
1 23

Journal of Mathematical Biology
 
ISSN 0303-6812
Volume 73
Number 1
 
J. Math. Biol. (2016) 73:199-226
DOI 10.1007/s00285-015-0942-8

When does colonisation of a semi-arid
hillslope generate vegetation patterns?

Jonathan A. Sherratt



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag Berlin Heidelberg. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



J. Math. Biol. (2016) 73:199–226
DOI 10.1007/s00285-015-0942-8 Mathematical Biology

When does colonisation of a semi-arid hillslope generate
vegetation patterns?

Jonathan A. Sherratt1

Received: 26 March 2015 / Revised: 5 September 2015 / Published online: 7 November 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Patterned vegetation occurs in many semi-arid regions of the world. Most
previous studies have assumed that patterns form from a starting point of uniform
vegetation, for example as a response to a decrease in mean annual rainfall. However
an alternative possibility is that patterns are generated when bare ground is colonised.
This paper investigates the conditions under which colonisation leads to patterning on
sloping ground. The slope gradient plays an important role because of the downhill
flow of rainwater. One long-established consequence of this is that patterns are organ-
ised into stripes running parallel to the contours; such patterns are known as banded
vegetation or tiger bush. This paper shows that the slope also has an important effect
on colonisation, since the uphill and downhill edges of an isolated vegetation patch
have different dynamics. For the much-used Klausmeier model for semi-arid vegeta-
tion, the author shows that without a term representing water diffusion, colonisation
always generates uniform vegetation rather than a pattern. However the combination
of a sufficiently large water diffusion term and a sufficiently low slope gradient does
lead to colonisation-induced patterning. The author goes on to consider colonisation
in the Rietkerk model, which is also in widespread use: the same conclusions apply for
this model provided that a small threshold is imposed on vegetation biomass, below
which plant growth is set to zero. Since the two models are quite different mathe-
matically, this suggests that the predictions are a consequence of the basic underlying
assumption of water redistribution as the pattern generation mechanism.
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1 Introduction

Patterned vegetation occurs in many semi-arid regions of the world, including Africa
(Deblauwe et al. 2012; Müller 2013), Australia (Berg and Dunkerley 2004; Moreno-de
las Heras et al. 2012), North America (Pelletier et al. 2012; Penny et al. 2013), the
Middle East (Buis et al. 2009; Sheffer et al. 2013), and Asia (Yizhaq et al. 2014).
Such patterns consist of vegetated regions separated by bare ground. They are usually
labyrinthine or spotted on flat terrain, but on slopes the typical form is stripes running
parallel to the contours, known as “banded vegetation” or “tiger bush” (Deblauwe
et al. 2008, 2011; Meron 2012). Most authors attribute pattern formation to positive
feedback between vegetation and water availability. The infiltration rate of rainwater
into bare semi-arid soils is very low, but it increases significantly with vegetation
density (Rietkerk et al. 2000; Thompson et al. 2010), due to increasing levels of
organic matter in the soil, and to the presence of root networks (Galle et al. 1999;
Archer et al. 2012). This results in greater water availability, and thus increased plant
growth, when vegetation biomass is larger. This positive feedback loop is known as the
“water redistribution hypothesis” for vegetation pattern formation (Thompson et al.
2011; Pueyo et al. 2013).

In addition to their intrinsic fascination as an example of ecosystem-scale self-
organisation, vegetation patterns are important as potential early warning signals of
climate change and imminent regime shifts (Rietkerk et al. 2004; Kéfi et al. 2007;
Corrado et al. 2014). Therefore they have been the subject of intensive study over
the last decade. There are no laboratory replicates of vegetation patterns, and field
experiments are difficult and expensive—as well as being of limited utility given
the long space and time scales involved in the pattern formation process. Therefore
mathematical models play a key role in understanding these ecosystems, and many
different models have been proposed. The majority of these are based on the water
redistribution hypothesis discussed above, with the models of Klausmeier (1999),
Rietkerk et al. (2002), von Hardenberg et al. (2001) and Gilad et al. (2004, 2007) being
in particularly widespread use. However it is important to comment that models have
also been used to investigate alternative pattern formation mechanisms (Lefever and
Lejeune 1997; Lefever et al. 2009; Pelletier et al. 2012; Martínez-García et al. 2014).

Almost all modelling studies have assumed that patterns form from a starting point
of uniform vegetation, for example as a response to a decrease in mean annual rainfall
(Fig. 1). Many authors additionally investigate the subsequent transitions between
different patterned states as environmental conditions such as rainfall are varied (e.g.
Meron 2012; Gowda et al. 2014). However there is an alternative possibility, that
a pattern forms when bare ground is colonised. This has the potential to give very
different relationships between pattern properties and environmental variables, and in
fact I have recently shown that for banded vegetation, colonisation of bare ground and
degradation of uniform vegetation give opposite trends in the relationship between
pattern wavelength and slope (Sherratt 2015). To my knowledge Bel et al. (2012) are
the only other authors to have modelled pattern formation via colonisation. Using
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Fig. 1 A simulation of (1) showing the formation of a banded vegetation pattern from a starting point of
uniform vegetation. The shading indicates plant biomass, as shown in the scalebar. At time t = 0 I impose
a small random perturbation to the uniformly vegetated steady state (u+, w+). A spatial pattern develops,
which ultimately evolves to a one-dimensional pattern of stripes of running parallel to the contours. The
times in f–h are chosen to illustrate the gradual uphill migration of the stripes. The spatial domain is
0 < x < 450 and 0 < y < 150 with periodic boundary conditions. For the initial conditions (t = 0), I
applied a random perturbation of ±5 % at each node of a grid with spacing 5, and calculated intermediate
initial values using bilinear interpolation. The equations were solved using an alternating direction implicit
finite difference method with upwinding, with a uniform grid spacing of 0.5 and a time step of 0.00125

a “minimal model” for vegetation dynamics in semi-arid environments, Bel et al.
investigate the formation and spread of isolated regions of patterned vegetation within
an unvegetated background state, on flat terrain. This last assumption is important
because slope can have a major effect on processes governed by water redistribution,
due to the downhill flow of water both on the surface and within the soil (e.g. Deblauwe
et al. 2012; Dralle et al. 2014).

In this paper I study colonisation of sloping bare ground. My objective is to deter-
mine the conditions under which this will generate vegetation patterns—which will be
stripes (bands) because of the organising effect of the slope. In Sect. 2 I introduce the
Klausmeier (1999) model that forms the basis of most of my study, and I discuss my
overall methodology. In Sect. 3 I consider colonisation in a basic version of the model,
showing that colonisation never generates patterned vegetation. In Sect. 4 I show that,
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202 J. A. Sherratt

by contrast, patterning via colonisation is predicted in an “extended” version of the
model in which a diffusion term is included in the equation for water. In Sect. 5 I
describe the Rietkerk et al. (2002) model, which is a widely used alternative model,
and I show that this makes the same predictions provided that a small amendment is
made to the model equations; I will argue that this amendment improves the realism
of the model. I conclude by considering the ecological realism of the parameter ranges
in which colonisation generates patterns, and I discuss the (limited) field data on the
historical origin of vegetation patterns.

