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Landscape-scale patterns of vegetation occur worldwide at inter-
faces between semiarid and arid climates. They are important as
potential indicators of climate change and imminent regime shifts
and are widely thought to arise from positive feedback between
vegetation and infiltration of rainwater. On gentle slopes the
typical pattern form is bands (stripes), oriented parallel to the
contours, and their wavelength is probably the most accessible
statistic for vegetation patterns. Recent field studies have found
an inverse correlation between pattern wavelength and slope, in
apparent contradiction with the predictions of mathematical
models. Here I show that this “contradiction” is based on a flawed
approach to calculating the wavelength in models. When pattern
generation is considered in detail, the theory is fully consistent
with empirical results. For realistic parameters, degradation of uni-
form vegetation generates patterns whose wavelength increases
with slope, whereas colonization of bare ground gives the oppo-
site trend. Therefore, the empirical finding of an inverse relation-
ship can be used, in conjunction with climate records, to infer the
historical origin of the patterns. Specifically, for the African Sahel
my results suggest that banded vegetation originated by the colo-
nization of bare ground during circa 1760–1790 or since circa 1850.
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Landscape-scale patterns of vegetation occur worldwide at
interfaces between semiarid and arid climates (1). They are

important as potential indicators of climate change and immi-
nent regime shifts (2, 3). Although other mechanisms have been
suggested (4, 5), the patterns are widely thought to arise from
positive feedback between vegetation and infiltration of rain-
water (3, 6). Local increases in vegetation density cause greater
infiltration, which promotes further growth, whereas rain falling
on sparsely vegetated areas tends to run off to adjacent vegetated
patches. On gentle slopes, the typical pattern form is bands
(stripes), oriented parallel to the contours (6, 7), and their
wavelength is probably the most accessible statistic for vegetation
patterns, because it can be estimated from remotely captured
images. The database of wavelengths is extensive, and some
studies also record slope gradient. In 1999 Eddy et al. (8) com-
piled various older data of this type. Both this and a parallel
study by d’Herbès et al. (9) showed an inverse relationship:
longer wavelengths tend to occur on shallower slopes. The
inferred relationship was not very strong because the data came
from a variety of locations and involved a range of vegetation
types, with relatively few data points from any one study. How-
ever, an inverse relationship between slope and wavelength has
also been found in three recent detailed studies, of the African
Sahel (10) and southwest United States (5, 11).
The dependence of wavelength on slope can also be investi-

gated using mathematical models based on water redistribution.
Those studies that have done this report the opposite trend:
Wavelength increases with slope (11, 12). This apparent con-
tradiction has led to questioning of the mechanistic basis for
vegetation patterns (5, 11). However, previous studies have made
the conventional assumption that patterns arise from preexisting
unstable uniformly vegetated states. I will argue that this as-
sumption, and hence the contradiction, are invalid. Further I will

show that detailed consideration of pattern generation mecha-
nisms in mathematical models can reproduce the observed in-
verse relationship, showing that this relationship is entirely
consistent with the water redistribution mechanism. Moreover
my approach gives valuable insights into the historical origin of
these patterns.

Mathematical Modeling of Semiarid Vegetation
Mathematical models play a key role in understanding arid
ecosystems, and a wide variety of models have been proposed
over the last two decades, ranging from detailed multiscale repre-
sentations of soil–water dynamics (13) to simple models of key
underlying mechanisms (14–18). I will investigate the extent to
which qualitative trends in wavelength apply irrespective of pa-
rameter values. This requires comprehensive scans across pa-
rameter space, which is only possible for very simple models.
Therefore, I use the Klausmeier model (14):
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In this nondimensionalized form of the model equations (12, 14)
uðx; tÞ and wðx; tÞ denote vegetation biomass and water density,
respectively, t denotes time, and distance x is measured in the
uphill direction. I assume a uniform slope and throughout I will
consider behavior in one spatial dimension, which is sufficient
for banded patterns.
Eq. 1 is one of the earliest and simplest models for vegetation

