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Abstract Mathematical models have been highly successful at reproducing the com-
plex spatiotemporal phenomena seen in many biological systems. However, the abil-
ity to numerically simulate such phenomena currently far outstrips detailed math-
ematical understanding. This paper reviews the theory of absolute and convective
instability, which has the potential to redress this inbalance in some cases. In spa-
tiotemporal systems, unstable steady states subdivide into two categories. Those that
are absolutely unstable are not relevant in applications except as generators of spa-
tial or spatiotemporal patterns, but convectively unstable steady states can occur as
persistent features of solutions. The authors explain the concepts of absolute and con-
vective instability, and also the related concepts of remnant and transient instability.
They give examples of their use in explaining qualitative transitions in solution be-
haviour. They then describe how to distinguish different types of instability, focussing
on the relatively new approach of the absolute spectrum. They also discuss the use
of the theory for making quantitative predictions on how spatiotemporal solutions
change with model parameters. The discussion is illustrated throughout by numerical
simulations of a model for river-based predator–prey systems.
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1 Introduction

Almost all undergraduate courses in mathematical biology include a section on ordi-
nary differential equation (ODE) models. The central player in the course material is
the stability of steady states. Students learn that only (locally) stable steady states are
biologically significant. Later in their careers, students are introduced to partial dif-
ferential equation (PDE) models. Again, the stability of (homogeneous) steady states
plays a central role. In particular, the first exposure that many students receive to bi-
ological pattern formation is the Turing mechanism, in which a homogeneous steady
state that is stable in the kinetic ODEs is destabilised by the addition of diffusion
terms. However, steady states that are unstable in the kinetic ODEs are almost never
mentioned. As a result, there is a widespread assumption that unstable steady states
are not biologically significant as PDE solutions. This is not true. In fact, such steady
states fall into one of two categories. If they are “absolutely unstable”, then they
are indeed not biologically significant, except perhaps as providing the mathematical
origin of spatial or spatiotemporal patterns. But “convectively unstable” steady states
can be an important and persistent feature of PDE solutions. The objective of this pa-
per is to explain the concepts of absolute and convective instability and the related
concepts of remnant and transient instability, to illustrate their implications for PDE

models of biological systems, and to summarise methods for distinguishing different
types of instability in practice.

We begin with an illustrative example: the invasion of a prey population by preda-
tors. This problem has been addressed in many modelling studies. Simple invasions
correspond to a standard transition front (e.g. Owen and Lewis 2001), but there is
now a considerable body of work on invasions that leave more complex spatiotempo-
ral phenomena in their wake: see, for example, Sherratt et al. (1995), Petrovskii and
Malchow (2000), Morozov et al. (2006), Merchant and Nagata (2010, 2011). We will
focus on the spatially extended Rosenzweig–MacArthur (1963) model for predator–
prey interaction, and for clarity all of the numerical simulations in this paper will use
this model. We give the equations in a dimensionless form:

predators
∂p

∂t
=

dispersal
︷ ︸︸ ︷

d
∂2p

∂x2
+

advection
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∂p
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p/ab, (1a)
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︸ ︷︷ ︸
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. (1b)

Here, p and h denote predator and prey densities, which depend on space x and
time t . Here, and throughout this paper, we restrict attention to one space dimension:
The theory of absolute stability is not yet fully developed in higher dimensions. Most
predator–prey studies do not include advection terms, but allowing c �= 0 enables a
clearer illustration of some of the concepts we will be discussing. Advection of this
type arises naturally in river-based predator–prey systems (Hilker and Lewis 2010).
The prey consumption rate per predator is an increasing saturating function of the
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Fig. 1 Numerical simulation of predators invading prey using the Rosenzweig–MacArthur (1963) model
(1a), (1b) without advection. At time t = 0, the system was in the prey-only steady state (1,0) except for
a small predator density near the left-hand boundary. The solution is plotted at t = 4000. In (a), the pa-
rameters are such that the coexistence steady state is stable, and the invasion consists of a simple transition
front, connecting the prey-only state and the coexistence state. In (b), the coexistence state persists in a
plateau behind the leading front, with spatiotemporal oscillations further back. In (c) there is a periodic
travelling wave immediately behind and moving at the same speed as the leading front, with more irregular
oscillations further back. Note that for Eq. (1a), (1b), the existence of both steady state to steady state and
steady state to wavetrain transition fronts has been proved by Dunbar (1986) in the limit as d → ∞, with
extensions to d finite and sufficiently large by Fraile and Sabina (1989) in the latter case. The parameter
values were a = 1.3, b = 4, c = 0, d = 2 and (a) μ = 7; (b) μ = 8; (c) μ = 9. The equations were solved
numerically using a semi-implicit finite difference method with a grid spacing of 0.5 and a time step of
0.01. We solved on the domain 0 < x < 2500, with zero flux conditions px = hx = 0 at both boundaries