2 A simple mathematical model

Mathematical models for vegetation patterning vary from minimal (“toy”) models (Bel
et al. 2012) to detailed multi-scale representations of soil-water dynamics (Stewart et al.
2014). I will attempt to survey behaviour across parameter space, which poses a major
restriction on model complexity. Therefore I will focus attention on the Klausmeier
(1999) model. This is one of the earliest and simplest models for vegetation patterning,
and when suitably nondimensionalised (Klausmeier 1999; Sherratt 2005) the model
equations are:

∂u/∂t =

plant
growth
︷︸︸︷

wu2 −

plant
loss

︷︸︸︷

Bu +

plant
dispersal

︷ ︸︸ ︷

∂2u/∂x2 + ∂2u/∂y2

∂w/∂t = A
︸︷︷︸

average
rainfall

− w
︸︷︷︸

evapor-
ation &
drainage

− wu2
︸︷︷︸

uptake
by plants

+ ν ∂w/∂x
︸ ︷︷ ︸

flow
downhill

+ D(∂2w/∂x2 + ∂2w/∂y2)
︸ ︷︷ ︸

diffusion
of water

.

(1)

Here u and w denote plant biomass and water density respectively; they are functions
of time t and the distances x in the uphill direction and y parallel to the contours. For
simplicity I restrict attention to uniformly sloping terrain.

The key assumption in (1) is that the per capita rate of water uptake is proportional to
plant biomass, reflecting the positive correlation between infiltration rate and biomass
that was discussed in Sect. 1. Plant growth rate is assumed to be proportional to water
uptake on the basis that water is the limiting resource; however it should be noted that
in some semi-arid regions nitrogen availability can also limit plant growth (Hooper
and Johnson 1999; Stewart et al. 2014). Plant loss is assumed to have a simple linear
form. Some recent models have included soil toxicity, which can arise via the decay of
dead plant material, showing that this can play a significant role in vegetation pattern
formation (Cartení et al. 2012; Marasco et al. 2014); however this is excluded from
(1). Plant dispersal is represented by linear diffusion: this simplification is made for
mathematical convenience, and some subsequent models use a more realistic nonlocal
dispersal term (Pueyo et al. 2008; Baudena and Rietkerk 2013). The (dimensionless)
parameter A is proportional to mean annual rainfall. The use of a constant rainfall rate
is a major simplification, since in most semi-arid regions rainfall occurs principally
at certain times of year, and then only in relatively brief storms (Istanbulluoglu and
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Colonisation and vegetation patterns 203

Bras 2006; Caylor et al. 2014). Both of these complications have been considered
in previous modelling studies (Ursino and Contarini 2006; Guttal and Jayaprakash
2007; Vezzoli et al. 2008; Kletter et al. 2009; Siteur et al. 2014a). The parameter B
reflects both natural plant loss and the effects of herbivory. As well as grazing by wild
and domestic animals, “herbivory” of woody vegetation includes human removal of
trees for fuel, which has a significant effect on vegetation dynamics in many semi-arid
regions (Berg and Dunkerley 2004; Dembélé et al. 2006; Hejcmanová et al. 2010). The
parameter ν measures slope gradient. Some more recent models use representations
of downhill water flow that are more detailed than the simple advection term in (1); in
particular Gilad et al. (2004, footnote 18) derive a representation of surface water flow
using shallow water theory. The final parameter D is the water diffusion coefficient;
Ursino (2005) showed that a diffusion term always accompanies the advection term
when water transport is derived from the Richards equation for soil water flow. More
detailed representations of water flow in the context of modelling vegetation patterns
are considered by von Hardenberg et al. (2001) and Meron et al. (2004). A final
simplification made in (1) is that all of the parameters are homogeneous in space. I
will retain this assumption throughout this paper, but it should be noted that recent
research has highlighted the potential importance of parameter heterogeneity in models
for semi-arid vegetation, in particular its ability to increase resilience to reductions in
rainfall (Yizhaq et al. 2014; Bonachela et al. 2015).

Despite these various caveats, Eq. (1) remains a highly influential model that is in
widespread use in both simulation-based research (Sherratt and Lord 2007; Liu et al.
2008; Borthagaray et al. 2010; Ursino and Contarini 2006; Zelnik et al. 2013; Sherratt
2013a; Siteur et al. 2014b) and analytical studies (Sherratt 2010, 2011, 2013b, c, d;
Kealy and Wollkind 2012; van der Stelt et al. 2013; Siero et al. 2015). In Sect. 5 I
will present a briefer and less comprehensive study of colonisation in the alternative
Rietkerk model (HilleRisLambers et al. 2001; Rietkerk et al. 2002).

There are either one or three spatially homogeneous steady state solutions of the
model (1). The “desert” steady state (0, A) is always locally stable, and for A ≥ 2B
there are also

(u±, w±) = ([A ±
√

A2 − 4B2 ]/2B, [A ∓
√

A2 − 4B2 ]/2).

(u−, w−) is always unstable, while (u+, w+) is locally stable to spatially homo-
geneous perturbations provided that B < 2. For larger B (1) can have oscillatory
dynamics which are never observed in reality; however all ecologically based para-
meter estimates give B < 2 (Klausmeier 1999; Ursino 2005) and I will assume this
restriction throughout this paper. For some parameters (u+, w+) is unstable to inho-
mogeneous perturbations, and spatial patterns then occur (Fig. 1). They consist of
peaks and troughs of plant biomass u, which correspond to the vegetation bands and
bare interbands seen in the field.

The destabilisation of (u+, w+) occurs via a Turing–Hopf bifurcation, meaning
that when the real part of the temporal eigenvalue changes sign, there is a non-zero
imaginary part (Sherratt 2005; van der Stelt et al. 2013). This is a standard feature of
models with directional transport (Anderson et al. 2012). It follows that the patterns
are not stationary, and they move in the positive x direction (uphill) (Fig. 1d–f). The
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204 J. A. Sherratt

issue of uphill migration of vegetation has traditionally been contentious, because of
contradictory reports from early field studies (Worrall 1959; White 1969). Complicat-
ing factors in assessing migration include its very slow speed [<1 m year−1 (Valentin
et al. 1999, Table 5)] and the temporary expansions and contractions of the vegetation
bands in response to fluctuations in environmental variables such as rainfall (Tongway
and Ludwig 2001). However in recent years,1 detailed comparisons have become pos-
sible between modern satellite images and declassified spy satellite images from the
1960s. This suggests that some banded vegetation patterns are stationary, but provides
clear evidence of uphill migration in other cases, with a typical time taken to move
one wavelength being about 100 years (Deblauwe et al. 2012). The biological basis
for migration of vegetation bands is that the upslope edge of the bands is wetter than
the downslope edge, resulting in higher seedling densities and lower levels of plant
death; these differences are observed in the field (Wu et al. 2000; Tongway and Lud-
wig 2001). The observation of stationary patterns on sloping terrain is not consistent
with (1) and their occurrence has been attributed to various factors excluded from the
model, including compaction of unvegetated soil (Dunkerley and Brown 2002) and
preferential dispersal of seeds in the downhill direction, due to transport in run-off
(Saco et al. 2007; Thompson and Katul 2009).

