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INVASION GENERATES PERIODIC TRAVELING WAVES
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Abstract. Periodic Traveling waves (wavetrains) have been studied extensively in systems of
reaction-diffusion equations. An important motivation for this work is the identification of periodic
Traveling waves of abundance in ecological data sets. However, for many natural populations diffusion
is a poor representation of movement, and spatial convolution with a dispersal kernel is more realistic
because of its ability to reflect rare long-distance dispersal events. In marked contrast to the literature
on reaction-diffusion systems, there has been almost no previous work on periodic Traveling waves in
models with nonlocal dispersal. In this paper the author considers the generation of such waves by
the invasion of the unstable coexistence state in cyclic predator-prey systems with nonlocal dispersal
for which the dispersal kernel is thin-tailed (exponentially bounded). The main result is formulae for
the wave period and amplitude when the parameters of the local population dynamics are close to a
Hopf bifurcation point. This result is tested via detailed comparison of the dependence on parameters
of the stability of the periodic Traveling waves generated by invasion. The paper concludes with a
comparison between the predictions of the nonlocal model and the corresponding reaction-diffusion
model. Specifically, the parameter regions giving stable and unstable waves are shown to be the
same to leading order close to a Hopf bifurcation point, irrespective of the choice of dispersal kernel.
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1. Introduction. Periodic Traveling wave (ptw) solutions of reaction-diffusion
equations have been studied since the 1970s [1]. At that time the main foci of research
were the existence and stability of ptws and applications to oscillatory chemical
reactions. Mechanisms by which ptws might arise naturally in applications were
first studied in the 1990s, in particular the generation of ptws behind invasive fronts
[2, 3, 4]. Shortly after this, new ecological data sets revealed ptws of abundance in
some cyclic populations [5, 6]. Consequently there has been a large body of subsequent
research on ptw generation by biological invasions. This includes work on applications
to fungal colonies [7], tumor growth [8], and cell populations [9], but by far the largest
body of literature concerns systems of predators and their prey [4, 10, 11, 12, 13, 14,
15, 16, 17]. In parallel with this theoretical research, field studies are revealing ptws in
an increasingly wide range of natural populations, including voles [18, 19], moths [20],
and red grouse [21]. To my knowledge, there is no definitive evidence for the origin
of the ptws in any of these systems, but invasion is a clear contender in many cases.

The dominant model formalism used for studying ptws in ecological systems has
been reaction-diffusion equations. However, for many ecological populations, spatial
convolution is more realistic than diffusion as a representation of dispersal. Empirical
data on many plant and animal species reveal rare long-distance dispersal events,
and these can be reflected in a quantifiable way in dispersal kernels. Methods for
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294 JONATHAN A. SHERRATT

kernel estimation include tracking of dispersing individuals (e.g., [22]), mark-recapture
(e.g., [23]), and, for plants, genotyping of individual seedlings to determine the source
plant (e.g., [24]). The review paper [25] gives a comprehensive list of populations for
which kernels have been estimated using such methods.

In [26] I studied the existence and stability of ptw solutions of equations with
nonlocal dispersal and with oscillatory kinetics of “λ–ω” type (defined below). To my
knowledge that is the only study of ptws in autonomous models in which dispersal is
represented by an integral term, and in the present paper I will extend that work to
study ptw generation in both λ–ω and predator-prey models with nonlocal dispersal.
However it is important to comment that there is a relatively large literature on ptws
in reaction-diffusion models with nonlocal terms in the kinetics. This includes equa-
tions in which intraspecific competition terms involve spatial convolutions [27, 28] and
those with nonlocal delays [29, 30, 31]. Of particular note is that in contrast to the
local case, scalar reaction-diffusion equations with nonlocal kinetics can have ptw

solutions [28]. Of particular relevance to the present paper is the work of Merchant
and Nagata [32, 33] on ptws in predator-prey models with nonlocal prey competition;
this will be discussed in more detail below. Finally, some authors have studied ptws
in integrodifferential equation models for populations in landscapes that vary period-
ically in space or time [34, 35], although here the wave periodicity simply reflects the
periodic variation in the parameters.

Predator-prey models typically have three spatially uniform equilibria: the trivial
state with no predators or prey, a prey-only state, and a coexistence state. Cyclic pop-
ulation dynamics arise when the last of these loses stability via a Hopf bifurcation.
These local dynamics lead to the consideration of two different invasion scenarios:
invasion of the prey-only state by predators, and invasion of the coexistence state
by oscillatory behavior. The first of these is the most important but also the most
complicated. When the coexistence state is stable, one expects simple invasive tran-
sition fronts, and their existence has been proved for a number of models [36, 37, 38].
However, for cyclic populations numerical simulations (e.g., [4, 13, 16]) reveal a rich
variety of behaviors. This includes “point-to-periodic” fronts in which the front is
followed by a wavetrain moving in parallel with it; a ptw behind the front moving
with a different speed and in some cases in the opposite direction; a band of ptws
behind the front, followed by spatiotemporal disorder; and spatiotemporal disorder
immediately behind the front. In addition, the coexistence state can appear as a
permanent spatiotemporal transient behind the front, separating it from the spa-
tiotemporal oscillations. Even for the much-studied case of reaction-diffusion models,
our understanding of these phenomena remains very incomplete. It is known that
in some cases a “point-to-periodic” invasive front exists [39, 40, 41], and it is known
that close to Hopf bifurcation, the point-to-point invasive transition front exists and
remains stable, with the spatiotemporal oscillations in the wake of the front being
separated from the front interface [42, 43]. Beyond this there are no precise results,
although a number of authors have attempted to understand the complex array of
behaviors using formal or approximate methods. In particular, in [44] I predicted
the wavelength of the ptw occurring behind the front when the kinetic parameters
are close to Hopf bifurcation, and this approximation was improved significantly in
recent work by Merchant and Nagata [16, 33]. Also, the widths of spatiotemporally
transient regions of coexistence steady state and ptws have been estimated using
absolute stability theory [45, 46, 47].

In view of this highly incomplete picture of the invasion of the prey-only state by
predators for (local) reaction-diffusion models, I will not consider this type of invasion
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in my work on the more complicated case of models with nonlocal dispersal—of course,
it remains a natural area for future work. Instead I will restrict attention to the
invasion of the coexistence state. From the viewpoint of applications, this is relevant
when a change in environmental conditions alters the local dynamics from noncyclic
to cyclic, so that the coexistence state changes stability: a local disturbance would
then initiate an invasion process. For example, in southern Finland the characteristic
3-year cycle in vole abundance disappeared in the mid 1990s, reappearing about 5
years later [48], possibly due to the differing responses of interacting vole species to
climate changes. This corresponds to a stabilization and then a destabilization of
the coexistence state; unfortunately there is no spatially extended field data for this
system. A number of other multiyear population cycles have also collapsed over the
last two decades; see [49] for a detailed review. For example, long-standing vole cycles
in Kielder Forest (UK) disappeared in the late 1990s; here the cause is thought to
be milder winters [18]. In this case there has not been a reappearance of cycles but
it seems likely that a series of severe winters would destabilize the noncycling state.
The invasion of the coexistence state is also important mathematically. The various
studies described above on the invasion of the prey-only state all suggest that the key
to understanding this process, and to predicting the wavelength of ptws generated
by invasion, actually lies in invasions of the coexistence state. This is particularly
emphasized by the recent work of Merchant and Nagata [16, 33].