patterning, and remains in widespread use (19–23). Crucially,
there are only four dimensionless parameters, which makes
comprehensive scans of parameter space feasible. The key driver
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of pattern formation in [1] is the assumption that the per capita
specific water uptake is proportional to biomass density. This is
based on extensive empirical evidence that in semiarid environ-
ments, rainwater infiltration is positively correlated with vege-
tation cover (24, 25), due to increasing levels of organic matter in
the soil, and to the presence of root networks (26, 27). The pa-
rameter A represents an average rate of rainfall, which typically
occurs in discrete storm events in semiarid regions (28, 29). The
plant loss term includes both natural death and the effects of any
herbivory. Diffusion is used to model plant dispersal in the
interests of mathematical simplicity; some subsequent models
have used instead a nonlocal dispersal term (30, 31). Klausmeier’s
original formulation (14) did not include water diffusion but this
has been added by a number of subsequent authors (20–23).
Because D will typically be much larger than the (dimensionless)
plant dispersal coefficient of 1, this additional term tends to
enhance the pattern forming potential of the model.
When rainfall A is large, [1] predicts a stable uniformly veg-

etated state. As rainfall is decreased, this becomes unstable,
giving spatial patterns (12, 32). To investigate the wavelengths of
such patterns, one considers disturbances to the uniform vege-
tated state with a particular spatial frequency and calculates their
growth (or decay) rate. One particular frequency will give the
largest growth rate; this is the “most unstable mode” (Fig. 1A),
from which one can calculate the expected pattern wavelength
(Methods). Intuitively, there is a range of possible vegetation
band widths and interband spacings, but one of these (the most
unstable mode) becomes established most quickly, and then
suppresses the others.
I found that whenever the rainfall A is below the critical value

for patterns, the expected wavelength is positively correlated
with slope (Fig. 1B and Methods). The same trend has been
found in much less systematic studies of other models (11, 12).
Moreover it is expected, because of the increased run-off on steeper
gradients. However, this positive correlation is the opposite of the
wavelength–slope relationship found empirically (5, 8–11).

Pattern Generation from Uniform Vegetation
Calculation of wavelength using the most unstable mode assumes
that patterns arise via disturbance of a state that is uniformly
vegetated but unstable. This raises the very natural question of
how the system arrived at an unstable state in the first place.
By definition, unstable states will disappear in response to the
small perturbations that are inherent to any biological process.
Therefore, in a real system the key issue is how and when a state

changes from stable to unstable. Historically, the first theoretical
work on biological pattern formation concerned embryonic de-
velopment. There a stability change might result from a particu-
lar gene being expressed during development (e.g., ref. 33),
which would correspond to an abrupt change in the parameter
values in a mathematical model. Alternatively a uniform state
might be stable in an embryo that is too small to permit the
destabilizing frequencies, but becomes unstable as the embryo
grows (e.g., ref. 34). Such mechanisms can generate any unstable
uniform state, and thence patterns. However, for semiarid veg-
etation a uniform state can only lose stability via changes in
environmental parameters such as rainfall (35, 36), which are
inherently gradual. Therefore, marginally stable uniform states
can occur, but those that are fully unstable cannot.
It follows that the most unstable mode approach to the cal-

culation of pattern wavelength and the resultant contradiction
are not relevant to banded vegetation. Nevertheless prediction of
pattern wavelength is possible. Studies of both [1] and other
models for semiarid vegetation have shown that as environ-
mental parameters are gradually changed, the wavelength of
banded vegetation patterns remains constant (19, 23, 37, 38)
(Fig. 2). The patterns do alter of course: for example, a decrease
in rainfall causes both net biomass and band:interband ratio to
decrease, but the wavelength is unchanged. Intuitively, lower
(higher) rainfall leads to retraction (expansion) of the edges of
each vegetation band, so that patterns change without a change
in wavelength. Eventually rainfall levels can become too low
(high) to sustain a pattern with that wavelength. Models then
predict that the pattern breaks down and reforms with a longer
(shorter) wavelength (Fig. 2); the occurrence of such transitions
can be predicted via the patterns crossing the “stability bound-
ary” (19, 23, 38) (Fig. 2).
Wavelength persistence implies that the key to its prediction