An important precursor to the study of pattern generation via colonisation is to
consider the parameter region in which patterns exist. In applications one is primarily
interested in the effects of varying rainfall, and so I will focus on the values of the
parameter A giving patterns. I denote by AT H the pattern onset (Turing–Hopf bifur-
cation) point. Analytical calculation of AT H seems impossible when ν �= 0, but a
leading order expression for large ν when D = 0 is given in (Sherratt 2013c). Since
this is a bifurcation of the uniformly vegetated state (u+, w+), AT H is necessarily
greater than 2B which is the threshold value of A below which this uniform state does
not exist. However patterns themselves do exist for A < 2B (Sherratt 2013a, c, d;
Siteur et al. 2014b), with the minimum rainfall for patterns being given by another
critical point Amin < 2B. Again, an analytical formula for Amin is not available,
but a leading order expression for large ν and D = 0 has been calculated (Sherratt
2013d). Intuitively, for A < Amin there is insufficient rainfall to support vegetation;
for Amin < A < AT H vegetation is viable but only in the context of patterns; and
for A > AT H there is enough rainfall to maintain uniform vegetation. The fact that
Amin < 2B reflects the ability of vegetation to survive in patterns at rainfall levels for
which uniform vegetation is not viable.

Klausmeier’s original paper (Klausmeier 1999) did not include a water diffusion
term, although this has been added by a number of subsequent authors (Ursino 2005;
Kealy and Wollkind 2012; Zelnik et al. 2013; Siteur et al. 2014b). Therefore (1) is
often known as the “modified” or “extended” Klausmeier model. I will begin my
investigation of the potential for colonisation to generate patterns using the original
form of the model, that is with D = 0. In Sect. 4 I will then investigate the way in
which my results are altered by the inclusion of water diffusion.

1 Assessment of vegetation band migration using satellite imagery was made possible by the declassification
in 1995 of images from the US satellite missions Corona (1959–1972), Argon (1961–1964) and Lanyard
(1963).
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3 Colonisation with no water diffusion

In this section I will show that in the absence of water diffusion (D = 0) colonisation of
a bare hillslope always generates uniform vegetation rather than a pattern. I use the term
“colonisation” to refer to the establishment of vegetation from a localised vegetated
region in otherwise bare ground. My calculations in this section act as ground work for
a consideration of the more general situation (D �= 0) and it is important to emphasise
that they do not imply that colonisation cannot generate patterns in real ecosystems.
This is because Klausmeier’s (1999) original exclusion of water diffusion is unrealistic.
Klausmeier included the water advection term in his model on phenomenological
grounds. Subsequently Ursino (2005) showed that the term can be derived from the
Richards equation for soil water flow, but only in conjunction with a diffusion term.
Moreover, water diffusion corrects a major shortcoming of the model predictions:
when D = 0, Eq. (1) predicts that patterns will not form on flat ground. This is at
odds with the frequent occurence of labyrinthine or spotted patterns on flat ground
in the field (Deblauwe et al. 2008, 2011). In his original paper Klausmeier (1999)
suggested that such patterns might mirror small scale variations in topography, but
subsequent detailed investigation showed that this is not the case (Barbier et al. 2006).
The addition of water diffusion rectifies the situation, since patterns can form when
ν = 0 (flat ground) provided that D is sufficiently large. This was first demonstrated
by Kealy and Wollkind (2012), and the generalised model framework (1) has been
adopted in a number of recent studies (Zelnik et al. 2013; Siteur et al. 2014b; Sherratt
2015; Siero et al. 2015).

Figure 2 shows model simulations of vegetation dynamics on a uniform hillslope
for various values of the rainfall parameter A. These simulations illustrate that when
the rainfall is high enough to enable colonisation, the resulting vegetation is uniform
rather than patterned; later in this section I will present a detailed study showing
that this is a general result, applying for all parameter values (when D = 0). In the
simulations I impose a localised region of vegetation onto bare ground, and monitor
the subsequent dynamics. As one expects intuitively, when rainfall A is sufficiently
large, the initial patch of vegetation expands in both directions, so that the hillside is
colonised (Fig. 2a). At lower rainfall levels, the initial patch expands along the contours
and in the uphill direction, but the downslope edge also moves uphill (Fig. 2b–e). This
is because the downhill flow of water causes the upslope edge of the vegetated region
to be wetter than the downslope edge. Consequently plant loss is less than growth rate
at the upslope edge, and greater than growth rate at the downslope edge. This is the
same process that leads to uphill migration of banded vegetation patterns (discussed
in Sect. 2). In both of Fig. 2a, b the vegetation between the two edges of the patch
remains uniform. However at lower rainfall levels a pattern forms (Fig. 2c, d); note
that this only occurs when the upslope and downslope edges both move uphill so that
there is no colonisation. At even lower rainfall levels the initial patch of vegetation
either migrates uphill (Fig. 2e) or simply collapses (Fig. 2f).

The results shown in Fig. 2 are typical across a wide range of parameter values.
The key to understanding them in detail lies in an investigation of interfaces between
uniform vegetation and bare ground, in one space dimension (no y dependence). I will
calculate threshold values of A for such interfaces to move in the uphill or downhill
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� Fig. 2 The dynamics of a localised patch of vegetation on a uniform hillslope, as predicted by the model
(1) when the water diffusion coefficient D = 0. Colonisation occurs in a since the upslope and downslope
edges of the vegetation patch move in the uphill and downhill directions respectively. In b–e there is no
colonisation because both the upslope and downslope edges move in the uphill direction, while in f the
initial vegetation patch simply collapses. The plotted region is 0 < x < 600, 0 < y < 150. In a–e I
set u(x, y, t = 0) = u+ when 100 < x < 200 and 60 < y < 90 with u(x, y, t = 0) = 0 otherwise;
w(x, y, t = 0) ≡ A. In f the initial vegetation patch is larger to give greater visual clarity: 100 < x < 400
and 37.5 < y < 112.5. The values of the rainfall parameter A and the slope parameter ν are indicated
above the plots; the plant loss parameter B = 0.45 in all cases. The shading indicates vegetation density, as
shown in the scalebar. In c–f I solve the equations on the plotted region, but in a and b the solution domain
extends to x = 1800 (though only 0 < x < 600 is plotted) in order that vegetation does not invade to the
right hand boundary. In all cases the boundary conditions are periodic in y and Dirichlet (u = 0, w = A) at
x = 0 and at a, b x = 1800 or c–f x = 600. These Dirichlet boundary conditions are appropriate because
the time intervals over which I run the simulations are in all cases short enough that vegetation does not
spread to either boundary. I use a different value of ν in f in order to give a parameter set that lies in region I
of Fig. 6. The equations were solved using an alternating direction implicit finite difference method with
upwinding, with a uniform grid spacing of 0.2 and a time step of a–e 0.0036, f 0.02. These give a cfl
number of a–e 0.8, f 0.05

