 0, with o < o] being a requirement for a PTW. Therefore for any
given values of \g, A1, wp, w1, and a there is a unique value of o < 1/ (ax/g) above / below
which PTWs are stable / unstable. In particular all waves with o > 1/ (a\/g) are unstable,
irrespective of the values of \g, A1, wg, and w1.

I will now consider the stability of PTWs for the Laplace kernel. My key result is that
waves that are stable to perturbations of sufficiently small wavenumber are in fact stable to
perturbations of all wavenumbers. The following is a formal statement of this result.

Theorem 3.2. When K(.) is given by (3.1) and A(.) and w(.) are given by (1.2), the PTW
r=R, 0 =axr+ w(R)t is stable as a solution of (1.4) if and only if (3.9) holds.

Proof. T will prove this result using Lemma 3.1. Since (3.9) is the condition (2.6) for
Eckhaus stability, it is sufficient to prove that conditions (i) and (ii) of Lemma 3.1 hold
whenever (3.9) holds. Evaluating the necessary integrals gives Cp = 1 / (1 + a2a2) and

1 1
2 2

. : : )
[+a(§—a? 1+a(E+a)|”

T Tr a2 o T1r (et a)

, J=
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Figure 2. An illustration of the form of Hr(a) for different values of Ao. The qualitative form differs in
the three cases \g < %, Ao € (%, 1), and Ao > 1. The solid dot indicates o = 1/(a\/§). The wvertical axis limits
for Ao = 0.5 are the same as for Ao = 0.1. The key message of the figure is that Hy, attains each positive value
ezactly once on (0, 1/a\/§). This result also applies in the special cases Ao = i and Ao = 1. When Ao = i, Hr

has a double root at o = 1/(a\/§). The case Ao = 1 differs from Ao > 1 in that Hr, — —3 in the former case
and Hyp, — —oo in the latter as a — 0o. In both cases, Hy(.) is strictly decreasing on (0, 00).

I consider first condition (i).

2a2¢ [(1 4 a®a?)(3a%a? — 1) — 2(1 + a?a?)a?¢? — a'¢?]
(1 + a2§2 + a?a? — 2a2§a)2 (1 + a2§2 + a2a? 4 2(12504)2 '

(3.10) dT /d¢ =

My discussion of the form of Hj implies that @ < 1/(av/3) whenever (3.9) holds. Hence
dZ/d¢ < 0 for all £ > 0.
For condition (ii) of Lemma 3.1, a considerable amount of algebraic simplification yields

d (Co-T\ _ £ [3&454 + %{4 +5(1 — 3a2a?)}a?€? + 7(a2a2 — %)2 + 1—72]
d_§< J? >_ 202 (1 + a?a?) ’

which is > 0 whenever o < 1/(av/3) and £ > 0. [ |

3.3. Periodic traveling waves for the Gaussian kernel with (1.2). For the Gaussian
kernel (3.2) with (1.2), (2.2) gives A\g— A1 R? = 1—exp(—a?a?/4). Therefore, as for the Laplace
kernel, the PTW amplitude R is a strictly decreasing function of o with o = 0 corresponding
to the spatially homogeneous oscillations of the population kinetics (R = y/Ag/A1). If Ao < 1,
then the wave family terminates at o = (2/a)[log(1/(1—Xo))] Y2 When R = 0, while if A\g > 1,
it extends to a = oo, with the speed and spatial period of the wave — 0 as the endpoint is
approached.

In the remainder of this subsection, I will prove that for this example Eckhaus stability
implies stability.

Theorem 3.3. When K(.) is given by (3.2) and A(.) and w(.) are given by (1.2), the PTW

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/06/14 to 137.195.26.108. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

PERIODIC WAVES IN INTEGRODIFFERENTIAL EQUATIONS 1527

r=R, 0 =axr+ w(R)t is stable as a solution of (1.4) if and only if

(3.11) [14 (Mo — 1) exp(a?a?/4)] - [2/(a?a®) — 1] > 1+ wi/A].

Note that when « is such that a PTW exists, 1+ (Ag — 1) exp(a?a?/4) > 0, and hence
the left-hand side of (3.11) is positive if and only if a < v/2/a. Moreover the left-hand side of
(3.11) is strictly decreasing for « € (O, V2/ a). Therefore the theorem implies that there is a
unique value agab € (O, V2 / a) such that PTWs are stable if and only if o < agab.