prey density with Holling type II form: μ > 0 reflects how quickly the consumption
rate saturates as prey density increases. Parameters a > 0 and b > 0 are dimensionless
combinations of the birth and death rates; Details of the nondimensionalisation are
given in Appendix A of Smith et al. (2008), and in many textbooks. The parameter
d > 0 is the ratio of predator to prey dispersal coefficients. The value of d will be
significantly greater than one for most mammalian systems (e.g. Brandt and Lambin
2007) and also for macroscopic marine species (Wieters et al. 2008). However, d will
typically be closer to one for aquatic microorganisms (Hauzy et al. 2007). Provided
a > 1 + 1/μ, Eqs. (1a), (1b) have a unique homogeneous coexistence steady state
(hs,ps) where hs = 1/(aμ − μ) and ps = (1 − hs)(1 + μhs)/μ, which is stable as a
solution of the kinetic ODEs only if μ < μcrit = (a + 1)/(a − 1).

Figure 1 illustrates simulations of the invasion of a prey population by predators
using (1a), (1b) with no advection, i.e. c = 0. For μ < μcrit, invasion takes the form
of a simple transition wave, with the prey-only state (1,0) ahead of the wave and
the stable coexistence state (hs,ps) behind it (see Fig. 1a). But as μ is increased
above μcrit, so that the coexistence steady state becomes unstable, this steady state
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does not suddenly disappear (see Fig. 1b, c). Rather, for a range of μ values above
μcrit there is plateau behind the front in which the solution is at the coexistence state,
with spatiotemporal oscillations further back. This plateau is a persistent feature of
the invasion profile, despite the fact that the coexistence steady state is unstable. Mal-
chow and Petrovskii (2002) termed this phenomenon “dynamical stabilization”, and
the key to understanding it is the concept of absolute vs. convective instability. In
Sect. 2, we explain these terms, and in Sect. 3 we give an example of their use in
explaining qualitative transitions in solution behaviour. In Sect. 4, we summarise
the historical development of the theory, and in Sect. 5 we describe how to distin-
guish different types of instability using the relatively new approach of the “absolute
spectrum”. In Sect. 6, we explain how the theory can be used to make quantitative
predictions on how aspects of spatiotemporal behaviour change with model param-
eters. In Sect. 7, we summarise our discussion, consider its application to a wider
class of solutions and place the concept of convective and absolute instabilities into
the context of ecology, especially with respect to perturbations in stream ecosystems
and biological pattern formation.

2 Absolute and Convective Stability

In a temporal system, stability is a relatively simple concept: A solution is (lo-
cally) stable if any small perturbation decays. The same is true in a spatiotem-
poral system: An unstable steady state is defined as one for which some small
perturbations grow over time. However, the situation is complicated by the fact
that spatially localised perturbations may move while they are growing. Conse-
quently, it is possible that a perturbation may decay at the location at which it
is applied, even though it is growing overall (Fig. 2a, b). “Convective instabil-
ity” occurs when all growing perturbations (linear modes) move while they are

Fig. 2 A schematic illustration of different types of instability. (a) In transient convective instability, all
unstable linear modes move in a single direction while they are growing. (b) In non-transient convective
instability, all unstable linear modes move while they are growing, but in both directions. (c) In absolute
instability, there is a stationary unstable linear mode, so that there are perturbations that grow at the location
at which they are applied. The figure is adapted from Fig. 1 of Sandstede and Scheel (2000b)
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Fig. 3 Numerical simulations of the Rosenzweig–MacArthur model (1a), (1b) following a small pertur-
bation to the co-existence steady state. (a) For μ = 7, the steady state is stable and the perturbation decays.
(b), (c) For μ = 9 and μ = 20, the steady state is unstable. In the former case, the perturbation grows
but simultaneously moves across the domain, while in the latter case it grows at the point at which it was
initially applied. The other parameters were a = 1.3, b = 4, c = −1, d = 2. The initial condition in each
case was (h,p) = (hs ,ps) · [1 + 0.05 sin(πx/1000)] if 1000 < x < 1500 and (h,p) = (hs ,ps) other-
wise. The equations were solved numerically on 0 < x < 2500 as in Fig. 1, with the same space and time
discretisations, with Danckwert’s (zero Neumann) boundary conditions at both ends