The main result of the present paper is a prediction of the wavelength and am-
plitude of the ptw generated by the invasion of the coexistence steady state for
parameter values close to a Hopf bifurcation point in the local population dynamics.
The outline of the paper is as follows. In section 2 I describe the predator-prey model
used, and I present the results of numerical simulations. In sections 3 and 4 I consider
behavior close to a Hopf bifurcation in the local population dynamics; in that case
I am able to make analytical predictions of the selected ptw and its stability. In
section 5 I discuss numerical tests of these predictions in the case of a dispersal kernel
of Laplace type, for which the two nonlocal equations can be rewritten as a system of
four (local) partial differential equations; this enables a more detailed numerical inves-
tigation of ptw solutions. In section 6 I make a quantitative comparison between the
nonlocal predator-prey model and the corresponding (local) reaction-diffusion model,
focusing on the regions in parameter space giving stable and unstable ptws behind
invasion. Finally in section 7 I discuss the implications of my results and highlight
some key questions for future work.

2. Numerical simulations of invasion of the predator-prey coexistence
state. The approach used in this paper is not restricted to particular predator-
prey kinetics, but for the purposes of specific illustration I will use the Rosenzweig–
MacArthur model [50], augmented by nonlocal dispersal:

predators
∂p

∂t
=

dispersal︷ ︸︸ ︷∫ y=+∞

y=−∞
K(x− y)p(y, t)dy − p+

benefit from
predation︷ ︸︸ ︷

(C/B)hp/(1 + Ch)−
death︷ ︸︸ ︷
p/AB,(2.1a)

prey
∂h

∂t
=

∫ y=+∞

y=−∞
K(x− y)h(y, t)dy − h︸ ︷︷ ︸

dispersal

+ h(1− h)︸ ︷︷ ︸
intrinsic

birth & death

− Cph

1 + Ch
.︸ ︷︷ ︸

predation

(2.1b)

These equations are nondimensional with p(x, t) and h(x, t) denoting predator and
prey densities at space point x and time t; throughout the paper I will consider only
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296 JONATHAN A. SHERRATT

one-dimensional spatial domains. The local population dynamics make the simple as-
sumptions of logistic prey growth, an increasing saturating rate of prey consumption
per predator, a birth rate of predators that is proportional to this consumption, and
a constant per capita predator death rate. For mathematical simplicity I assume that
the two populations disperse at the same rate. This is appropriate for most aquatic
systems, but many terrestrial predators disperse more rapidly than their prey, and
potential extensions to unequal dispersal are discussed in section 7. The dispersal
kernel K(y) must be ≥ 0 for all y and must satisfy

∫ +∞
−∞ K(y) dy = 1 so that the

dispersal term conserves population. I assume that K(.) is even, corresponding to
unbiased dispersal; an important case for which an asymmetric kernel would be ap-
propriate is a population living in a river [51]. Also, I will restrict attention to kernels
that are “thin-tailed,” i.e., exponentially bounded, using as particular examples the
Laplace and Gaussian kernels,

Laplace kernel: K(s) = (1/2a) exp
(−|s|/a),(2.2)

Gaussian kernel: K(s) =
(
1/a

√
π
)
exp

(−s2/a2),(2.3)

(a > 0), which are probably the most widely used kernels in ecological and epidemio-
logical applications (e.g., [51, 52, 53]). Note that I exclude from consideration kernels
that are “fat-tailed.” These are used in many ecological applications [25, 54, 55],
especially in the context of invasion fronts (e.g., [56]). A detailed study of ptws for
such kernels is an important issue for future work, but in [26] I showed that for the
commonly used Cauchy kernel all nontrivial ptws are unstable, suggesting that ptws
may not be an important solution form for populations that disperse via fat-tailed
kernels.

Equations (2.1) have three homogeneous steady states: trivial p = h = 0; prey-
only p = 0, h = 1; and coexistence p = Ahs(1−hs), h = hs ≡ 1/ [C(A− 1)]. The last
of these is unstable when A > 1 and C > (A+1)/(A−1), with a stable limit cycle [57].
Figure 1 shows typical numerical simulations of the invasion of the coexistence state
when it is unstable, following a localized disturbance. An invasion front moves across
the domain, leaving behind it either ptws (Figure 1(a)) or a band of ptws followed
by spatiotemporal irregularity (Figure 1(b)). It is important to comment that I have
not proved the existence of ptws for (2.1) and this is a natural area for future work.
However, numerical results such as those in Figure 1 strongly suggest existence.

My numerical results are qualitatively the same as those found in numerical sim-
ulations of reaction-diffusion predator-prey models [59, 60, 61], where the irregular
oscillations develop when the ptw selected behind the invasion is unstable. However,
the details of ptw selection for general parameters remain unclear even for reaction-
diffusion models, and in this paper I will focus on behavior close to Hopf bifurcation,
that is, when C is slightly greater than (A+ 1)/(A− 1). In this case I will derive an
approximation to the selected ptw.

3. Invasions in λ–ω systems. Close to a Hopf bifurcation in the local dy-
namics, (2.1) can be approximated by the appropriate normal form. For oscillatory
reaction-diffusion equations and a wide range of other spatially extended oscillatory
systems, the normal form is the complex Ginzburg–Landau equation [62, 63]. How-
ever, for systems with nonlocal spatial coupling a different, nonlocal normal form is
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Fig. 1. Examples of ptw generation in the predator-prey model (2.1). In (a) the selected ptw

is stable, while in (b) it is unstable so that one sees a band of ptws immediately behind the invasion,
followed by spatiotemporal disorder. I show space-time plots for predator and prey densities when (a)
2500 ≤ t ≤ 2580, (b) 5500 ≤ t ≤ 5580; the vertical separation of the solutions is proportional to the
time interval. The equations were solved numerically by discretizing in space using a uniform grid
(δx = 0.5) and solving the resulting system of odes using the stiff ode solver rowmap [58] (http://
numerik.mathematik.uni-halle.de/ forschung/ software/), with relative and absolute error tolerances
both set to 10−8. The ode system includes a numerical calculation of the spatial convolutions using
fast Fourier transforms. To avoid the difficulties posed by boundaries with non-Dirichlet conditions,
my simulations actually involved invasions initiated by a local perturbation in the center of the
domain (at x = 0); the solutions are plotted for x > 0 only.

needed [64, 65, 66, 67], and for (2.1) this is

∂u/∂t =

∫ y=+∞

y=−∞
K(x− y)u(y, t)dy − u+ (λ0 − λ1r

2)u − (ω0 + ω1r
2)v,

(3.1)

∂v/∂t =

∫ y=+∞

y=−∞
K(x− y)v(y, t)dy − v + (ω0 + ω1r

2)u + (λ0 − λ1r
2)v .