directions, and by comparing these thresholds with the Turing–Hopf point AT H I will
show that colonisation never generates patterns (when D = 0). I begin by consid-
ering interfaces with the bare ground state (0, A) on the downhill side (x → −∞)
and the uniformly vegetated state (u+, w+) on the uphill side (x → +∞), as illus-
trated schematically in Fig. 3a. In numerical simulations (not illustrated for brevity),
such interfaces evolve to travelling wave fronts whose velocity decreases as rainfall A
increases. When rainfall is low the velocity is positive, meaning that the bare ground
region expands and the vegetated region contracts; correspondingly when rainfall is
high the velocity is negative and the bare ground region contracts while the vegetated
region expands. I denote by Acrit,1 the critical value of the rainfall parameter at which
the velocity is zero; in physics terminology Acrit,1 is a Maxwell point. This behaviour
is entirely expected intuitively: an increase in rainfall promotes vegetation spread.
Although I am not aware of mathematical theorems that can be applied to this type of
front dynamics for (1), the behaviour is also exactly as one would expect mathemat-
ically. Since (0, A) and (u+, w+) are both locally stable one expects evolution to a
wave front whose speed is uniquely determined by the model parameters. Moreover a
straightforward phase plane calculation shows that as A increases the basin of attrac-
tion of (0, A) in the local dynamics decreases, while that of (u+, w+) increases, so
that one expects the wave velocity to decrease. This behaviour is entirely reminiscent
of front dynamics in simple bistable systems such as the Fitzhugh–Nagumo equation
(Murray 2003).

At A = Acrit,1 there is a stationary transition front, satisfying

∂2u/∂x2 + wu2 − Bu = 0 (2a)

ν ∂w/∂x + A − wu2 − w = 0 (2b)

with (u, w) → (0, A) as x → −∞ and (u, w) → (u+, w+) as x → +∞. At (0, A)

the eigenvalues of (2a) can be calculated immediately as ν and ±B1/2. At (u+, w+)

the eigenvalues λ satisfy
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(a) (b)

Fig. 3 A schematic illustration of the two types of interface considered in Sect. 3. In a there is uniform
vegetation on the uphill side and bare ground on the downhill side; the reverse applies in b

Fig. 4 The qualitative form of the function F(.), defined in (3)

ν = F(λ) ≡ λ3 + Bλ

(1 + u2+)λ2 − B(u2+ − 1)
. (3)

Since u+ > 1, F(.) has the qualitative form shown in Fig. 4: note that it is an odd
function of λ, and differentiation shows immediately that there are only two finite
turning points, at which F = ±Ftp say. Therefore when ν < Ftp there are three real
eigenvalues, two positive and one negative, while for ν > Ftp there is one real negative
eigenvalue and a complex conjugate pair of eigenvalues. The latter have positive real
part for ν just above Ftp. Suppose now that the real part was negative for larger values
of ν. Then there would be a value of ν for which there was a real negative eigenvalue
and two pure imaginary eigenvalues; the product of these would be positive, which
contradicts (3). Therefore for all ν > Ftp there is one real negative eigenvalue and a
complex conjugate pair of eigenvalues with positive real part. It follows that for all
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ν the transition front solution of (2a) must approach (u+, w+) along the eigenvector
corresponding to the real negative eigenvalue, and this enables a detailed numerical
investigation via shooting (e.g. Atkinson et al. 2009, §11.2.2).

My numerical method was to solve (2a) backwards in x , starting close to (u+, w+)

on the eigenvector corresponding to the real negative eigenvalue. General theory shows
that for greatest accuracy, the distance between the starting point and the steady state
should scale with the square root of the local numerical error (Sherratt et al. 2010,
Appendix B). Figure 5a–c shows the form of this solution as A is varied, when B =
0.45 and ν = 5. When A is small, the solution terminates at the unstable steady
state (u−, w−), and when A is larger it terminates at infinity. The critical value Acrit,1
delimits these two behaviours. This is shown in Fig. 5b; of course the starting point for
this solution is not exactly on the stable manifold of (u+, w+), and consequently the
numerical solution in Fig. 5b ultimately moves away from (0, A) after coming very

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 5 Examples of the use of numerical shooting to calculate the critical value Acrit,1 of the rainfall
parameter A above which vegetation can spread in the downhill direction. The plots are numerical solutions
for u of (2a), solved backwards in x starting close to (u+, w+) on the eigenvector corresponding to the
(unique) real negative eigenvalue. I omit the corresponding solutions for w, for brevity. For smaller values
of ν such as in the left hand column, Acrit,1 corresponds to a transition between this solution terminating
at (u−, w−) and at infinity. For larger values of ν such as in the right hand column, Acrit,1 corresponds to
a transition between the solution terminating at (0, A) but with a non-monotonic form, and terminating at
infinity
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close to it. Nevertheless, the transition between the solution approaching (u−, w−)

and infinity enables easy numerical estimation of Acrit,1.
This behaviour is typical when ν is small but for larger values of ν the sequence

is more complicated, as illustrated in Fig. 5d–g for B = 0.45 and ν = 45. Again
there are two cases: the solution terminates at (u−, w−) for small A and at infinity
for large A. However my solutions suggest that there is now a range of intermediate
values of A for which the solution terminates at (0, A) (Fig. 5e, f). The plot in Fig. 5e
is typical for such values of A: the solution is non-monotonic in u (and w, not shown).
Rough estimates of Acrit,1 made via the direction of interface movement in numerical
solutions of (1) suggest that Acrit,1 corresponds to the transition between these non-
monotonic solutions and solutions that terminate at infinity (Fig. 5g), and that at this
critical value the solution is monotonic. Again this enables easy numerical estimation
of Acrit,1. To avoid confusion I repeat the remark made earlier in connection with
Fig. 5b, that the numerical solutions shown in Fig. 5e, f ultimately tend to infinity
after passing very close to (0, A) because the starting point is not exactly on the stable
manifold of (u+, w+). Concerning the family of non-monotonic solutions connecting
(u+, w+) and (0, A), I hypothesise that these are all unstable as solutions of (1). This
hypothesis is quite plausible given the various results of the form ‘nonmonotonic-
ity implies instability’ that are known for scalar reaction-diffusion equations (Hagan
1981; Henry 1981), but I leave a detailed investigation of this for possible future
work.

My characterisation of Acrit,1 as a transition value for the solutions of (2a) again
makes it straightforward to obtain accurate numerical estimates of this critical value.
Figure 6 shows a typical example of the variation of Acrit,1 with ν.

I now consider interfaces with the bare ground state (0, A) on the uphill side (x →
+∞) and the uniformly vegetated state (u+, w+) on the downhill side (x → −∞),
as illustrated schematically in Fig. 3b. Note that this scenario implicitly imposes the
restriction A ≥ 2B, which is required for the existence of the vegetated state (u+, w+).
For large ν, numerical simulations of (1) show that this type of interface evolves to a
travelling wave front that always moves in the uphill direction; intuitively, the downhill
flow of water is sufficient to enable vegetation spread even at the minimum rainfall level
A = 2B. However for smaller ν the travelling wave velocity passes through zero at a
second critical value Acrit,2. Again this is consistent with intuitive and mathematical
expectations. The downhill flow of water will facilitate the spread of vegetation in
this case, whereas it impedes vegetation spread for the interfaces considered in the
previous paragraphs, which have vegetation on the uphill side and bare ground on the
downhill side. Therefore one expects that Acrit,2 < Acrit,1, and this is confirmed in
simulations.