When proving the theorem I will use the following lemma.

Lemma 3.4. coshd < 125/8 = coshd < (1 + 92/6)3.

The condition cosh? < 125/8 affords a straightforward proof and is sufficient for my
purposes, but it is unnecessarily strict: numerical calculations indicate that cosh? < (1 +
92 /6)3 holds for 9 between 0 and about 8.2, while cosh™(125/8) ~ 3.4.

Proof. Without loss of generality, I assume ¢ > 0. Then

cosh ¥ < 125/8 = 5sinh¥(cosh ¥)*? — 2sinh ¥ cosh ¥ > 0.

Integrating from zero gives 3(cosh9)%/® — (cosh)? — 2 > 0. Dividing this inequality through
by 9(cosh9)®/? and then integrating from zero gives %19 > %(COSh 9)~2/3sinh ). Integrating
again from zero gives 1+ 92/6 > (cosh 19) 13, |

Proof of Theorem 3.3. T will prove this result using Lemma 3.1. Inequality (3.11) is simply
the condition (2.6) for Eckhaus stability. Therefore the theorem will follow from a proof that
conditions (i) and (ii) of Lemma 3.1 hold whenever (3.11) holds. Evaluating the necessary

integrals gives Cy = eXp(—a2a2 / 4) and
I — e—a2a2/4e—a252/4 COSh(%azag), j _ e_a2a2/4e—a252/4 Slnh(%a2a£) .

The proof of this theorem is considerably more difficult than that of Theorem 3.2 because of
the mixture of exponential and hyperbolic functions in these expressions—the corresponding
expressions for the Laplace kernel were algebraic.

Stage 1: Condition (i) holds.

dZ/d¢ = 0T [atanh(3a%¢a) — €] < 30T [3a°¢a’ — ¢
since Z > 0. But (3.11) implies that a?a? < 2, so that condition (i) of Lemma 3.1 holds.

Stage 2: Condition (ii) holds if G > 0. Proving that condition (ii) holds is more difficult
and involves some delicate inequalities. Since

(Co—-1)/T% = AT here F = {e“2§2/4 - cosh(%a2§a)] / sinh?*(3a*¢a)

it is sufficient to prove that F is an increasing function of & on & > 0. Now dF/d{ =
$a’G/ Sinhg(%a%a), where

(3.12) G = ENM [¢sinh(3a%¢a) — 2acosh(La’¢a)] + acosh?(3a*¢a) + .
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I will prove that G > 0 when & > 0 and « € (0,v/2/a); this implies that condition (ii) holds,
completing the proof of the theorem.

I have been unable to find a single argument showing G to be positive for all £ > 0. Instead
I will develop two arguments, holding for small and large values of &; the ranges of validity of
these two arguments overlap, so that the required result follows.

Stage 3: G > 0 for large &. 1 focus initially on the part of the formula (3.12) that is in
square brackets:

(3.13) £Sinh(%a2£a) — 2« cosh(%a%oz) = ozcosh(%a%oz) [tanh(%a%oz) Ea—2].
Now
j—a [tanh(1a’¢a) - (1/a)] = (1/a?) - [(3a*¢a)sech?®(2a*¢a) — tanh(3a*éa)] < 0

using the inequality tanh ¥ > 9 sech®d. (This is valid for all ¥ > 0 and is better known in the
form sinh 299 > 219.) Therefore for 0 < o < v2/a

[tanh(5a%*¢a) - (1/a)] > [tanh(za*¢a) - (1/@)]|,_ 5/, = (a/V2) tanh(a&/V2).
Substituting this into (3.13) gives
(3.14)  é&sinh(1a%¢a) — 2a cosh(La2¢a) > o cosh(La’¢a) [tanh(ag/ﬁ) Ll V2 — 2} .
Substituting this into (3.12) implies

g > ozcosh(%a%oz) - [D(¢) + 2] + « [cosh(%azﬁoz) - 1]2
> o cosh(%cﬂfa) [D(¢) + 2] ,
(3.15) where ¢ = a&/v/2 and D(¢) = exp(¢?/2) - (¢tanh ¢ — 2).

I now consider the form of D(.), which is illustrated in Figure 3, and for which

D'(¢) = L exp(¢?/2)(2 — sech?9)(1 + ¢?) [tanh(20) — 26/(¢* +1)] .