Here r =
√
u2 + v2 and λ0, λ1, ω0, and ω1 are constants with λ0, λ1 > 0. The “λ–ω”

kinetics in (3.1) are the same as in the complex Ginzburg–Landau equation, which
has been widely studied in both the applied mathematics [68] and the physics [63]
literature. In (3.1) u = v = 0 corresponds to the coexistence steady state of the
predator-prey model (2.1), and Figure 2 shows two numerical simulations of invasions
of this steady state, following a localized disturbance. As expected, the solution for
u (and for v) shows a clear resemblance to the predator-prey solutions in Figure 1.
Moreover, plots of the amplitude r and phase gradient ∂θ/∂x (where θ = tan−1(v/u))
have the form of transition fronts moving with constant shape and speed (middle and
lower panels of Figure 2). This solution form is the key to predicting the ptw that is
selected by the invasion.
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Fig. 2. Examples of ptw generation in the λ–ω equations (3.1). In (a) the selected ptw is stable,
while in (b) it is unstable so that one sees a band of ptws immediately behind the invasion, followed
by spatiotemporal disorder. The upper panels show space-time plots for u when 70 ≤ t ≤ 100, with
the vertical separation of the solutions being proportional to the time interval; the corresponding
solutions for v are qualitatively the same but with a phase difference in the oscillations. The middle
panels show the amplitude r as a function of space x at times t = 10, 20, 30, . . . , 100. The thick gray
line indicates the amplitude predicted by the calculations in section 4. The lower panels show the
corresponding solutions for the phase gradient ∂θ/∂x; this is not defined when r = 0 and is plotted
only when the numerical solution for r exceeds 10−5. In these panels the thick gray line indicates
the wavenumber predicted by the calculations in section 4. Equations (3.1) were solved numerically
as described in the legend of Figure 1, with a uniform space mesh of width 0.05 and with the absolute
and relative error tolerances in rowmap set to 10−10.

Specifically, I will prove the following, which is the main result of the paper.
Theorem 3.1. Suppose that (3.1) has a solution of the form r(x, t) = r̃(z) > 0

and θx = ψ̃(z), where z = x− ct with c > 0 constant, and with

r̃(z) → R, r̃′(z) → 0, ψ̃(z) → α as z → −∞,

r̃(z) ∼ r0e
−ξz, ψ̃(z) ∼ ψ0e

−ξz as z → ∞,

where R > 0, r0 > 0, and ψ0 �= 0. Suppose also that K(.) is even with K(s) ≤ K0e
−θ|s|

when |s| is sufficiently large for some K0 > 0 and some θ > ξ. Then
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(i) α satisfies

(3.2) c α = (ω1/λ1)

[
1− λ0 −

∫ s=+∞

s=−∞
K(s) cos(αs) ds

]

(ii) to leading order as z → ∞, r̃(z) satisfies

c
∂r̃

∂z
+

∫ ζ=+∞

ζ=−∞
K(z − ζ) r̃(ζ) dζ + (λ0 − 1)r̃ = 0 .

To avoid confusion, I remark that I use the notation f1(z) ∼ f2(z) as z → ∞ to
mean that f1(z)/f2(z) → 1.

The appropriate value of c is suggested by work on spreading speeds in simpler
equations. For the scalar integrodifferential equation

∂w

∂t
=

∫ y=+∞

y=−∞
K(x− y)w(y, t)dy − w + f(w)(3.3a)

with f(0) = f(1) = 0, f ′(0) > 0, f ′(1) < 0,(3.3b)

spreading speeds were first considered by Medlock and Kot [52], who argued intu-
itively that for localized disturbances to the w = 0 state, the spreading speed of
the disturbance will be minη>0(1/η) [M(η)− 1 + f ′(0)]; I denote by ηmin the value
of η at which this minimum occurs. Here the moment generating function M(η) =∫ s=+∞
s=−∞ K(s)eηs ds. The arguments of Medlock and Kot [52] also indicate that the tail

of the wave front decays to zero in proportion to e−ηminz.
These intuitively based results were subsequently proved by Lutscher, Pachepsky,

and Lewis [51] given suitable assumptions on f(.) andK(.), and then by Zhang, Li, and
Wang [69] for more general functions. For systems of integrodifferential equations, the
only results on spreading speeds that I am aware of concern SIR epidemic models [70].
In particular, there is to my knowledge no theory for the spreading speed in (3.1).
However, Theorem 3.1(ii) implies that linearizing (3.1) about u = v = 0 gives an
integrodifferential equation for r that corresponds exactly with the linearization of
(3.3) about w = 0. This suggests that for invasion in λ–ω systems, the appropriate
value of the invasion speed c is

(3.4) c = min
η>0

C(η), where C(η) = (1/η) [M(η)− 1 + λ0] .

Moreover, the value of ξ in the statement of the theorem will be ηmin. Typically the
set S := {η |M(η) is defined} is either the whole real line or an open subset; this
is assumed, for example, in the work of Lutscher, Pachepsky, and Lewis [51], and it
holds for both the Laplace and Gaussian kernels. Then ξ = ηmin ∈ S, and also there
is a θ ∈ S that is > ξ, as required for Theorem 3.1. I cannot prove (3.4) but I have
confirmed it in numerical simulations for a wide range of parameter values, for the
Laplace and Gaussian kernels.

Taken together, (3.2) and (3.4) can be solved for α, the value of ∂θ/∂x behind
the invasion. Solutions of (3.1) with constant r = R and ∂θ/∂x = α are periodic
Traveling waves, with the form

u = R cos
[
αx +

(
ω0 + ω1R

2
)
t
]
, v = R sin

[
αx+

(
ω0 + ω1R

2
)
t
]D
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[26]. Moreover R is given in terms of α by

(3.5) R =

[
(1/λ1)

(
λ0 − 1 +

∫ s=+∞

s=−∞
K(s) cos(αs)

)]1/2

[26]. Therefore the determination of the value of α behind the invasion solves the ptw
selection problem. In section 4 I will illustrate this by constructing explicit solutions
for the cases of Laplace and Gaussian kernels, and I will compare my results with
those from numerical simulations. In the remainder of this section I present a proof
of Theorem 3.1. The main difficulty in the proof is the delicate limiting behavior of
the various improper integrals near the two asymptotes of the transition front.

Proof of Theorem 3.1.
Stage 1: Formulating the Traveling wave equations. I begin by rewriting (3.1) in

terms of r(x, t) =
(
u2 + v2

)1/2
and θ(x, t) = tan−1(v/u), which gives

∂r

∂t
=

∫ y=+∞

y=−∞
K(x− y)r(y, t) cos

[
θ(y, t)− θ(x, t)

]
dy + (λ0 − 1)r − λ1r

3,(3.6a)

∂θ

∂t
=

∫ y=+∞

y=−∞
K(x− y)

r(y, t)

r(x, t)
sin

[
θ(y, t)− θ(x, t)

]
dy + ω0 + ω1r

2 .(3.6b)

The solution form given in the statement of the theorem is r = r̃(z) and θ = Ψ̃(z) +
θ0(t), where Ψ̃(.) is an integral of ψ̃(.). Substituting this into (3.6) implies that dθ0/dt
is a constant, say, θ0 = θ1t+ θ2, with the Traveling wave equations being

0 = c
dr̃

dz
+ I + (λ0 − 1)r̃ − λ1r̃

3,(3.7a)