Again, at A = Acrit,2 there will be a stationary transition front, satisfying (2a),
and my previous investigation of eigenvalues shows that this front must approach
(0, Acrit,2) along the eigenvector corresponding to the negative eigenvalue −B1/2.
Again this enables numerical calculation of the front solution via shooting, and in
this case the situation is straightforward. For large A the solution starting on this
eigenvector terminates at (u−, w−), while for small A it terminates at infinity (not
illustrated for brevity). The critical value Acrit,2 is the threshold between these two
behaviours, and this enables straightforward numerical estimation. An example of
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the variation of Acrit,2 with ν is shown in Fig. 6; this figure uses B = 0.45 but my
calculations suggest that the qualitative form is independent of B(<2). Note that the
Acrit,2 locus in this figure terminates at ν ≈ 1.55, when Acrit,2 = 2B. For larger
values of ν transition fronts of the type illustrated in Fig. 3b always move in the
uphill direction. Note also that when ν = 0 the two types of interface are identi-
cal and therefore Acrit,1 = Acrit,2. Their common value can in fact be calculated
exactly: it is a special case of a problem on waves of desertification studied by Sher-
ratt and Synodinos (2012). Briefly, when ν = 0 (2b) can be rewritten to give w

as a function of u, so that (2a) reduces to a single ode for u which can be solved
exactly.

The plots of Acrit,1 and Acrit,2 in Fig. 6 divide the ν–A parameter plane into four
regions. In region I vegetation cannot spread in either the uphill or downhill direction,
so that a localised patch of vegetation collapses (as in Fig. 2f). In region II vegetation
will spread uphill but not downhill: thus both edges of a localised vegetation patch

Fig. 6 A division of the ν–A parameter plane into regions with qualitatively different behaviours following
a localised introduction of vegetation on a bare hillslope, for B = 0.45. In region I a localised patch of
vegetation collapses because vegetation cannot spread in either the uphill or downhill direction (e.g. Fig. 2f).
In region II both edges of the patch migrate uphill so that colonisation does not occur (e.g. Fig. 2b–d). In
region III the patch will spread in all directions, so that colonisation occurs (e.g. Fig. 2a). Finally in region IV
A < 2B so that there is no uniformly vegetated state: here vegetation dies out, either via collapse or via
uphill migration (e.g. Fig. 2e). Region II is subdivided by the locus of Turing–Hopf bifurcation points.
Below this line patterns form within the vegetation as it migrates uphill (e.g. Fig. 2c, d); above the line
vegetation remains uniform (e.g. Fig. 2b)
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spread uphill (as in Fig. 2b–d). In region III vegetation will spread in both the uphill
and downhill directions, so that colonisation occurs (as in Fig. 2a). Finally in region IV
A < 2B so that there is no uniform vegetated state: here vegetation dies out, either
via collapse or via uphill migration (as in Fig. 2e). Figure 6 also shows the locus
of Turing–Hopf bifurcation points AT H . This is easily calculated via linear stability
analysis (Sherratt 2005; van der Stelt et al. 2013) and is the maximum value of rainfall
A at which patterns exist (Sherratt 2013a; Siteur et al. 2014b). The key result is that
this thick line lies entirely below region III in which colonisation occurs. This implies
that colonisation cannot generate spatial patterns. I repeated the calculations in Fig. 6
for B = 0.1, 0.2, . . . , 2.0 (recall that B is constrained to lie between 0 and 2); the
qualitative form of the plot is the same in all cases, so that my conclusion is quite
general.

4 Colonisation with water diffusion

I have shown that in the absence of water diffusion (D = 0), colonisation of a uniform
slope cannot generate patterned vegetation. However when water diffusion is included
in the model (1), this is no longer true. Figure 7 shows the results of model simulations
when a localised region of vegetation is introduced onto a bare uniform slope when
D = 100, for different values of the rainfall parameter A. The initial vegetation
simply collapses when A is sufficiently small (Fig. 7a). At slightly larger A both
upslope and downslope edges of the vegetation patch move in the uphill direction
(Fig. 7b), and then at sufficiently large A the downslope edge begins to move downhill,
heralding colonisation (Fig. 7c). However in contrast to the behaviour when D = 0,
the colonising vegetation is patterned, with a transition to colonisation by uniform
vegetation at larger rainfall levels (Fig. 7d). Intuitively, water diffusion increases flow
from unvegetated to vegetated regions, and thus enhances the pattern-forming potential
of the system. Consequently water diffusion increases the maximum rainfall level for
pattern formation, and at a sufficiently high diffusion coefficient this maximum rainfall
level exceeds that required for colonisation.

As in Sect. 3 this behaviour can be investigated in detail by considering interfaces
between the desert state (0, A) and the uniformly vegetated state (u+, w+) in one
space dimension (no y dependence). Again, colonisation occurs at values of rainfall
A above the critical value Acrit at which there is a stationary front with (0, A) on
the downhill side and (u+, w+) on the uphill side. However the odes satisfied by
this stationary front are now fourth order, and numerical calculation of eigenvalues
indicates that the stable and unstable manifolds are both two-dimensional at both (0, A)

and (u+, w+). This means that the straightforward numerical shooting approach that
I used to calculate Acrit,1 and Acrit,2 (when D = 0) cannot be used for Acrit . Instead
I based my calculation on simulations of the pdes (1). This is much more expensive
in computer time, so that one cannot cover such a large number of parameter sets as
in Sect. 3.

I solved (1) with step function initial conditions u(x, t = 0) = (u+, w+) for
x > 0 and (0, A) for x < 0. The solution evolves to a transition front moving with
constant shape and velocity. I calculated this velocity numerically, and then regarded
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Fig. 7 The dynamics of a localised patch of vegetation on a uniform hillslope, as predicted by the model (1)
with the water diffusion term included. Colonisation occurs in c and d since the vegetation patch expands
in both the uphill and downhill directions. In b there is no colonisation because both the upslope and
downslope edges of the patch move uphill, while in a the vegetation simply collapses. The plotted region is
0 < x < 750, 0 < y < 182.5. In b–d I set u(x, y, t = 0) = u+ when 150 < x < 250 and 73 < y < 109.5
with u(x, y, t = 0) = 0 otherwise; w(x, y, t = 0) ≡ A. In a the initial vegetation patch is larger to give
greater visual clarity: 150 < x < 450 and 45.5 < y < 137. The parameters are B = 0.45, ν = 16 and
D = 100, with A as indicated. The shading denotes vegetation density, as shown in the scalebar. In a I
solve the equations on the plotted region, but in b–d the solution domain extends to x = 2000 (though only
0 < x < 750 is plotted) in order that vegetation does not invade to the right hand boundary. The boundary
conditions are periodic in y and Dirichlet (u = 0, w = A) at x = 0 and a x = 750, b–d x = 2000. The
equations were solved using an alternating direction implicit finite difference method with upwinding, with
a uniform grid spacing of 0.5 and a time step of 1.25 × 10−3

it as a function of A, using a numerical bisection method to solve for the value of
A at which the velocity is zero: this is Acrit . The relatively long run times for each
simulation2 mean that in practice the accuracy of this procedure is limited by the

2 The numerical details of my implementation are as follows. I solve (1) using a semi-implicit
finite difference scheme with upwinding, using a grid spacing δx = 0.5 and a time step δt =
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number of iterations that can be performed in the numerical bisection procedure. My
implementation is accurate to about ±10−3.