lies in calculating it when patterns are first established, which can
happen in two ways. Patterns might develop from uniform veg-
etation when changes in an environmental parameter such as
rainfall cause that uniform state to become unstable, implying
pattern onset via a marginally stable state. Alternatively patterns
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Fig. 1. Pattern generation from preexisting unstable vegetation, with rainfall
fixed. (A) The expected wavelength is determined by the most unstable mode,
and is (B) positively correlated with slope and (C) negatively correlated with
rainfall. Parameters: (A–C) B= 0:45, D= 500; (A and B) A= 2; (A and C) ν= 250.

Fig. 2. Pattern wavelength remains constant as rainfall is gradually
changed. The colored lines and filled circles show pattern wavelength in
simulations of [1] when rainfall A is increased or decreased by 0.1 every 500
time units. Results of three long simulations are shown, each in a different
color: decreasing rainfall starting from the pattern generated by the deg-
radation of uniform vegetation (♦), and increasing and decreasing rainfall
starting from the pattern generated by the colonization of bare ground (★).
In all three cases wavelength remains constant until the pattern falls outside
the stability boundary (thick gray line); at that point the pattern breaks
down and reforms with a new wavelength. For the simulation shown in
green, patterns are replaced by (stable) uniform vegetation when rainfall A
is increased above 3. Note that the parameter region inside the stability
boundary is sometimes known as the “Busse balloon” (23). The equations
were solved on a domain of length 600 with periodic boundary conditions,
and the wavelengths were recorded immediately before each change in
rainfall. Parameters: B= 0:45, D=500, ν= 60; these imply that colonization of
bare ground is initiated at A≈ 1:75.
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might arise through a quite different route that has no analog in
embryonic pattern formation: colonization of bare ground (36).
The two starting patterns used in Fig. 2 are those generated by
these two initiation mechanisms: in both cases pattern wave-
length remains constant over a wide range of rainfall levels, and
is determined at the initial formation of the pattern.
For patterns arising from degradation of uniform vegetation,

i.e., from a marginally stable uniform state (e.g., Fig. 3A), the
wavelength–slope relationship is the result of a trade-off. The
wavelength corresponding to the most unstable mode increases
with slope. However, steeper slopes facilitate patterning, so that
pattern onset occurs at higher rainfall levels, and this tends to
decrease the wavelength (Fig. 1C). One consequence of this is
that the overall variation in wavelength with slope is relatively
small, e.g., 11% in Fig. 3B compared with 88% in Fig. 1B.
Moreover, the resulting wavelength–slope relationship is non-
monotonic (Fig. 3B), as found previously by Ursino (20). Pattern
wavelength increases with slope when this is small, reaches a
maximum at ν= νm, say, and then decreases as slope is increased
further. Intuitively, on shallow slopes a change in gradient is very
significant and dominates the effect of the change in rainfall level
required to give the pattern onset point; the reverse applies on
steeper slopes. Note that in Fig. 1B rainfall is fixed, and the
plotted wavelength corresponds to the most unstable mode,
which is the expected pattern. In contrast, in Fig. 3B rainfall
varies with slope to give the pattern onset point. I found that the
qualitative form of Fig. 3B applies for all relevant parameters.
Although these results appear to provide a potential explanation
for the empirically observed negative correlation between wave-
length and slope, all parameter estimates in the literature actually
give ν< νm (Methods and Fig. 4). Thus, for realistic parameters the
wavelength of patterns generated by degradation of uniform veg-
etation is positively correlated with slope.