0 = cψ̃ − θ1 + J + ω0 + ω1r̃
2 ,(3.7b)

I =

∫ ζ=+∞

ζ=−∞
K(z − ζ) r̃(ζ) cos

[
Ψ̃(ζ)− Ψ̃(z)

]
dζ ,(3.7c)

J =

∫ ζ=+∞

ζ=−∞
K(z − ζ)

r̃(ζ)

r̃(z)
sin

[
Ψ̃(ζ)− Ψ̃(z)

]
dζ .(3.7d)

Stage 2: Form of (3.7a) as z → −∞. Consider a function σ(z) > 0 such that
σ(z) and |z| − σ(z) both → ∞ as z → ±∞. Later in the proof I will impose a
tighter restriction on σ(z). I then define ρ(z) = sups≥−σ(z) |r̃(z − s)−R| and δ(z) =
sups≥−σ(z)

∣∣ψ̃(z−s)−α∣∣. Note that the limiting behaviors z+σ(z) → −∞, r̃(z) → R,

and ψ̃(z) → α as z → −∞ together imply that ρ(z) and δ(z) → 0.
My basic approach is to use the behavior of (3.7a) as z → −∞ to deduce a

relationship between R and α. The difficulty lies in determining the behavior of I
in this limit. I will investigate this by splitting the domain of integration into two
parts: ζ < z + σ(z) and ζ > z + σ(z). The limiting behavior of the first part can be
resolved using the property σ(z) → ∞ as z → −∞, while for the second part I use
z + σ(z) → −∞.
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Using the triangle inequality,
∣∣∣I −R

∫ s=∞
s=−∞K(s) cos(αs) ds

∣∣∣ ≤ I1+I2+I3, where

I1 =

∣∣∣∣∣
∫ s=−σ(z)

s=−∞
K(s)r̃(z − s) cos

[
Ψ̃(z − s)− Ψ̃(z)

]
ds

∣∣∣∣∣ ,
I2 =

∣∣∣∣∣
∫ s=∞

s=−σ(z)

K(s)r̃(z − s) cos
[
Ψ̃(z − s)− Ψ̃(z)

]
ds−R

∫ s=∞

s=−σ(z)

K(s) cos(αs) ds

∣∣∣∣∣ ,
I3 =

∣∣∣∣∣R
∫ s=−σ(z)

s=−∞
K(s) cos(αs) ds

∣∣∣∣∣ .
Now I1 ≤ ∫ s=−σ(z)

s=−∞ K(s)r̃(z − s) ds. Since r̃(z) is defined for all z and tends to
finite limits as z → ±∞, it is bounded, say, r̃(z) ≤ C1 for all z. Thus I1 ≤
C1

∫ s=−σ(z)

s=−∞ K(s) ds. This integral converges for all z since K(.) is exponentially
bounded. Moreover σ(z) → ∞ as z → −∞. Therefore I1 → 0 as z → −∞. Similarly
I3 → 0 as z → −∞.

I turn now to the more difficult case of I2, which can be rewritten as

I2 =

∫ s=∞

s=−σ(z)

K(s)
∣∣ r̃(z − s)︸ ︷︷ ︸

p1

cos
[
Ψ̃(z − s)− Ψ̃(z)

]︸ ︷︷ ︸
q1

− R︸︷︷︸
p2

cos(αs)︸ ︷︷ ︸
q2

∣∣ ds .
I use the inequality |p1q1 − p2q2| ≤ |q1| · |p1 − p2|+ |p2| · |q1 − q2| with the pi’s and qi’s
as indicated. Noting that |r̃(z − s) − R| ≤ ρ(z) throughout the range of integration,
this gives

(3.8) I2 ≤ ρ(z)

∫ s=∞

s=−σ(z)

K(s) ds+R

∫ s=∞

s=−σ(z)

K(s)
∣∣∣cos[Ψ̃(z − s)−Ψ̃(z)

]−cos(αs)
∣∣∣ ds .

Since the derivative of cos(.) is ≤ 1 in absolute value, the mean value theorem implies∣∣∣cos[Ψ̃(z − s)− Ψ̃(z)
]− cos(αs)

∣∣∣ = ∣∣∣cos[Ψ̃(z − s)− Ψ̃(z)
]− cos(−αs)

∣∣∣
≤

∣∣∣Ψ̃(z − s)− Ψ̃(z) + αs
∣∣∣ ,

and applying the mean value theorem again gives∣∣∣Ψ̃(z − s)− Ψ̃(z) + αs
∣∣∣ ≤ ∣∣∣(−s) [ψ̃(z − τs) − α

]∣∣∣ for some τ ∈ (0, 1)

≤ |s|δ(z) for all s ≥ −σ(z).

Also
∫ s=∞
s=−σ(z)

K(s) ds ≤ ∫ s=∞
s=−∞K(s) ds = 1. Hence (3.8) implies that I2 ≤ ρ(z) +

δ(z)R
∫ s=∞
s=−∞K(s)|s| ds. The kernel K(.) is exponentially bounded, and thus the

integral in this expression converges. Since ρ(z) and δ(z) both → 0 as z → −∞,
I2 → 0 also.

I have shown that I → R
∫ s=∞
s=−∞K(s) cos(αs) ds as z → −∞. Since r̃′(z) → 0 and

r̃(z) → R in this limit, (3.7a) implies that λ0−1−λ1R2+
∫ s=∞
s=−∞K(s) cos(αs) ds = 0.

Stage 3: Form of (3.7b) as z → −∞. For (3.7b) the basic difficulty in determining
behavior as z → −∞ again lies in the integral term. A directly analogous methodology
to that used above for I shows that as z → −∞, J → ∫ s=∞

s=−∞K(s) sin(αs) ds = 0
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sinceK(.) is even. The only new feature in the proof of this limit, compared to that for
I, is that one must consider the term

(
[r̃(z − s)/r̃(z)]− 1

)
in an integral with respect

to s with limits s = −σ(z) and s = ∞. For this, I note that throughout the range
of integration and for z sufficiently large and negative, R − ρ(z) ≤ r̃(z), r̃(z − s) ≤
R+ρ(z). Also, for z sufficiently large and negative, ρ(z) ≤ 1

2R. Together these imply∣∣ [r̃(z − s)/r̃(z)]− 1
∣∣ ≤ (4/R)ρ(z). With the addition of this inequality, the argument

used above for the limiting value of I can be extended directly to J . The limiting
form of (3.7b) as z → −∞ then follows immediately:

c α− θ1 + ω0 + ω1R
2 = 0.

Stage 4: Value of θ1. It remains to determine the value of the constant θ1, which
follows from a consideration of the limiting behavior of the Traveling wave equations
(3.7) as z → ∞. I will show that J → 0 in this limit, from which it follows that
θ1 = ω0. I split the integral J into three parts, J = J1 + J2 + J3, where

J1 =

∫ s=−σ(z)

s=−∞
K(s)

r̃(z − s)

r̃(z)
sin

[
Ψ̃(z − s)− Ψ̃(z)

]
ds,

J2 =

∫ s=σ(z)

s=−σ(z)

K(s)
r̃(z − s)

r̃(z)
sin

[
Ψ̃(z − s)− Ψ̃(z)

]
ds,

J3 =

∫ s=∞

s=σ(z)

K(s)
r̃(z − s)

r̃(z)
sin

[
Ψ̃(z − s)− Ψ̃(z)

]
ds .