Figure 8 plots Acrit against ν for four values of the water diffusion coefficient D.
Note that for any given values of A and D, there is a critical value of ν above which
colonisation does not occur. This is consistent with field data from a wide range of
environments showing that there are threshold levels of slope angle above which plant
colonisation does not occur; this includes in particular studies of semi-arid parts of
Spain (Cantón et al. 2004; Bochet et al. 2009). Superimposed on the plots in Fig. 8 are
the loci of pattern onset (Turing–Hopf bifurcation) points: patterns occur for values
of A below this locus. For D sufficiently small (below about 10) Acrit is above the
pattern onset locus for all ν, so that colonisation cannot generate spatial patterns—as
for the case of D = 0 discussed in Sect. 3. But for larger values of D, Acrit lies
below the pattern onset locus when ν is sufficiently small, implying that colonisation
generates spatial patterns. The upper limit on ν for this to occur increases with D, and
this is shown more clearly in Fig. 9 which plots results for five values of the plant loss
parameter B.

5 Colonisation in the Rietkerk model

The previous sections of the paper have all concerned Klausmeier’s (1999) model (1)
for semi-arid vegetation. It is natural to ask whether my conclusions are restricted
to this model, or whether they apply more generally. To address this question, I now
consider colonisation in the Rietkerk model (HilleRisLambers et al. 2001; Rietkerk
et al. 2002). This is widely used in modelling studies of vegetation patterning (e.g. Kéfi
et al. 2008; Dagbovie and Sherratt 2014; Yizhaq et al. 2014; Bonachela et al. 2015),
and like the Klausmeier model it is based on the water redistribution hypothesis for
semi-arid vegetation patterning (see Sect. 1). The key difference between the two
models is that Rietkerk’s formulation uses separate water variables: soil water W and
surface water O . This is more realistic since the kinetic and transport properties are
both different for soil and surface water. Nevertheless it remains a major simplification
since in reality the dynamics of soil water are three-dimensional and are modulated by
spatiotemporal variability in rooting depth (Nippert and Knapp 2007a, b; Schwinning
2010). The equations governing these water variables and the plant biomass P are:

Footnote 2 continued
min{0.8δx/ν, 0.1δx2/ max{D, 1}}; here the factor of 0.8 ensures that the CFL number is less than 1.
I solve on a space domain of length 500 with Dirichlet conditions (u, w) = (0, A) at x = −250 and
(u, w) = (u+, w+) at x = 250. I solve over a time interval of length 1000. For the first iteration of the
bisection method I use initial conditions (u, w) = (0, A) on −250 < x < 0 and (u, w) = (u+, w+) on
0 < x < 250. For subsequent iterations I use the final solution form from the previous iteration, translated
to be centred at x = 0: this accelerates convergence to the travelling wave profile. I estimate the velocity
of this wave via the distance travelled over the final 100 time units, or over an earlier 100 time units if the
front reaches an end of the domain before the end of the solution period. I terminate my numerical bisection
method when two successive values of A differ by less than 10−3.
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(a)

(b)

(e) (f) (g) (h)

(c)

(d)

Fig. 8 Parameter conditions for vegetation patterning following colonisation. a–d The solid line shows
the critical value of A below which patterns occur, and the dots show Acrit , the value of A above which
colonisation occurs. Therefore colonisation generates vegetation patterns when the dots lie below the solid
line. The dashed line is A = 2B, which is the minimum rainfall level for existence of the vegetated steady
state (u+, w+). The plant loss parameter B = 0.45. As an aid to interpretation, I show space–time plots
of simulations of (1) in one space dimension (no y dependence) for D = 50. The values of A and ν are as
indicated in c: e A = 1.05, ν = 13; f A = 1.05, ν = 3; g A = 1.3, ν = 8; h A = 1.33, ν = 18. The shading
indicates plant biomass, as shown in the scalebar. I solve for 0 < t < 250 and 0 < x < 600 with Dirichlet
boundary conditions (u = 0, w = A). At t = 0 I set u = u+ on 75 < x < 175, with u = 0 otherwise;
w(x, t = 0) = A for all x . The equations were solved using a finite difference method with upwinding,
with a uniform grid spacing of 0.5 and a time step of 0.0005

Plant
biomass ∂P/∂T =

plant
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Cgmax
W

W + k1
P −

plant
loss

︷︸︸︷

dP (4a)
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Fig. 9 The critical value of slope ν below which colonisation generates patterned vegetation, as a function
of water diffusivity D. Figure 8 demonstrates that when D is greater than about 10, colonisation leads to
patterned vegetation on sufficiently shallow slopes. This figure plots the upper limit on ν for B = 0.45 as
used in Fig. 8 and also for four other values of B. I calculated the critical value of ν from results such as
those illustrated in Fig. 8, using linear interpolation to estimate when A = Acrit crosses the pattern onset
(Turing–Hopf) locus. When B = 0.05 and D = 50 colonisation generates uniform vegetation for all slopes
ν ≥ 0, and hence no data point is plotted
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P + k2
︸ ︷︷ ︸
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of surface water

+ R
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. (4c)

Here T is time and X is space, running in the uphill direction. In view of the longer run
times for simulations of (4a) compared to (1), I restrict attention to a one-dimensional
domain; this restriction is reasonable in light of my work on the Klausmeier model
earlier in the paper, where the key phenomena can be seen and understood in one space
dimension.

The various model parameters and their interpretations are listed in Table 1. Note
in particular that the known positive correlation between vegetation cover and the
infiltration of rainwater (Rietkerk et al. 2000; Thompson et al. 2010) is reflected in the
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Table 1 Ecological interpretations of the parameters in the Rietkerk model (4a)

Parameter Value Interpretation

C 10 Conversion of water uptake into new biomass

gmax 0.05 Maximum water uptake per unit of biomass

k1 5 Half-saturation constant for water uptake

DP 0.1 Plant dispersal coefficient

α 0.2 Maximum infiltration rate

k2 5 Saturation constant for water infiltration

W0 0.2 Water infiltration rate without plants

rW 0.2 Specific rate of evaporation and drainage

DW 0.1 Diffusion coefficient of soil water

d 0.25 Per capita death rate of plants

μ Varied Advection coefficient for downslope water flow

R Varied Mean rainfall

DO Varied Diffusion coefficient of surface water

In this paper I vary R, μ and DO and keep the other parameters fixed at the values given in the table, which
are also the values given by Rietkerk et al. (2002). It should be noted that the parameters are dimensional,
and a useful tabulation of the units for all variables and parameters is given in HilleRisLambers et al.
(2001). Since I am not making any use of the dimensional values in this paper, I omit the units when giving
numerical values

term (P + k2W0)/(P + k2) (W0 < 1). Note also that as in the Klausmeier model (1),
plant growth rate is assumed to be proportional to the uptake of soil water by plants;
this is taken to have a Michaelis–Menten dependence on soil water. The number of
parameters in (4a) clearly precludes any attempt at a systematic study. Therefore I will
fix all parameters at the values given in Rietkerk et al. (2002) and listed in Table 1,
with the exception of the rainfall R, the slope μ and the water diffusion coeffient DO ,
which I vary. Note that I focussed on variations in corresponding parameters in the
Klausmeier model (1) in Sects. 3 and 4.