Pattern Generation from Bare Ground
I now consider banded patterns initiated by the colonization of
bare ground. Mathematically this is much more difficult because
it cannot be studied via small perturbations to a uniform state: it
is a fundamentally nonlinear problem. In addition to the uni-
formly vegetated state, [1] also has a uniform unvegetated state
that is stable to small perturbations for all parameter sets. In-
tuitively one expects that when rainfall is sufficiently high, a lo-
calized introduction of plants will invade and colonize this bare
ground state, and I confirmed this in simulations of [1]. Such an
invasion involves a transition between two locally stable states, a
situation that has been well studied for many biological appli-
cations (39, 40; ref. 41, chap. 5). The propagation direction
depends on the details of the nonlinear terms (42, 43): in-
tuitively, a smaller proportion of uniform initial solutions tends
to one of the stable states than the other, and it is that state that
is invaded. Formulas for the invasion speed can only be calcu-
lated in the very simplest cases, and I studied colonization for [1]
using simulations.
I found that in comparison with flat terrain, vegetation has

a greater tendency to expand in an uphill direction. Intuitively
this is because the downhill flow of water facilitates vegetation
growth at the edge of the invading front. Similarly, downhill
spread is impeded in comparison with flat ground. These findings
are reflected by the empirical observation of higher seedling
densities on the uphill edge of vegetation patches, and higher
levels of plant death on the downhill edges (44–46). Therefore,
at low levels of rainfall, both edges of a localized vegetation
patch on a slope move uphill (Fig. 5A); the downhill edge moves
uphill because plant loss exceeds growth. To colonize bare
ground, the downhill edge of a vegetation patch must invade in
the downhill direction, which occurs only for rainfall levels above
a critical minimum (Fig. 5B). After a drought during which
vegetation has died out, recolonization will commence when
rainfall increases to this critical level, establishing a particular
pattern wavelength which will then persist following subsequent
moderate variations in rainfall.
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Fig. 3. Pattern generation by degradation of uniform vegetation. (A) An
example of such pattern generation. (B) Wavelength varies nonmonotoni-
cally with slope. Note that in B rainfall is varied with slope to give the pat-
tern onset point; this contrasts with Fig. 1B, in which the plotted wavelength
corresponds to the most unstable frequency at a fixed rainfall level.
Parameters: B= 0:45, D= 500 and (A) A= 2:8, ν= 100. The initial conditions in
A are small random perturbations to the uniformly vegetated state, and the
value of A is a little below the pattern onset point of 3.08. The colors in A
indicate vegetation biomass u as shown in the scale bar.

Fig. 4. Dependence of the critical slope gradient νm on plant loss B and
water diffusion D. For patterns generated by degradation of uniform veg-
etation, wavelength is negatively (positively) correlated with slope for ν
greater (less) than νm. The scale bar shows the color scale for νm, which is
deliberately skewed to give greater visual clarity. In the gray and black
regions of the parameter plane (lower left-hand corner), wavelength always
decreases with ν. In the black region patterns exist for all ν≥ 0, whereas in
the gray region patterns only exist for ν greater than some nonzero mini-
mum, so that there are no patterns on flat ground. The gray and black
regions are separated by the curve BD= 2, which is the threshold for stability
of ðus,wsÞ when A= 2B.
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Fig. 5C shows a typical plot of the rainfall threshold for col-
onization against slope. The shaded region is where the uni-
formly vegetated state is stable, so that vegetation does not form
bands. On sufficiently steep slopes, say, ν> νp, colonization
requires a rainfall level in this region. However, for shallower
slopes ðν< νpÞ colonization leads to patterns (Figs. 5 A and B and
6). I calculated the wavelength of these patterns in simulations,
and found that throughout parameter space it is negatively cor-
related with slope (Fig. 5D). This predicted wavelength–slope
relationship is consistent with empirical data (5, 8–11).