I consider first J1. I have r̃(z) ∼ r0e
−ξz ⇒ r̃(z) ≥ C2e

−ξz for sufficiently large z,
and also r̃(z − s) ≤ C3e

−ξ(z−s) ≤ C3e
−ξ(z+σ(z)) for s ≤ −σ(z), again for sufficiently

large z. Here C2 and C3 are suitably chosen positive constants. Also K(s) ≤ K0e
θs

throughout the range of integration, for sufficiently large z. Combining these gives

|J1| ≤ (C3K0/C2)e
−ξσ(z)

∫ s=−σ(z)

s=−∞
eθs ds = (C3K0/θC2)e

−(ξ+θ)σ(z) → 0 as z → ∞ .

For J3 a similar argument can be used with one important difference. For s in
this range of integration r̃(z − s) may or may not approach zero as z → ∞; however,
I argued above that r̃(.) is bounded. Hence throughout the range of integration
r̃(z − s) ≤ C1. Also, as for J1, provided that z is sufficiently large r̃(z) ≥ C2e

−ξz,
and also K(s) ≤ K0e

−θs throughout the range of integration. Therefore

(3.9) |J3| ≤ (C1K0/C2)e
ξz

∫ s=∞

s=σ(z)

e−θs ds = (C1K0/θC2)e
(ξz−θσ(z)) .

Thus far, the choice of σ(z) has been arbitrary within the constraints that σ(z) and
|z|−σ(z) → ∞ as z → ±∞. I now make the more specific assumption that σ(z) = γ|z|
with 1 > γ > ξ/θ. Then (3.9) implies that J3 → 0 as z → ∞.

I will now show that J2 also → 0 as z → ∞. This requires consideration of the sin
function in the integrand. I define μ(z) = sups≤σ(z)

∣∣ψ̃(z − s)
∣∣. Since z − σ(z) → ∞

and ψ̃(z) → 0 as z → ∞, μ(z) → 0. The mean value theorem implies that for
some τ ∈ (0, 1),

∣∣Ψ̃(z − s) − Ψ̃(z)
∣∣ ≤ |s| · ∣∣ψ̃(z − τs)

∣∣ ≤ μ(z)|s|; this holds for all
s ≤ σ(z). Since the derivative of sin(.) is ≤ 1 in absolute value, applying the mean
value theorem again gives

∣∣sin[Ψ̃(z − s)− Ψ̃(z)
]∣∣ ≤ μ(z)|s|. Turning attention to the

r̃(z − s)/r̃(z) term, for sufficiently large z we have r̃(z) ≥ C4e
−ξz and also r̃(z − s) ≤
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C5e
ξ(s−z) for any s ∈ (−σ(z), σ(z)). Here C4 and C5 are suitably chosen positive

constants. These various inequalities give |J2| ≤ (C5/C4)μ(z)
∫ s=σ(z)

s=−σ(z)
|s|K(s)eξs ds.

Since K(s) ≤ K0e
−θ|s| for sufficiently large |s| with θ > ξ, the integral in the above

expression converges as z → ∞, implying that J2 → 0. This completes the proof of
part (i) of the theorem.

Stage 5: Linearization of (3.7a) as z → ∞. The approach used to prove that
J → 0 as z → ∞ can also be used to prove part (ii) of the theorem, concerning the
linearization of (3.7a) ahead of the invasion. Using r̃(z− s) ≤ C1 and

∣∣cos[Ψ̃(z− s)−
Ψ̃(z)

]− 1
∣∣ ≤ 2 for all z and s,∣∣∣∣I −

∫ s=∞

s=−∞
K(s)r̃(z − s) ds

∣∣∣∣≤ 2C1

∫ s=∞

s=σ(z)

K(s) ds

+

∫ s=σ(z)

s=−∞
K(s)r̃(z − s) · ∣∣1− cos[Ψ̃(z − s)− Ψ̃(z)]

∣∣ ds .
For sufficiently large s, K(s) ≤ K0e

−θs ⇒ 2C1

∫ s=∞
s=σ(z)

K(s) ds ≤ 2(C1K0/θ) e
−θσ(z)

for sufficiently large z. I have shown above that
∣∣Ψ̃(z − s) − Ψ̃(z)

∣∣ ≤ μ(z)|s| for
s ≤ σ(z) and z sufficiently large; also r̃(z − s) ≤ C3e

−ξ(z−s). Using the standard
inequality 1− cosφ ≤ 1

2φ
2 (valid for all φ) it follows that∫ σ(z)

−∞
K(s)r̃(z − s) · ∣∣1−cos

[
Ψ̃(z − s)− Ψ̃(z)

]∣∣ ds ≤ 1
2C3μ(z)

2e−ξz

∫ σ(z)

−∞
K(s)eξss2 ds

≤ 1
2C3μ(z)

2e−ξz

∫ ∞

−∞
K(s)eξss2 ds

≤ C6μ(z)
2e−ξz

for some C6 > 0 as a result of the asymptotic behavior of K(s) as s → ±∞. Also
ψ̃(z) ∼ ψ0e

−ξz as z → ∞ ⇒ μ(z) ∼ |ψ0|e−ξ(z−σ(z)). Combining these results gives

(3.10)

∣∣∣∣I −
∫ s=∞

s=−∞
K(s)r̃(z − s) ds

∣∣∣∣ ≤ 2(C1K0/θ)e
−θσ(z) + C7e

−3ξz+2ξσ(z)

for some C7 > 0.
As z → ∞ both I and

∫ s=∞
s=−∞K(s)r̃(z− s) ds → 0. To obtain the linearization of

(3.7a) ahead of the wave, it is necessary to augment (3.10) with a careful estimate of∫ s=∞
s=−∞K(s)r̃(z − s) ds for large z. To do this, I recall that C2e

−ξ(z−s) ≤ r̃(z − s) ≤
C3e

−ξ(z−s) for all s ≤ σ(z), when z is sufficiently large. Also K(s) ≤ K0e
−θ|s| when

|s| is sufficiently large. Therefore for sufficiently large z,
∫ s=∞
s=−∞K(s)r̃(z−s) ds lies in[

C2e
−ξz

∫ s=σ(z)

s=−∞
K(s)eξs ds , C3e

−ξz

∫ s=σ(z)

s=−∞
K(s)eξs ds+K0

∫ s=∞

s=σ(z)

e−θsr̃(z − s) ds

]

⊆
[
C2e

−ξz

∫ s=0

s=−∞
K(s)eξs ds , C3e

−ξz

∫ s=∞

s=−∞
K(s)eξs ds+ (C1K0/θ)e

−θσ(z)

]
.