For ¢ > 1, 2¢/(¢? + 1) is a decreasing function of ¢ while tanh(2¢) is increasing; moreover
tanh(2¢) < 2¢/(¢*+1) at ¢ = 1 and tanh(2¢) > 2¢/(¢*+ 1) for sufficiently large ¢. Therefore
there is exactly one value of ¢ > 1, which T denote by ¢g, with D/'(¢9) = 0. Numerical
calculation shows that ¢ ~ 1.1997. For ¢ > ¢¢, D(¢) is an increasing function of ¢. Moreover
D(¢o) < —2, while D(¢) > 0 for sufficiently large ¢. Therefore there is exactly one value of
® > ¢g, which I denote by ¢*, with D(¢*) = —2. Hence G > 0 for & > ¢*v/2/a. Direct
substitution into (3.15) shows that D(y/2log3) > —2, implying that ¢*?/2 < log3, a fact
that I will use later in the proof. Numerical calculation shows that ¢* ~ 1.463.
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Figure 3. A numerical plot of the function D(.), defined in (3.15).

Stage 4: Small £&: G > 0 for a < \/2/a if H > 0 for 1 < C < 1+ y?/3. Taylor series
expansion shows that G = 0(54) as & — 0, and this very slow approach to zero means that

rather delicate inequalities are needed to prove that G > 0 for small £&. I use Lazarevié’s
inequality (sinh)/19 > (cosh®)'/3, which is valid for all 9 # 0 [48, 49]. This implies

(3.16) G/a>H=2expy?) [y’C - C*] +C® +1,

where y = a&/2 and C = [cosh(%azﬁoz)] /3 1 will treat H as a function of C, with y entering
as a parameter. Working with H rather than G has two major advantages: there is no explicit
dependence on «, and hyperbolic functions are not explicitly involved. However, the second
of these advantages is negated by the range of C over which H must be considered: since
0 < a < v/2/a, I must consider 1 < C' < [cosh(ﬂy)]l/g. To overcome this, I will consider
instead a range of C' whose upper limit depends algebraically on y, but which is larger than
[cosh(\/§ y)]l/ > To do this T will make use of Lemma 3.4. T am restricting attention to
£ < ¢*V2/a =y < ¢*//2. Therefore cosh(v2y) < cosh(¢*) < 125/8, and hence Lemma 3.4
implies cosh(v/2y) < (1+y?/3)3. Therefore to complete the proof, it is sufficient to show that
H(C) > 0 for all C € (1,1+y?/3) for y € (0,¢*/V2).

Stage 5: The form of H(C'). I now consider the form of H(C'), which is a hexic polynomial
whose coefficients depend on y. Figure 4 shows the typical form of H(.). For notational
simplicity I write Y = y2. Then

H(C)=C%—2YC3+2YeYC+1 = H/(C)=6C°—6e¥YC? +2YeY .

Evaluating H”(C) and H"'(C) shows that H'(C) has two turning points: a local maximum
at C' =0 and a local minimum at C' = (%ey)l/g. Moreover H'(0) > 0 and ’H’((%ey)l/?’) <0
for all Y > 0. Therefore H'(C') has exactly two zeros on C' > 0, Cpnip, and Chpgy say, which
correspond, respectively, to a local minimum and a local maximum of H. The form of H”
implies that Cpae < Chin-
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Figure 4. A numerical plot of the function H(.), defined in (3.16). The case shown is for y = 1.03; this
is just below ¢* /v/2, which is the largest value of y being considered in Stages 4-7 of the proof of Theorem 3.3.
This relatively large value gives greater visual clarity.

Stage 6: H(C) >0 for 1 < C <1+ %yz. Taylor series expansion implies that Chup =
1+2Y4+0(Y?) as Y — 0. Motivated by this, I consider H'(1+2Y) = P5(Y)—Pa(Y)e". Here
Ps(.) and Pa(.) are polynomials of degree 5 and 2 in which all of the coefficients are positive
(details omitted for brevity). Therefore in a Taylor series expansion of H'(1+ %Y) about Y =0,
the coefficients of Y% and all higher powers must be negative. In addition, explicit calculation
shows that the coefficients of Y0, Y!, ... Y?® are all negative, and thus H'(1 + %Y) < 0 for
all Y > 0. Therefore Cy,ip, > 1+ %Y for all Y > 0. Moreover H'(1) = 6 + (2Y — 6)e¥ < 0 for
Y € (0,3¢*%) = Chnae < 1. Therefore H'(C) < 0forall C € [1,1+3Y) = H(C) > H(1+3Y).
I now use the fact that 14 (1 + %Y)6 >2(1+ %Y) (1+ %Y) for all Y > 0, which implies