Discussion
To provide a specific example of the implications of my results, I
consider the African Sahel, which is the transition zone between
the Sahara and the Sudanian Savanna. Here banded vegetation
occurs for slope gradients of about 0.2–1% (6, 7, 10), and pa-
rameter estimates place these shallow slopes well below both of

the critical values νm and νp (14, 20). My results therefore suggest
that wavelength would increase with slope for patterns arising
from the degradation of uniform vegetation, and would decrease
with slope following the colonization of bare ground. Because
there is now a large amount of data indicating the latter trend
(8–10), I infer that the banded vegetation in this region has de-
veloped via colonization of bare ground––at least in the locations
providing the data, which are very widespread.
This inference must be considered in conjunction with his-

torical climate data. Rain gauge records for the Sahel are very
limited before about 1920 (47), but there is considerable proxy
data for the last five centuries (48–50). This shows that humid
conditions prevailed in the Sahel during the 16th and 17th cen-
turies. Evidence for this comes from three independent source
types. Most quantitative are fluctuations of lake levels: for example
between 1650 and 1700, Lake Chad was 4 m higher than at present
(51). Secondly, historical chronologies such as those of the Bornu
Empire describe prosperous conditions with famine being very
rare (ref. 52, chap. 2). Thirdly, geographical descriptions by Eu-
ropean travelers include reports of local peoples retaining mem-
ories of markedly more humid conditions (e.g., ref. 51, p. 223).
Note that studies of Lake Bosumtwi in Ghana (53) suggest that
during the same period (16th and 17th centuries) there was
a severe drought near the Guinea Coast, south of the Sahel.
This study has been incorrectly described as referring to the
Sahel in a number of popular science articles, including (at the
time of writing) the Wikipedia page on the Sahel.
The approximate nature of these historical rainfall estimates

makes definitive conclusions impossible. However, the humid
climate of the 16th and 17th centuries makes it very likely that
uniform vegetation was present in areas currently exhibiting
patterns. Because I have concluded that vegetation will then
have subsequently died out, one can expect such an event to have
occurred during the most severe subsequent drought. This oc-
curred c. 1738–1756, and devastated much of the Sahel (48, 50,
53): for example, the resulting famine is reported to have killed
half the population of Tombouctoo (48, 50, 54).
A central concept in the understanding of desertification is the

bistability between vegetated states and desert (15, 16, 55). As
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Fig. 5. Colonization of bare ground gives an inverse relationship between
pattern wavelength and slope. (A) At a rainfall level below the critical level
for colonization, both uphill and downhill edges of a vegetation patch move
uphill, whereas (B) above the critical level the downhill edge moves down-
hill. (C) The critical rainfall level above which colonization occurs (dots). The
shaded region is that in which vegetation patterns form, so that above ν= νp
colonization generates uniform vegetation. The crosses indicate the pa-
rameter values used in the simulations in A and B. (D) The wavelength of
patterns generated by colonization for ν< νp. Parameters: (A–D) B= 0:45,
D= 500; (A) A= 1:2, ν= 40; (B) A= 1:7, ν= 40. The colors in A and B indicate
vegetation biomass u as shown in the scale bar.

Fig. 6. Pattern generation at the smallest rainfall level for colonization of
bare ground. Fixing rainfall A at this critical level Ac causes the left-hand
edge of the vegetation patch to be stationary. Parameters: B=0:45, ν= 56,
D= 500, which imply Ac =1:67.
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rainfall is decreased, a loss in stability of a vegetated state causes
a sudden transition to desert, but if rainfall is subsequently in-
creased back above the tipping point the desert state remains,
and reestablishment of vegetation requires much wetter con-
ditions (3, 56, 57). This is reflected in my finding that the critical
rainfall level for recolonization is much greater than that re-
quired for vegetation survival. For the Sahel, vegetation lost
during the drought of c. 1738–1756 may have become reestab-
lished during c. 1760–1790, which was relatively humid with some
evidence of appreciable flooding (50). If not, bistability implies
that reestablishment would not have occurred until the next
markedly humid period, which began in the mid-1800s, following
an extended arid interval which began c. 1790 and included a
notable drought c. 1828–1839 (47, 50). This suggests that today’s
banded vegetation originated by colonization of bare ground
either during c. 1760–1790, or since c. 1850. Although there are
no empirical data against which this conclusion can be tested
directly, it is consistent with the occurrence of localized envi-
ronmental degradation in the Sahel during the last millennium,
for example dune reactivations in Mali which are revealed by
optically stimulated luminescence (58).
Even before the current era of satellite images, remote sensing