The asymptotic form of K(s) as s → ±∞ implies convergence of the integrals of
K(s)eξs on (−∞, 0) and (−∞,∞). Moreover both integrals must be strictly positive.
Therefore for suitable C8, C9 > 0

(3.11) C8e
−ξz ≤

∫ s=∞

s=−∞
K(s)r̃(z − s) ds ≤ C9e

−ξz + (C1K0/θ)e
−θσ(z) .
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Thus far I have assumed that σ(z) = γ|z| with 1 > γ > ξ/θ. I now tighten this
restriction, requiring 1 > γ > 3ξ/(2ξ + θ). Then e−θσ(z) 
 e−ξz and e−θσ(z) 

e−3ξz+2ξσ(z) as z → ∞. Therefore (3.10) implies that∣∣∣∣I −

∫ s=∞

s=−∞
K(s)r̃(z − s) ds

∣∣∣∣ ≤ C10e
−ξze−2(1−γ)ξz

for some C10 > 0 when z is sufficiently large, while (3.11) gives

C8e
−ξz ≤

∫ s=∞

s=−∞
K(s)r̃(z − s) ds ≤ C11e

−ξz

for some C11 > 0. Therefore I ∼ ∫ s=∞
s=−∞K(s)r̃(z − s) ds as z → ∞, which completes

the proof of part (ii) of the theorem.

4. PTW selection in λ–ω systems for Laplace and Gaussian kernels.
To illustrate the ptw selection implied by (3.2) and (3.4), and to enable numerical
verification of my results, I now consider the specific cases of kernels of Laplace (2.2)
and Gaussian (2.3) types.

4.1. Laplace kernel. For the Laplace form (2.2) of the kernel K(.), ptw solu-
tions of (3.1) are discussed in detail in [26]. Briefly, there is a one-to-one relationship
between wavenumber α and amplitude R: λ0 − λ1R

2 = a2α2/
(
1 + a2α2

)
. If λ0 ≥ 1

there are ptws for all values of α, while if λ0 < 1, then α must be ≤ [
λ0/(1−λ0)

]1/2
/a,

with the amplitude R being 0 at this maximum wavenumber. ptw stability is also de-
termined in [26]: ptws are unstable/stable when |α| is above/below αstab

L
∈ (

0, 1
a
√
3

)
,

which is the unique solution of an algebraic equation given in [26].
For this kernel, the moment generating function M(η) = 1/(1− a2η2) (valid for

|η| < 1/a). Using this, (3.4) gives c = aκL, where κL is an (algebraically complicated)

function of λ0. Turning to (3.2), the integral
∫ s=+∞
s=−∞ K(s) cos(αs) ds = 1/

(
1 + α2a2

)
and thus α satisfies

(4.1) κLαa = (ω1/λ1)
[
1− λ0 − 1/

(
1 + α2a2

)]
.

To consider solutions of (4.1), suppose first that ω1 > 0. Since λ1 > 0, the left- and
right-hand sides of (4.1) are respectively increasing and decreasing functions of α on
α < 0, and their values at α = 0 and −∞ imply that there is exactly one solution
for α in this range. The possibility of positive solutions must also be considered.
If λ0 > 1 this can be ruled out immediately because the right-hand side of (4.1) is
always negative. If λ0 < 1, then (4.1) can in fact have solutions with α > 0. However,

ptws are restricted to α <
[
λ0/(1 − λ0)

]1/2
/a, and in this range (and with α > 0)

the right-hand side of (4.1) is negative so that no solutions are possible. Directly
analogous arguments apply when ω1 < 0.

Thus (4.1) has exactly one solution for α, which has the opposite sign to ω1. This
solution can be above or below αstab

L
, implying that the selected ptw can be either

stable or unstable. Figure 2(a) shows an example of the former case. The invasion
leaves a ptw in its wake whose wavenumber and amplitude match the predicted
solution for α and the corresponding value of R.

4.2. Gaussian kernel. For K(.) given by (2.3), ptw solutions of (3.1) are again
discussed in detail in [26]. Again there is a one-to-one relationship between wavenum-
ber α and amplitude R, in this case given by λ0 − λ1R

2 = 1− exp
(−α2a2/4

)
. Again
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if λ0 ≥ 1 there are ptws for all values of α, while if λ0 < 1 there is a maximum

possible value of α, corresponding to R = 0: (2/a)
[
log

(
1/(1 − λ0)

)]1/2
. ptws are

unstable/stable when |α| is above/below a critical value αstab
G ∈ (

0,
√
2/a

)
, which is

the unique solution of an algebraic equation given in [26].
As for the Laplace kernel, there is a unique solution of (3.2), (3.4) for α in this

case, whose sign is opposite to that of ω1. The argument justifying this is directly
analogous to that for the Laplace kernel, and I give only a brief summary. Equation
(3.4) gives c = aκG, where κG > 0 depends on λ0. Then (3.2) implies

(4.2) (λ1/ω1)κGαa =
[
1− λ0 − e−α2a2/4

]
.

When α and ω1 have opposite signs, one side of (4.2) is increasing with the other
decreasing, as functions of α, and there is exactly one solution. When the signs are
the same, the left-hand side of (4.2) is positive, while the right-hand side is negative

for all α if λ0 > 1 and for all α < (2/a)
[
log

(
1/(1− λ0)

)]1/2
if λ0 < 1.

Again the solution for α can be above or below αstab
G , implying that the selected

ptw can be either stable or unstable. Figure 2(b) shows an example of the latter
case. A ptw develops behind the invasion and then destabilizes, giving irregular spa-
tiotemporal oscillations. Again, the wavenumber and amplitude of the ptw match
the predicted solution for α and the corresponding value of R. Note that in reaction-
diffusion equations with λ–ω kinetics, the width of the band of ptws immediately
behind the invasion front can be determined using the theory of absolute and con-
vective instabilities [45, 47]. For integrodifferential equations there is currently no
corresponding theory, and this is a natural target for future research.

5. Comparison of PTW selection in predator-prey and λ–ω systems.
For given predator-prey kinetics, the appropriate coefficients λ0, λ1, ω0, and ω1 can
be determined by the standard process of reduction to normal form [71]. For (2.1)
this process is described in detail in [13] and [72], and online supplements to those
papers contain maple worksheets that perform the derivation, with C treated as the
bifurcation parameter. The results are

λ0 =
(A− 1)C − (A+ 1)

2A(A+ 1)
, λ1 =

A+ 1

4A
,(5.1a)

ω0 =

(
A− 1

AB(A+ 1)

)1/2

+
[(A− 1)C − (A+ 1)] (A− 1)1/2

2A3/2(A+ 1)3/2B1/2
(5.1b)

ω1 =
(A+ 1)1/2

(
2A2+5AB−A5B−A4−4A3B+2A2−4A2B2+5AB−1

)
24[A7(A− 1)B3]1/2

.(5.1c)

These formulae enable quantitative comparisons between numerical results for (2.1)
and my analytical results for (3.1). Such comparisons are most effective if one can
compare not only predictions of the existence and selection of ptws but also pre-
dictions of their stability. To my knowledge there is currently no methodology by
which one can determine the stability of a ptw solution of a general integrodiffer-
ential equation such as (2.1), even numerically. However, for the special case of the
Laplace kernel (2.2) there is a standard trick via which (2.1) can be reduced to a
system of (local) partial differential equations. Standard numerical methods are then
available to test ptw stability, and this approach was used previously by Merchant and
Nagata [33] in their study of ptws in a reaction-diffusion predator-prey model with
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nonlocal prey competition. Using the notation P (x, t) =
∫ y=+∞
y=−∞ K(x − y)p(y, t)dy

and H(x, t) =
∫ y=+∞
y=−∞ K(x− y)h(y, t)dy, (2.1) can be rewritten as

∂p/∂t = P + (C/B)hp/(1 + Ch)− (1 + 1/AB)p,(5.2a)