HA+2Y) =1+ (1+2Y)5+ 2V [V — (1 + 2Y)] (1 + 2Y) > 2(1 + 2Y) Fp(Y),
where Fy(Y) =14 3Y + e¥(—1+ 3y — %Y2) .
Now FJ(Y) > 0 for all Y € (0,1¢*2); also Fj(0) = Fy(0) = 0. Therefore Fo(Y) > 0 =
H(1+2Y)>0foral Y €(0,5¢%2).
Stage 7: H > 0 for 1 + %yQ < C < 1+ 3y* It remains to show that H(C) > 0 for
C € (1+2Y,1+1Y). For C in this interval,

H(C) > H(C) = CF —2e¥C% +2ve¥ (1 + 2Y) + 1.

7:2(0) is a quadratic in C® whose minimum is at C = ¢¥/3 > 1 + %Y. Therefore for C' €
(1+2Y,1+1Y)

H(C) > H(1+1Y)=-L Y4 (Y2 +18Y +135) + Z2Y2(Y +3)(3 — V) + 2F1(Y),
(3.17) where Fl(Y):2—77Y3 +iVP+YV +1-€.
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Figure 5 shows a numerical plot of F;. Now %¢*2 < log 3. Therefore for C' € (1 + %Y, 1+ %Y)
and Y € (0,1¢*%), H(C) > 2F(Y). Now F{"(Y) = 2V +1—€", whichis > 0 for Y € (0,Y*)
and < 0 for Y > Y™, where Y* ~ 0.827. Moreover Taylor series expansion shows that
Fy'(Y) > 0 for sufficiently small positive Y, while F}'(Y") < 0 for sufficiently large Y. Therefore
there exists Y** > Y* such that Fy(Y) > 0 for Y € (0,Y**) and < 0 for Y > Y**. Since
Fy'(log3) > 0 it follows that Y** > log3. (Numerical calculation gives Y** ~ 1.20 while
log3 ~ 1.10.) Now %(;5*2 < log 3, and hence F;(Y') is strictly increasing for 0 < Y < %¢*2.
Moreover Taylor series expansion shows that Fj(Y) > 0 for sufficiently small Y. Therefore
Fi(Y) >0 for Y € (0,4¢*2). This implies the positivity of H(C) for C € (1 + 2Y,1+ 1Y)
and Y € (0, %¢*2), which completes the proof. [ |

Y $97% vy
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—

=
0.02

0.01

I 1 1 1 1 I 1 1 1 I
0 0.5 1 1.5
Y

Figure 5. A numerical plot of the function Fi(.), defined in (3.17).

3.4. Periodic traveling waves for the top hat kernel with (1.2) and Ay = 1. For
(1.4), (1.2) with both the Laplace and Gaussian kernels, the properties of PTW solutions
are strongly analogous to those for the reaction-diffusion system (1.1), (1.2). Wave amplitude
is a decreasing function of wavenumber, and there is a critical wavenumber that divides the
wave family into stable and unstable solutions. Moreover, PTWs are stable if and only if
they are Eckhaus stable. The only real qualitative difference between PTW solutions of the
integrodifferential equation (1.4), (1.2) with these kernels, and those of the reaction-diffusion
system (1.1), (1.2), is that in the former case with Ay > 1 the wave family terminates when the
spatial period — 0 at finite wave amplitude; this behavior cannot occur in reaction-diffusion
equations.

However, this type of close qualitative similarity between PTW solutions of (1.4) and (1.1)
does not apply for all dispersal kernels. To illustrate this I consider the example of the top
hat kernel (3.3), again with A(.) and w(.) given by (1.2). To simplify the algebra I will restrict
attention to A\g = Ay = 1. I will show that in this case wave amplitude does not depend
monotonically on wavenumber, and Eckhaus stability does not imply stability.