of banded vegetation wavelengths was possible via aerial pho-
tography. However, measurement of the corresponding slope
gradients required laborious ground-based work, and conse-
quently older data on wavelength–slope relationships are lim-
ited. Modern elevation databases eliminate the need for in situ

field work. Thus, remotely sensed wavelength data can easily be
complemented by slope gradients. My results indicate that such
combined data are far more valuable than wavelength data
alone, because they may enable one to infer the historical origin
of the vegetation patterns.

Methods
Calculation of the Most Unstable Mode. When A≥ 2B the model [1] has two
homogeneous vegetated steady states; one is always unstable, but

u=us ≡
A+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − 4B2

p

2B
w =ws ≡

2B2

A+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − 4B2

p

is stable to homogeneous perturbations provided that B< 2. This restriction
on B holds for all previous parameter estimates (14, 20); for larger B [1] can
have oscillatory dynamics which are never observed in reality. To determine
linear stability of ðus,wsÞ I substitute ðu,wÞ= ðus,wsÞ+ ð~u, ~wÞeλt+ikx ; the spatial
frequency of the perturbation is k=2π. Linearizing in ð~u, ~wÞ and requiring
nontrivial solutions gives a quadratic for λ with complex coefficients, whose
solution yields an explicit formula for the growth rate Re  λ as a function of k.
This formula is a small extension of previous work (12, 32). To determine the
most unstable mode I calculated Re  λ over a grid of k values to give an initial
approximation, and then used a numerical nonlinear equation solver to
refine this as a solution of ðd=dkÞRe  λ= 0.

To investigate the correlation between the slope and the wavelength
ð=2π=kÞ of the most unstable mode, I considered the parameter ranges
0:05≤A≤ 5, 0:025≤B≤ 1:975, 5≤ ν≤ 300, and 10≤D≤ 800, which are chosen
to comfortably include all reasonable estimates (14, 20, 23). I considered 100
equally spaced values spanning each of these ranges, giving a total of 108

parameter sets. Some of these do not satisfy the constraint A≥ 2B, and for
some others the most unstable mode is actually stable. For the remainder
(about half) I calculated the change in the frequency of the most unstable
mode following small changes in A and ν. In every case, frequency increases
with A and decreases with ν.

Calculation of νm . As rainfall A is decreased, the stability of ðus,wsÞ changes at
a Turing–Hopf bifurcation point, A=ATH, say. For ν= 0, calculation of ATH

reduces to that of a standard Turing bifurcation point for reaction–diffusion
equations (32, 59). From this starting point, I numerically continued ATH and
the corresponding spatial frequency as solutions of Re  λ= ðd=dkÞRe  λ= 0,
while increasing ν. I performed this procedure for the same 100 values of B
and D as used above (104 cases in total). For small D there is no Turing bi-
furcation when ν= 0: Specifically this occurs when ðus,wsÞ is stable for ν= 0
and A= 2B, the condition for which is BD< 2. This corresponds to no vege-
tation patterns forming on flat ground. In fact, such patterning is common,
although in the absence of spatial organization by a slope one sees laby-
rinthine or spotted patterns rather than bands (1, 10). Therefore, these
unrealistic parameter sets (0:25% of the total) can be discounted, although
for completeness I comment that patterns then exist only for ν above a
nonzero value, and pattern wavelength decreases with ν. When BD is slightly
greater than 2 (about 0:7% of cases) pattern wavelength is also a decreasing
function of ν. These cases will also not be relevant in applications because the
rainfall range giving patterns on flat ground is so small. In all of the remaining
cases (about 99%) pattern wavelength increases with ν when this is small,
reaches a maximum at ν= νm, and then decreases (Fig. 3B). I calculated νm by
quadratic interpolation on my grid of ν values. Fig. 4 shows νm as a function of
B and D. Typical estimates for the value of ν corresponding to slopes on which
banded vegetation occurs are less than 200 (14, 20), whereas most estimates
for D are at least 500 (21, 23). Therefore, Fig. 4 suggests that a negative cor-
relation between wavelength and slope is restricted to unrealistic parameter
values, for patterns arising from degradation of uniform vegetation.