∂h/∂t = H − h2 − Cph/(1 + Ch),(5.2b)

0 = ∂2P/∂x2 + (p− P )/a2,(5.2c)

0 = ∂2H/∂x2 + (h−H)/a2 .(5.2d)

I used the software package wavetrain [73], which uses numerical continuation to
determine the existence and stability of ptw solutions of partial differential equations.
In (5.2), the branches of ptw solutions start at Hopf bifurcation points in the Traveling
wave odes, and wavetrain traces these branches numerically to determine ptw

existence. For stability, wavetrain calculates the spectrum of a ptw by numerical
continuation, starting from eigenfunctions with the same periodicity as the ptw–
these can be approximated by solving a matrix eigenvalue problem [74]. The absence
of time derivatives in (5.2c), (5.2d) means that this matrix eigenvalue problem is of
generalized type [75]. wavetrain can also track the boundary between stable and
unstable ptws in a parameter plane, by numerically continuing parameter pairs at
which either the spectrum has zero curvature at the origin (Eckhaus points) or the
spectrum touches the imaginary axis away from the origin (Hopf points) [75].

The normal form coefficients (5.1) apply when C is regarded as the bifurcation
parameter; recall that the kinetics have a Hopf bifurcation at C = (A + 1)/(A− 1).
Therefore it is most convenient to consider the dependence of ptws on the parameter
B, with fixed values ofA and C. Figure 3 illustrates the results of investigations of this
type, with A = 2 and C = 3.5, 3.1, and 3.02; the Hopf bifurcation occurs at C = 3.
The figure shows wavelength vs B. I plot the minimum wavelength for ptws and
the stability boundaries, both as calculated numerically for (5.2) (dashed curves) and
as obtained using my analytical results for (3.1) with (5.1) (solid curves). For both
loci the analytical approximations and numerical calculations approach one another
as C approaches the Hopf bifurcation value, as expected. wavetrain identifies the
stability boundary as being of Eckhaus type, as predicted by my analysis in [26]
of ptw stability for (3.1),(2.2). I also plot my prediction of the ptw selected by
invasion in (3.1), (2.2), (5.1) and the wavelength of the ptws that develop in numerical
simulations of invasion in (2.1). Again, the two approach one another as C approaches
(A+ 1)/(A− 1). In keeping with the form of the stability boundaries, my numerical
simulations show a band of ptws followed by spatiotemporal irregularities when B is
either small or large, but only ptws at intermediate B (Figures 3(d)–(f)). Note that
when the selected wave is unstable but close to the stability boundary, the band of
ptws is very wide, and irregularities only occur on a large spatial domain.

6. Comparison of PTW stability in local and nonlocal predator-prey
models. My numerical simulations (Figures 1, 2, 3(d)–(f)) demonstrate a strong qual-
itative similarity between ptw generation in models with nonlocal dispersal and in
reaction-diffusion models. However, my analytical work enables a more quantitative
comparison. A natural approach to this is to consider the stability of the ptw se-
lected by the invasion process close to Hopf bifurcation, as a function of the kinetic
parameters A and B. To begin I choose ε > 0. Then for given values of A > 1
and B, I take C = (1 + ε)(A + 1)/(A − 1); recall that (A + 1)/(A − 1) is the Hopf
bifurcation point in the local population dynamics. I then calculate the coefficients
λ0, λ1, ω0, and ω1 using (5.1), and I use (3.2) and (3.4) to determine the wavenumber
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Fig. 3. (a)–(c) Comparison of numerical results on ptws and analytical results from the normal
form approximation, for the Laplace dispersal kernel (2.2). The parameter A = 2 in all cases, so
that the Hopf bifurcation in the kinetics occurs at C = 3. Three types of curve are plotted: the locus
of Hopf bifurcation points in the Traveling wave equations, which gives the minimum wavelength for
ptws to exist; the stability boundary, above which ptws are stable; and the locus of ptws selected
by invasion. All three of these curves are calculated analytically in section 4.1 for the normal form
equations. The minimum wavelength and the stability boundary were calculated numerically for
(5.2) using the software package wavetrain, as described in the main text. The wavelength selected
by invasion was calculated by numerical simulation: details of my numerical method are given in
the legend of Figure 1. Numerical convergence tests show that the error arising from the spatial
discretization is proportional to δx2. I calculated the wavelength for δx = 0.5 and δx = 0.25 and
then used Richardson extrapolation to obtain a more accurate wavelength estimate. Note that the
variable time-stepping used by rowmap makes it impossible to use convergence acceleration to reduce
the temporal component of the error; I set both absolute and relative error tolerances to 10−8. (d)–
(f) Space-time plots of ptw generation by invasion for C = 3.5 and for three different values of B.
These plots are intended to illustrate the behaviors represented in (a)–(c), and the corresponding
data points are labeled in (a). The simulations are actually run on −4000 ≤ x ≤ 4000, with the
coexistence steady state perturbed near x = 0 at time t = 0, but for greater clarity I show only part
of the domain. The solutions are plotted for 14600 ≤ t ≤ 14640, with time increasing up the page
and with the separation of the solutions being proportional to the time interval. In all three cases
a ptw is generated behind the invasion. In (d) and (f) the ptws are unstable and occur only as a
relatively thin band before destabilizing into spatiotemporal disorder. In (e) the ptw is also unstable
(see (a)), but the maximum positive eigenvalue associated with the instability is much smaller and
therefore the ptws persist for a much greater distance behind invasion: in fact there is no visible
instability even on the full domain −4000 ≤ x ≤ 4000.
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Fig. 4. Division of the A–B parameter plane into regions for which invasion of the coexistence
steady state generates stable and unstable ptws. I show the result for two values of ε = C − (A +
1)/(A−1), in each case for nonlocal dispersal with the Laplace and Gaussian kernels and for diffusive
dispersal. For given A and B, the stability of the ptw selected by invasion can be determined as
described in the main text. To calculate the curves shown in the figure, I first calculated stability over
a grid of A–B values and then used a numerical equation solver to obtain more accurate locations
of the stability boundary.

of the ptw selected behind invasion. I then test the stability of this ptw using the
conditions derived in [26]. Using this approach, one can divide the A–B plane into
regions giving stable and unstable ptws behind invasion. In [13] I implemented this
procedure for the reaction-diffusion model with the same local dynamics as in (2.1)
but with dispersal represented by scalar linear diffusion; the results are presented in
Figure 3 of [13] and are reproduced in Figure 4 here. The selected ptw is unstable for
small (close to 1) and large values of A, but (provided that B is greater than about 2)
there is a range of intermediate values of A for which the ptw is stable.