In this case, (2.2) gives R? = sin(aa)/(aa). Therefore PTWs exist for a € [0,7/a] U
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Figure 6. An illustration of the existence and Eckhaus stability of PTW solutions of (1.4) for the top hat
kernel (3.3). The top panel shows wave amplitude as a function of « for wi = 0.8, with solid and dotted lines
indicating waves that are Eckhaus stable and Eckhaus unstable, respectively. The lower panel shows Eckhaus
stability as a function of a and w1, with solid and open circles indicating waves that are Eckhaus stable and
Eckhaus unstable, respectively. Theorem 3.5 shows that all waves with o > 27 /a are unstable, irrespective of
their Eckhaus stability. Numerical calculations of the spectrum suggest that for a < m/a, waves are stable if
and only if they are Eckhaus stable; however, I have not proved this.

[27/a, 37 /a] U [47/a,b7/a] U-- -, with wave amplitude being zero at o = nm/a for all n € Z+
(illustrated in Figure 6). This nonmonotonic dependence of amplitude on wavenumber and
the fact that the set of wavenumbers giving PTWs is disconnected are immediate points of
difference between this PTW family and that for (1.1), (1.2).

Considering stability, the condition (2.6) for Eckhaus stability is

(3.18) wi < T(@) = a*tan® @ — &* 4 4a tan & — 3tan® &

)

(tan a— &)2

where @ = aa. For @ = (n+ 3)m (n € Z), the expression in (3.18) is not formally defined,
but I define 7 by continuity, as @ — 3. The main result in this section is the following.
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Theorem 3.5. When K(.) is given by (3.3) and A(.) and w(.) are given by (1.2) with \g =
A1 = 1, there exist ag € (0,7), a1 < auy1 € (2m,37), ars < aygz € (4w, 57), etc., such
that PTWs are stable to perturbations with sufficiently small wavenumber if and only if aa €
[0,a0) U (ap1,au1)U(apg, ayg)U---. However, all PTWs with aa > 2w are unstable.

Note that this theorem holds for all values of wq; in fact my proof implies the additional
result that & and the oy ,,’s are decreasing functions of |w;|, while the &y, ,,’s are increasing
functions of |wi|. The key implication of this theorem is that Eckhaus stability does not
imply stability, since PTWs with o € (@, @) (n > 1) are unstable, but are Eckhaus
stable. This is another major point of difference between PTW properties for (1.4) and (1.1).
Figure 7 shows numerically calculated spectra for values of a on either side of o and arp, ;.
In both cases there is a change in the curvature of the spectrum at the origin, i.e., a change
in Eckhaus stability. This corresponds to a change in stability in the former case but not in
the latter, since there is a part of the spectrum away from the origin that is in the right half
of the eigenvalue complex plane for o on either side of ar, ;. Note that Theorem 3.5 makes no
claim about stability for aa € [0,ap). Numerical investigation suggests that all such PTWs
are stable, but I have not proved this.

Proof. The essence of the proof is a determination of the qualitative form of 77(.), defined
in (3.18), and I will establish this in stages. As a reference point, I show in Figure 8 a numerical
plot of T(.).

Stage 1: T is decreasing on (O, \/5), with a zero.

(3.19) T' (&) = —2(sin@ — & cos @) - (@ —2a)sina + (& + sin® @) cos @] .

Now cos® > 1 — %192 for all ¥, so that

(@ —2a)sina + (a® +sin® @) cosa] > [(@® — 2a) sina + 3 (& +sin® @) (2 — &?)]
(1-1a%)(a—sin@)?® >0 forae (0,v2).

Also sin® > ¥ cos ¥ for ¥ € (0,17) D (0,v/2). Therefore 7'(&) < 0 for & € (0,/2). Moreover
T (&) — oo as & — 07, and 7(v2) < 0, implying that 7 has a zero on (0,v/2). (Numerical
evaluation gives T(ﬁ) ~ —0.260.)