Investigation of Pattern Generation by Colonization of Bare Ground. The crit-
ical rainfall level above which colonization of bare ground occurs is de-
termined by the change in movement direction of the lower edge of a
vegetation patch, from uphill to downhill; in the physics literature this type of
transition is known as a “Maxwell point.” I ran model simulations with initial
vegetation density set to us in the right-hand (uphill) half of the domain and
zero in the left-hand half, with corresponding Dirichlet boundary conditions.
After initial transients have dissipated, a transition front develops, moving
with a constant speed that is positive (negative) for smaller (larger) values of A.
Using a nonlinear equation solver, I calculated the value A=Ac at which the
speed is zero: this is the threshold rainfall level for colonization. A guide to the
appropriate range of A values to consider is provided by the special case

Fig. 7. Illustration of when colonization of bare ground results in banded
rather than uniform vegetation. This occurs when the slope ν is below νp,
whose value is indicated by the colored circles. The wavelength of these bands
is always negatively correlated with slope (see Fig. 5D for a typical result).
Inside the circles I give the value of νm=νp, showing that this always exceeds 1;
this implies that whenever parameters are such that colonization generates
patterns, the degradation of uniform vegetation generates patterns whose
wavelength is positively correlated with slope. For B=0:05 and D= 50, colo-
nization generates uniform vegetation for all slopes ν≥ 0, and also degrada-
tion of bare ground always gives a negative correlation between wavelength
and slope, so that neither νp or νm is defined; however, these values of B and D
are significantly outside typical estimates of parameter ranges.
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ν=D= 0, for which it is possible to obtain exact solutions of the ordinary dif-
ferential equations satisfied by a stationary transition front, and hence ofAc (60).

I then calculated the wavelength generated by colonization when A=Ac .
When rainfall slowly increases, this will be the wavelength of the first pat-
terns to be established, which will then persist following further moderate
changes in rainfall (19, 23, 38). My procedure was to solve [1] numerically
with A=Ac and with u set to us in the center of the domain (in a region of
width arbitrarily chosen to be 200), and zero otherwise. Fig. 6 shows a typical
example of the resulting solution. The left-hand (downhill) edge of the
vegetated region remains stationary because A=Ac , whereas the right-hand
edge propagates uphill. The resulting vegetated region can be either uni-
form or patterned. The division between these cases is illustrated by plotting
Ac against ν, and superimposing the ν–A parameter regions in which pat-
terns do–do not form; calculation of these regions is described above. Fig. 5C
shows one such plot: Patterns develop when the slope ν is below a threshold
νp, and Fig. 5D shows that their wavelength decreases with slope. These

figures are typical except that for small values of D colonization always
generates uniform vegetation rather than patterns. For example, when
B= 0:45 this occurs for D less than about 10.

The procedure outlined above is quite expensive in computer time,making
it unfeasible to loop over a fine grid of B andD values. Instead I considered 25
B–D pairs: B= 0:05, 0.45, 0.9, 1.4, 1.9 and D= 50, 200, 350, 500, 650. The slight
nonuniformity in the spacing of the B values is deliberate to include 0.45,
which is the most commonly used value in other studies using [1]. Fig. 7
shows the dependence on B and D of νp, and also of the ratio νm=νp. Note
that this ratio is always greater than 1, implying that whenever colonization
generates patterns, degradation of uniform vegetation with the same
parameters would give patterns whose wavelength increases with slope.
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