My main conclusion in Sect. 3 was that for the Klausmeier model (1) without
water diffusion, colonisation always generates uniform rather than patterned vegeta-
tion. However for the Rietkerk model (4a) this is not the case. Figure 10a–d shows
simulations of (4a) with DO = 0 for different rainfall levels R, when a localised region
of vegetation is imposed on otherwise bare ground. At very low rainfall, the initial
vegetation patch collapses (not shown in Fig. 10). At larger rainfall levels the patch
aggregates and migrates uphill (Fig. 10a), and then above a critical rainfall level the
patch forms into distinct bands, and also a succession of new bands are initiated on the
downhill side of the patch’s initial location (Fig. 10b). This is an example of colonisa-
tion, with the resulting vegetation being patterned. Further increases in rainfall cause
the patch to spread as uniform vegetation rather than bands, although new bands are
still initiated on the downhill side of the patch’s initial location (Fig. 10c). Finally
at sufficiently high rainfall levels, uniform vegetation spreads in both the uphill and
downhill directions (Fig. 10d). The small oscillations in the downhill spread of vege-
tation in Fig. 10d are a vestige of the initiation of new bands that occurs in Fig. 10b,
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Fig. 10 Colonisation in the Rietkerk model (4a) when the surface water diffusion coefficient DO = 0. a–d
The dynamics of a localised patch of vegetation on a uniform hillslope, as predicted by the standard model.
e–h The corresponding solutions of the amended model, in which the kinetic terms in the P equation are
set to zero when P < 10−3. The slope parameter ν = 4, with the values of rainfall R as indicated on
the solution panels, and with other parameters as given in Table 1. The shading indicates plant biomass,
as shown in the scalebar. The spatial domain is 0 < X < 5000 and the solution is shown up to a–c, e–g
T = 13,000, d, h T = 9000; the geometry of the plots in d, h reflects the different time interval. The initial
vegetation patch is of length 500, with downhill edge at a–c, e–g X = 1500, d, h X = 2000; given the
faster downhill migration for R = 3, this difference extends the time before the whole domain is colonised.
Since I stop the simulations before this occurs, I use Dirichlet boundary conditions with variables set to
the desert steady state. The equations were solved using a finite difference method with upwinding, with a
uniform grid spacing of 0.5 and a time step of 0.1; these give a CFL number of 0.8

c. The key result here is Fig. 10b, which shows colonisation-induced patterning even
though DO = 0; this appears to contradict the predictions of the Klausmeier model
discussed in Sect. 3. Admittedly there is a non-zero diffusion term in the soil water
equation, and it is important to clarify that there is no precise relationship between the
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parameter D in the Klausmeier model and the parameters DO and DW in the Rietkerk
model. Nevertheless the model (4a) with DO = 0 can be considered broadly equiv-
alent to (1) with D = 0 since in both cases setting the diffusion coefficient to zero
prevents pattern formation on flat terrain (μ = 0 and ν = 0 respectively). Moreover,
setting DW = 0 (as well as DO = 0) actually has a negligible effect on results such
as those shown in Fig. 10a–d.

In fact the occurrence of colonisation-induced patterning in (4a) can be explained
very simply by considering the stability of spatially uniform steady states, which are a
“vegetated” state (Ps,Ws, Os) and a “desert” state (P,W, O)=(0, R/rw, R/(αW0)).
Here

Ws = dk1

Cgmax − d
Ps = R − rwWs

gmaxWs
(Ws + k1) Os = R

α

Ps + k2

Ps + k2W0
.

These two steady states meet at a transcritical bifurcation, which occurs at R = 1 for the
parameter values listed in Table 1. For R < 1 the desert state is stable to homogeneous
perturbations while the vegetated state is unstable. For R > 1 the opposite applies:
the desert steady state is unstable and the vegetated state is stable (to homogeneous
perturbations). Note also that Ps < 0 for R < 1 so that the vegetated steady state is not
ecologically relevant. This stability profile is quite different from that in the Klausmeier
model, in which the desert state is stable for all parameters. This difference has major
implications for colonisation. In the Klausmeier model transition fronts between the
desert state and either uniform or patterned vegetated states are between two stable
states, so that the direction of movement can be expected to be parameter-dependent.
However in the Rietkerk model with R > 1 and other parameters as in Table 1,
the desert state is unstable, so that one necessarily expects it to be invaded by either
uniform or patterned vegetation in both the uphill and downhill directions. This is
analogous to the difference between travelling wave fronts in the Fitzhugh–Nagumo
equation and the Fisher equation (Murray 2003). Thus one expects colonisation to
occur whenever R > 1, exactly as is seen in Fig. 10a–d. In Fig. 10b, c the spread of
the vegetation occurs via a simple transition front in the uphill direction, but via an
oscillatory front in the downhill direction.

This understanding of the results in Fig. 10a–d raises a natural approach to recon-
ciling the two models. The oscillatory spread of vegetation in the downhill direction in
Fig. 10b, c involves the slow growth of vegetation from a density close to zero, until a
vegetation band is initiated and the density drops again to close to zero. This intuitive
description, which is based only on observations of the simulation results, suggests that
the oscillatory downhill spread depends on the growth of plant density when this is very
small—possibly too small to be of real ecological significance. Therefore I amended
the model (4a) by setting the kinetic terms in the P equation to zero whenever P < ε

for some small threshold ε. This type of cut-off has been used for other pde models of
population dynamics by a number of previous authors to avoid phenomena that arise
from meaninglessly low population densities (Gurney et al. 1998; Cruickshank et al.
1999; Popović 2011; Benguria and Depassier 2014). I arbitrarily fix the default value
of ε at 10−3, but increasing or decreasing ε by as much as two orders of magnitude
has no visible effect on the solutions. Figure 10e–h shows the solutions corresponding
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to those in Fig. 10a–d, but with this amended model. The initiation of new vegetation
bands on the downhill side of the initial patch, which occurs in Fig. 10b–d, is absent
in the corresponding simulations of the amended model (Fig. 10f–h), but otherwise
the results are unaffected by the imposition of the threshold.

The results in Fig. 10e–h are consistent with those for the Klausmeier model with
D = 0, and this holds for all of the simulations that I have done for other values of μ

and R. That is, the amended Rietkerk model also predicts that in the absence of water
diffusion (DO = 0), colonisation of bare ground always generates uniform vegetation
rather than patterns. When considering this prediction, one must ask: how realistic is
my amendment to the Rietkerk model? Effectively, my amendment is equivalent to an
extremely slight weak Allee effect (Courchamp et al. 2008). There is a large body of
literature on Allee effects in populations of both wind- and insect-pollinated plants (e.g.
Davis et al. 2004; Duffy et al. 2013). These studies demonstrate significant reductions
in per capita growth rate at low population densities for some plant species, but this
is certainly species-dependent. However a cessation of plant growth at extremely low
densities is a reasonable general assumption. It should be noted that my amendment
to the model does not affect any of the simulations in Rietkerk et al. ’s (2002) original
paper, since these concern patterns forming via the disruption of uniform vegetation,
so that the vegetation density never approaches zero.