Stage 2: T is negative on [\/5, 7r/2). By removing the —a? term in the numerator of
formula (3.18) for 7, one obtains

(3.20) T (@) < (tmf‘r;% [4a — (3 — &) tan &

for all @ > 0. Now

5_19 [(%77 — ﬁ)tan 19] = % sec? ¥ (7 — 209) — sin(m — 20)]
> 0 for ¢ € (0, éﬂ') Therefore tand > (%7? — \/5) tan(\/i)/(%w — ) for ¥ € (\/5,%#)
Substituting this into (3.20) gives
T@) < (37 — V2) tan(v2)atan @ 4 3 — &2

(tana — @)? (37 — V2) tan(V2) B a(im —a)
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Figure 7. Numerical plots of spectra of PTW solutions of (1.4) when K(.) is the top hat kernel (3.3) with
a =1 and X\(.) and w(.) are given by (1.2) with Ao = M1 = w1 = 1. For these parameters, ao =~ 1.04 and
ar1 ~ 7.11. The left- and right-hand columns of panels show spectra for & on either side of & and &r 1,
respectively. In both cases there is a change in the curvature of the spectrum at the origin as « is increased
from the value in the upper panel to that in the lower panel. This corresponds to a change in stability in the
left-hand panels but not in the right-hand panels, since there is a part of the spectrum away from the origin that
is in the right half of the eigenvalue complex plane for & on either side of ar 1. The curves in each panel of
the figure are given by plotting (ReAy,ImA) and (ReA—,ImA_) as & is varied; here A1 are defined in (2.5).
The insets show detail of the behavior near the origin. The azes’ ranges in the insets are |ReA| < 0.008 and
[ImA| < 0.1 in the two left-hand panels and |ReA| < 0.008 and [ImA| < 0.04 in the two right-hand panels.

Differentiation shows that (3 — &%)/[a(3m — @)] is an increasing function of & € (v/2, 3m).
Therefore
(%7? — \/5) tan(ﬁ)&tan& 4 1

(@) < (tana — a)? (37— V2)tan(v2) V2(ir—v2) |’
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Figure 8. A numerical plot of the function T(.), defined in (3.18).

which is < 0 for @ € [v/2, %71) (The part of the right-hand side of the above inequality in
square brackets ~ —0.483.)

Stage 3: T is negative on [7r/2, \/g} T(%TI’) = %772 —3<0. Fora € (71/2, \/g], tana < 0
and 3 — @ > 0. Therefore (3.20) implies immediately that 7 (@) < 0 on this interval.

Stage 4: T is negative on (\/g, 7r). Since ¥~ tan ¥ is increasing for 9 € (0, %77), it follows
that tan 9 < 9~ (1/_1 tan 1/) whenever 0 < ¥ < v < %7& Substitutingd = m—aand v = 7 — V3
gives tana > k- (a—n) for a € (V3,m). Here k = (W—\/g)_l tan (m—v/3) ~ 4.36. Combining
this inequality with (3.20) implies

—tana

(3.21) T (@) < (k- (3—a%)(a—m)—4a] .

(tan & — )2
It is straightforward to show that the right-hand side of (3.21) is negative for all & > 0. (For
example, the part in square brackets is a cubic polynomial in & with a negative real root and
two turning points, at both of which the polynomial is negative.) Therefore 7 (a) < 0 for
a € (\/3, 71').

Thus far, I have shown that 7 attains any given positive value exactly once on (0, ).
Noting the condition (3.18) for stability, this implies the existence of ag as claimed in the
theorem. I now consider the form of 7(&) for @ € (2nm,2nm + ) (n € Z1); recall that it is
unnecessary to consider a € (2nm — m, 2nm) because there are then no PTW solutions.

Stage 5: T has one turning point on (2nm,2nm + 7). Equation (3.19) implies that

. - . a?+sin’a
(3.22) T'(@)=0<%< tana = f(a) = T

Since I am considering only values of @ > /2, f(@) < 0 and thus (3.22) cannot hold for
& € (2nm, 2nm + 7). Now f(2nm + $m) is finite, while tan@ — —oo as & — (2nm + 3m) T, and
f(@2nm + 7) < tan(2nm + w) = 0. Therefore f must have one or more zeros on this interval.
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To prove that there is only one zero, I consider

f(@) = (2a —a*)?[a* — a®sin(2a) + a*(2 + 3sin® @) + 2asin(2a) — 2sin® @]
< (2a —a*)?[a* 4 2a° + 5a* + 44
< (2a —a%) 2 [&4 + 2a* + 5at + 4&4] since o > 1
2
< 1

%&3)_ (1 2 1~2

&4) sincea >2=1[2-a* =a -2> 5

21,

In comparison (d/da)(tana) > 1, so that there can be at most one solution of (3.22) on
(2nm + %w, 2nm 4+ 7). My arguments show further that the unique turning point is a local
minimum.