For the reaction-diffusion model the stability of the selected wave is independent of
ε (i.e., of C) and depends only on A and B [13]. This statement requires clarification:
what I mean is that within the context of the normal form approximation (3.1),
stability is determined by the coefficients λ1 and ω1 only, and these are independent of
C. Away from the Hopf bifurcation in the local dynamics the stability of the selected
ptw does depend on C, but close to Hopf bifurcation this occurs only via higher
order terms, beyond the basic λ–ω normal form expansion. However, my calculations
in sections 3 and 4 show that for the normal form of the model with nonlocal dispersal
(2.1) the selected wave and its stability depend on the coefficient λ0 (as well as λ1 and
ω1) and hence on ε. Figure 4 shows the boundary in the A–B plane between stable
and unstable waves for two different values of ε and for the Laplace and Gaussian
kernels. Even for the large value of ε = 1 the two curves are close to one another
and to the stability boundary for the reaction-diffusion model; for small values of ε
the three curves are almost indistinguishable. This remarkable result implies that
provided the kinetic parameters are not too far from the Hopf bifurcation point, there
is a close quantitative similarity between the predictions of reaction-diffusion models
of ptw generation behind invasion and those of models with nonlocal dispersal.

I now explore this quantitative similarity in detail, proving the following result.
Theorem 6.1. Consider the generation of ptws in (2.1) by an invasion with

speed given by (3.4), and suppose that the kernel K(.) is exponentially bounded. Then
to leading order as C → (A + 1)/(A − 1)+, the condition for the selected ptw to be
Eckhaus stable is the same as in the corresponding reaction-diffusion model, i.e., the
equations with the same local dynamics and scalar diffusion.
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The phrase “Eckhaus stable” means that the ptw is stable to perturbations of
sufficiently small wavenumber. For the reaction-diffusion model (with scalar diffusion)
corresponding to (3.1) it is known that Eckhaus stability of a ptw implies stability,
and in [26] I show that this also holds for (3.1) when the kernel is of Laplace or
Gaussian type. However, in general Eckhaus stability does not imply stability for
(3.1), even for thin-tailed kernels: a counterexample is given in [26].

Theorem 6.1 implies that to leading order close to Hopf bifurcation, the boundary
in parameter space between the generation of stable and unstable ptws behind inva-
sion is the same whether dispersal is modeled by diffusion or by a spatial convolution
for any dispersal kernel for which Eckhaus stability of ptws implies stability. The
intuitive explanation for this can be seen in the proof below: to leading order close
to Hopf bifurcation, the Eckhaus stability of the selected ptw in the nonlocal model
depends only on the second moment of the kernel, which is the term corresponding
to diffusion in a power series expansion.

Proof of Theorem 6.1. If C is close to (A + 1)/(A − 1), then the leading order
behavior can be deduced from (3.1), and λ0 is small. The selected ptw is given
by (3.2) and (3.4); I begin by considering the second of these equations. C′(η) = 0
when η

∫ s=∞
s=−∞ sK(s)eηs ds + 1 − ∫ s=∞

s=−∞K(s)eηs ds = λ0. The left-hand side of this
equation is strictly positive when η > 0, implying that at a local minimum η = o(1)
as λ0 → 0. Since K(.) is exponentially bounded at infinity, the integrals can be
expanded as Taylor series in η by differentiating under the integral sign, which shows

that ηmin = 2λ
1/2
0 /Γ+ o

(
λ
1/2
0

)
, where Γ =

(
2
∫ s=∞
s=−∞ s2K(s) ds

)1/2
. Substituting this

value of η back into (3.4) and expanding as a Taylor series in λ
1/2
0 shows that to

leading order the invasion speed c = λ
1/2
0 Γ.

Considering now (3.2), this implies that α must also → 0 as λ0 → 0, and Taylor
series expansion gives

(6.1) 1
4Γ

2α2 − λ
1/2
0

(
λ1

/
ω1

)
Γα = λ0 + o(λ0) + o(λ

1/2
0 α) + o(α2) .

In [26] I show that the condition for a ptw solution of (3.1) with wavenumber α to
be Eckhaus stable is[

λ0 − 1 +

∫ s=+∞

s=−∞
K(s) cos (αs) ds

] ∫ s=+∞

s=−∞
s2K(s) cos (αs) ds

>

[∫ s=+∞

s=−∞
sK(s) sin (αs) ds

]2 (
1 + ω2

1

/
λ21

)
.(6.2)

Performing Taylor series expansions in α for all the integrals, this gives
(
3+ 2ω2

1

/
λ21

)
Γ2α2 < 4λ0+o(λ0). Eliminating α between this inequality and (6.1) gives the leading
order condition for stability of the ptw selected behind the invasion as (ω1/λ1)

6 +
2(ω1/λ1)

4−(ω1/λ1)
2 < 3. This is exactly the condition derived in [44] for the stability

of ptws generated by invasion in the reaction-diffusion model with the same kinetics
as (3.1) and scalar diffusion, which completes the proof of the theorem. Numerical
solution of the cubic polynomial shows that the stability condition is equivalent to
|ω1|/λ1 < 1.0714 . . .; this can be translated into a condition on the parameters A and
B using (5.1).

7. Discussion. The generation of ptws in the wake of invasion in cyclic pop-
ulations has been predicted by a large number of modeling studies. This includes
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simulation-based work using integrodifference equations [11, 76], coupled map lat-
tices [77], and cellular automata [11, 78]. However, the only previous detailed anal-
ysis of ptw generation by invasion is for (local) reaction-diffusion models, with the
exception of the recent work of Merchant and Nagata on reaction-diffusion models
with nonlocal kinetics [32, 33]. A shortcoming of such models is that diffusion is a
poor representation of dispersal for many ecological systems; convolution with a dis-
persal kernel is more realistic because of its ability to reflect occasional long-distance
dispersal events [25, 56]. However, the only previous work on ptws in models with
nonlocal dispersal is my recent paper [26], which considers existence and stability of
ptws when the local dynamics are of “λ–ω” type (3.1). In the present paper I have
presented the first results on ptw generation by invasion in such models.

As expected from a preliminary study such as this, my work raises many questions
for future work, of which I highlight four. First, I have assumed throughout that the
dispersal term is the same for predators and prey. Different dispersal coefficients would
lead to cross-dispersal terms in the normal form, while different dispersal kernels would
give a much more complicated normal form structure. Investigation of ptws in these
cases is an important future challenge. Second, my calculations of ptw selection
apply only close to Hopf bifurcation in the local dynamics. Extension of these results
to more general parameters is an important research topic, but a challenging one—
it remains unsolved even for reaction-diffusion models. However, the recent work
of Merchant and Nagata [16, 33] provides a starting point for future study. Third,
formal questions of existence and uniqueness remain unexplored for the model (2.1).
A number of such results have been proved for models of single populations with
nonlocal dispersal [79, 80, 81] but to my knowledge there are no corresponding results
for systems. In addition, formal proof of the existence of ptw solutions is a major
outstanding problem. Finally, perhaps the most important area for future work is the
generation of ptws by the invasion of the prey-only state, rather than the coexistence
state. This is important from the viewpoint of applications but is significantly more
difficult from a mathematical viewpoint. However, experience with reaction-diffusion
models [13, 16, 33, 44] suggests that the detailed understanding of the invasion of
the coexistence state that I have presented will provide an essential precursor to the
study of this more complicated invasion process.
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