I now consider colonisation in the Rietkerk model (4a) when DO > 0, retaining my
amendment of zero P kinetics when P < ε = 10−3. Again my aim is to investigate
whether model simulations agree with the predictions of the Klausmeier model (1). I
ran a large number of simulations in which I imposed a localised patch of vegetation on
an otherwise bare uniform slope, varying the slope μ, the rainfall R, and the surface
water diffusion coefficient DO , with the other parameters fixed at the values given
in Table 1. In each case I noted whether or not colonisation occurred, and whether
the vegetation was uniform or patterned; there is an additional possible outcome of
collapse, which occurs at very low rainfall levels. I found that provided DO is suffi-
ciently large (greater than about 0.5), colonisation generates patterned vegetation for
some levels of rainfall on sufficiently shallow slopes (Fig. 11). The threshold slope for
colonisation-induced patterning increases with the surface water diffusion coefficient
DO (compare parts a and b of Fig. 11). These predictions are in complete accord with
those of the Klausmeier model (see Sect. 4). Since the two models are quite differ-
ent mathematically, this suggests that the predictions are a consequence of the basic
underlying assumption of water redistribution as the pattern generation mechanism.

6 Discussion

In the extensive literature on mathematical modelling of vegetation patterns, there is
almost no discussion of pattern generation via the colonisation of bare ground. Instead,
attention has focussed on patterns that arise from the degradation of spatially uniform
vegetation. The present paper is a preliminary attempt to rectify this omission. I have
shown that colonisation always generates uniform rather than patterned vegetation in
the absence of water diffusion. However when a sufficiently large water diffusion term
is included, colonisation does generate patterns on shallow slopes. These conclusions
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Fig. 11 Colonisation in the Rietkerk model (4a) with surface water diffusion. I show the dynamics when
a localised patch of vegetation is imposed on an otherwise bare uniform hillslope for a grid of values of
the slope ν and the rainfall R, for a DO = 10, b DO = 50. The other parameters are as in Table 1. The
shading indicates plant biomass, as shown in the scalebar. I use the amended version of (4a) in which the
kinetic terms in the P equation are set to zero when P < 10−3. The panels with highlighted borders are
those for which colonisation occurs and generates patterns. The spatial domain is 0 < X < 2260 and the
solutions are shown up to T = 6333. The initial vegetation patch is 670 < X < 850. The equations were
solved using a finite difference method with upwinding, with a uniform grid spacing of 0.5 and a time step
of a 0.0025, b 0.0005. Comparison of this figure with Fig. 8 shows the close qualitative correspondence
between the predictions of the Klausmeier and Rietkerk models

apply both for the Klausmeier model and for the amended Rietkerk model. An impor-
tant question is how these conditions on water diffusion coefficient and slope compare
with values that are appropriate for real semi-arid ecosystems.

The ability of the extended Klausmeier model (1) to generate spatial patterns on flat
ground, in contrast to Klausmeier’s (1999) original formulation, was first highlighted
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by Kealy and Wollkind (2012). However those authors did not attempt to estimate
the water diffusion coefficient D in (1), and to my knowledge only two previous
papers have done this. Ursino (2005) used the Richards equation for soil water flow
to obtain an expression for D in terms of soil parameters, leading to estimates of D
between 7.5 and 110. Siteur et al. (2014b) obtained the larger estimate of 500 by com-
paring the rainfall range giving patterns in the model and in field data. Consequently
there remains considerable uncertainty about the appropriate value of D, but almost all
of these previous estimates are large enough to enable colonisation-induced patterning
on sufficiently shallow slopes. The value of the slope parameter clearly depends on
the gradient of the slope being considered. Banded vegetation is restricted to shallow
slopes, c. 0.2–2 % (Valentin et al. 1999; Deblauwe et al. 2012); on steeper slopes
rainfall generates gullies rather than moving via sheet flow. As for D, estimates for
the slope parameter ν are limited and variable. Most previous studies (including much
of my own work) follow Klausmeier’s (1999) original paper and use ν = 182.5, even
though the paper contains no justification for this value. Ursino’s (2005) calculations
based on the Richards equation give estimates between 3 and 40 times the percentage
slope.

In view of this variability and uncertainty one cannot make definitive statements,
but it is clear that the generation of vegetation patterns by colonisation is at least a
realistic possibility in real ecosystems. Moreover it is notable that the D–ν pair used
in the recent study of Siteur et al. (2014b) and the typical pairs implied by Ursino’s
(2005) calculations are both consistent with colonisation-generated patterns.

For the Rietkerk model, almost all previous applications concern flat ground. Two
exceptions are the original paper of Rietkerk et al. (2002), who take μ = 10 (units:
m day−1), and Thompson and Katul (2009), who take μ = 2 (units: m day−1). In
neither case is the value justified in any way, and both papers set DO = 0. The only
previous paper that I am aware of that uses (4a) with μ and DO both non-zero is
Dagbovie and Sherratt (2014), in which Rietkerk’s value μ = 10 is used, and DO is
varied between 0 and 100. The maximum value of 100 (units: m 2day−1) in that paper
is chosen simply because it is the value used by Rietkerk et al. (2002) on flat ground,
which itself has no clear justification. In summary there is really no good ecological
basis for the values of the relevant parameters in the Rietkerk model (4a).

Empirical data on the historical origin of vegetation patterns is very limited indeed.
The issue is not even mentioned in most recent literature, but it was considered by a
number of the early papers in the field, from the 1950s and 1960s. That discussion does
suggest colonisation as the origin of some instances of vegetation bands, which were
usually termed arcs at that time. Greenwood (1957) concluded that colonisation was
the cause of arc formation at a site in Somaliland (modern day north-west Somalia).
This was based on the observation of small “embryo arcs” in aerial photographs, and
the author presented detailed arguments on how these could develop into a full-blown
pattern. White (1969) presented more quantitative evidence from a site in Jordan. He
noted that the soil in the bare interbands had been highly sodic (i.e. had a high sodium
content) for “some considerable time”, which argues against degradation of previously
uniform vegetation. However other early papers argue in favour of degradation of
uniform vegetation to form bands, although with very little supportive evidence (Boaler
and Hodge 1964; Hemming 1965). More recently Kusserow and Haenisch (1999)
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have also drawn this conclusion, based on a comparison of aerial photographs of a
single location between 1950 and 1996. Taken together, these papers suggest that
colonisation of bare ground and degradation of uniform vegetation do both act as
generators of vegetation patterns in the field. Definitive conclusions about pattern
origin require long-term photographic records. Currently, comprehensive data of this
type dates back only to the US spy satellite missions of the 1960s, with a much
more limited collection of aerial photographs from the late 1940s and 1950s. As time
progresses, the lengthening of this database will reveal a clearer picture of pattern
origin. In the mean time one must rely on proxy data; in particular, I have shown
recently that it may be possible to infer pattern origin from the relationship between
the wavelength of banded vegetation and the slope gradient (Sherratt 2015).

Acknowledgments I am grateful to Eleanor Tanner for valuable discussions.
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