Stage 6: Deduction of the form of T on (2nm,2nm + 7). The form of T on (2nm, 2nw + )
is clarified by two further simple observations. First, 7(2nw) = 7 (2nm + 7) = —1, and
second, T (@) — +00 as @ — any root of tana = «, which occurs once in (2n7,2nm + 7),
at @ = Qoon, say. Therefore T (&) increases from —1 to 400 as & increases from 2nm to
Qoo,n- It then decreases from 400 to a value less than —1 at its local minimum, after which
it increases to —1 at 2n7m 4+ . It follows that 7 attains any given positive value exactly twice
on (2nm,2nm + ), once on each side of s 5,. This implies the existence of ar , and ayy, as
claimed in the theorem.

Stage 7: All PTWs with & > 2m are unstable. When A(.) and w(.) are given by (1.2) with
Ao = A1 = 1, the formula (2.5) implies

1/2\ /2
ReAiZI—2R2ﬂ:{§ <R4+J2+[(R4+j2)2+4w§R4j2} >} ,

where Z and J are defined in (2.4). Therefore to prove that a PTW is unstable, it is sufficient
to prove that Z — 2R? > 0 for some &. Substituting £ = « into (2.4) with K(.) given by (3.3)
gives T = (2a + sin 2@)/(4@). Recall also that R? = sina/a. Therefore

T 9R? — 2&+sin2c§—88in& > 2&:9‘
4o 4o
Therefore Z — 2R?% > 0 for ¢ = o whenever a > 27 > %. [ |

4. Periodic traveling waves for the Cauchy kernel. In sections 2 and 3 I have assumed
that the dispersal kernel K(.) is thin-tailed (i.e., exponentially bounded). However, in some
ecological applications, fat-tailed kernels are more relevant [21, 40]. T will not attempt a
comprehensive study of PTWs for fat-tailed kernels; this important topic is a natural area for
future work. Rather, I will consider just one example, the Cauchy kernel:

(4.1) K(s) = [ra (1+5*/a?)] "

(a > 0), which is one of the most commonly used fat-tailed kernels [37, 50, 51]. Many of the
arguments used in sections 2 and 3 are not valid for this kernel. In particular, the derivation of
(2.6) involves taking derivatives of Z and J with respect to £ inside the integral signs, which
is not permissible for (4.1); indeed the integral Co, which appears in (2.6), does not converge
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when K (.) is given by (4.1). However, formulae (2.2) and (2.5) are valid for any kernel, and I
use these as the starting points for my investigation of PTW existence and stability for (4.1).
The integral Cy can be evaluated explicitly, giving A(R) = 1—e~%*. Since A\(0) > 0 and A(.)
is a strictly decreasing function with a simple zero, it follows that R is a strictly decreasing
function of a. The case o = 0 corresponds to the zero of A\, with spatially homogeneous
oscillations for w and v. If A(0) < 1, then the wave family terminates at a finite value of «,
when R = 0. However, if A(0) > 1, then there are PTWs for all values of «, with the speed
and spatial period — 0 as a — oco. These results on wave existence correspond directly with
those for thin-tailed kernels; however, this correspondence does not apply for wave stability.
Evaluating the necessary integrals gives

T=1[cakol +e—a\s+a\] , J=1 [e—a\s—a\ _ e—a|§+a|} ,

Substituting these into (2.5) and expanding as a Taylor series in & gives

e—ax o' 2
(4.2) ReA; = Sa?¢2e [1 — ;A’(R) <1 + )\/E£;2>] +0(&h

as & = 0, provided o > 0. For o = 0, a different expansion applies, but in fact the eigenvalues
can be calculated explicitly: A_ < A, = e~ %€l — 1. Therefore the limiting (spatially homoge-
neous) PTW with a = 0 is stable. However, (4.2) implies that all other PTWs are Eckhaus
unstable (and hence unstable). This is quite different from the situation for thin-tailed kernels,
for which Theorem 2.1(iii) implies stability for a range of small values of a.

5. Discussion. PTWs have been detected in many ecological data sets [11]. Mathemat-
ical modeling has identified a number of potential causes for these spatiotemporal patterns,
including invasions [26, 27, 52, 53, 54, 55, 56|, heterogeneous habitats [9, 57, 58, 59], migration
between subpopulations [60], migration driven by pursuit and evasion [61], and hostile habitat
boundaries [13, 14, 62]. Each of these mechanisms selects one member of the family of PTW
solutions of the model equations. Therefore a thorough investigation of the wave family is an
important precursor to a detailed study of PTW occurrence in ecological models. In this paper
I have undertaken the first such investigation for models in which dispersal is represented by
convolution with a dispersal kernel. My results are restricted to the normal form equations
close to a standard supercritical Hopf bifurcation, and to dispersal coefficients being the same
for each of the interacting populations. This is clearly a very special case, and it is important
to consider the prospects for extending my results in future work. The assumption of equal
dispersal coefficients is mathematically convenient because it implies simple dispersal terms
in the normal form equations. More generally, one would obtain “cross-dispersal” terms, i.e.,
nonlocal terms involving v in the u equation, and vice versa. The resulting analysis would
be more complicated, but all of the various aspects of my approach could potentially be gen-
eralized to this case. This is directly analogous to using A—w-type reaction-diffusion systems
as a stepping stone to studying the complex Ginzburg—Landau equation, which has proved
highly effective (see, e.g., [63]). The assumption of a standard supercritical Hopf bifurcation is
also potentially generalizable. For A-w-type reaction-diffusion equations, Ermentrout, Chen,
and Chen [64] investigated wave fronts connecting PTWs and a uniform equilibrium for the
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A-w system corresponding to a standard subcritical Hopf bifurcation, building on earlier re-
sults for the supercritical case [42]. A similar extension of the results in this paper may be
possible. However, a fundamental feature of my approach that is not amenable to extension
is that of being close to a Hopf bifurcation. All of my methods rely on being able to refor-
mulate the model equations in terms of amplitude and phase, which is only possible close to
Hopf bifurcation. Even for reaction-diffusion equations, which have been actively studied for
more than 40 years, the same limitation applies. For the normal form of reaction-diffusion
equations close to a Hopf bifurcation, there is now a very detailed understanding of PTW
solutions [12, 31, 33, 64, 65]. However, away from Hopf bifurcation there are to my knowledge
almost no analytical results; the one exception concerns stability of PTWs that have very
small wavenumber and are thus close to a homogeneous oscillation [66, 67]. Analytical results
for the more difficult case of nonlocal dispersal are likely to be even more elusive. Instead,
one must rely on numerical calculations of wave existence and stability. For reaction-diffusion
equations, the analytical understanding of PTWs close to Hopf bifurcation has proved to be
an invaluable reference point for such numerical work, and the same promises to be true for
models with nonlocal dispersal.

A large part of this paper has concerned the subdivision of the PTW family into stable
and unstable solutions. This is important because initial and/or boundary conditions may
select a PTW that is either stable or unstable; in the latter case, the long-term behavior is
typically spatiotemporal chaos [35, 44]. In fact, distinguishing between stable and unstable
waves is only able to give a partial explanation of the spatiotemporal dynamics that result from
PTW generation [65]. Unstable PTWs can themselves be subdivided according to whether
the instability is absolute or convective [68, 69]. In the latter case, PTWs can be a long-term
feature of model solutions, as persistent spatiotemporal transients. For example, the invasion
of a prey population by predators can generate a fixed-width band of convectively unstable
PTWs behind the invasion front, with spatiotemporal chaos behind the band [44, 70]. To
my knowledge, the distinction between absolute and convective instability has never been
investigated for integrodifferential equations, and its study for PTW solutions of models with
nonlocal dispersal terms is an important area for future research.

In summary, this paper has two main messages. The first is my specific results on PTW
existence for general kernels, and on PTW stability for the Laplace and Gaussian kernels.
The qualitative form of the stability results for these two kernels is very similar to that for
reaction-diffusion equations of A—w type. However, my second main message is that this
qualitative similarity does not apply in general. In particular, Eckhaus stability does not
necessarily imply stability for nonlocal dispersal, as shown by the example of the top hat
kernel. And for fat-tailed kernels, waves of arbitrarily small (but nonzero) wavenumber can
be unstable, as shown by the example of the Cauchy kernel. My work leaves many unanswered
questions about PTWs in models with nonlocal dispersal, but it provides a starting point for
the investigation of these questions.
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