growing. In contrast, “absolute instability” denotes the situation in which there are
perturbations (linear modes) that grow at the location at which they are applied
(Fig. 2c).
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In Fig. 3, we illustrate these two types of instability using simulations of (1a),
(1b). We apply a small perturbation, localised around the centre of the domain, to the
coexistence steady state (hs,ps). For μ < μcrit = 7.67, the steady state is stable and
the perturbation decays. For μ = 9, the perturbation grows but moves in the positive
x direction, decaying at its original location, while for μ = 20 the perturbation grows
at its original location. This illustrates the fact that for the values of a, b, c, and d

used in the figure, the coexistence steady state is convectively unstable for μ = 9 and
absolutely unstable for μ = 20. Note that our choice of μ as a control parameter is
essentially arbitrary, and similar changes can be induced by changes in a, b, c, or d ,
for appropriate values of the other parameters.

Practical applications of PDE models in mathematical biology almost always occur
on finite domains, and then boundary conditions must be considered when drawing
conclusions about stability. If one considers (1a), (1b) on a domain with periodic
boundary conditions, and with a value of μ giving convective instability, a moving
growing perturbation will eventually reach the right-hand boundary. It will then re-
enter at the left-hand boundary and continue growing (and moving) (Fig. 4a). There-
fore, the steady state is unstable in this case. In fact, it is a general result that a steady
state that is unstable as a solution of the kinetic ODEs is also unstable as a PDE so-
lution on a finite domain with periodic boundary conditions (Sandstede and Scheel
2000b). However, for the same parameter values as used in Fig. 4a but with separated
boundary conditions such as Neumann, Dirichlet, or Robin, the coexistence steady
state of (1a), (1b) is stable. This is because the growing perturbation moves in the
positive x direction until it reaches the right-hand boundary, where it is absorbed
(Fig. 4b). Note that the simulations in Fig. 4 are intended as mathematical illustra-
tions, rather than as simulations of a realistic scenario for a river-based predator–prey
system. In the context of that application, a Dirichlet boundary condition corresponds
to a hostile boundary such as a waterfall or a region containing toxic waste water,
while a zero-flux condition is of Robin type. A zero Neumann boundary condition is
known as a Danckwert boundary condition and corresponds to a long river in which
the downstream boundary has little influence (Lutscher et al. 2006; Nauman 2008
§9.3.1; Hilker and Lewis 2010).

For most equation systems, a convectively unstable steady state is stable on a
finite domain with separated boundary conditions, as is the case for (1a), (1b).
However, this will not be the case if there are growing perturbations that travel
to the left and right simultaneously, while decaying at their original location: this
is known as “non-transient convective instability” (Sandstede and Scheel 2000b;
Fig. 2). Then on a finite domain the growing perturbations will typically be reflected
by the boundaries rather than being absorbed, so that the steady state is unstable.
The distinction between transient and non-transient convective instabilities was first
recognised by Proctor and co-workers (Worledge et al. 1997; Tobias et al. 1998;
Fox and Proctor 1998), and Sandstede and Scheel (2000b) argue that it is more
instructive to distinguish between transient and remnant instabilities than between
convective and absolute instabilities. Here, the term “remnant instability” means an
instability that is either absolute or non-transient convective. One therefore has the
following result:

on a large finite domain with separated boundary conditions, transiently unsta-
ble steady states are stable, while remnantly unstable steady states are unstable
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Fig. 4 Numerical simulations
of the Rosenzweig–MacArthur
model (1a), (1b) following a
small perturbation to the
coexistence steady state for
a = 1.3, b = 4, c = −1, d = 2,
μ = 9 with (a) periodic
boundary conditions;
(b) Dirichlet conditions
(h,p) = (hs ,ps) at both
boundaries. In both cases, the
perturbation grows but travels in
the positive x direction. In (a),
when the growing perturbation
reaches the right hand boundary
it re-enters the domain at the
left-hand boundary and
continues to move, reaching the
original site of perturbation with
a greater amplitude than it had
initially. The repetition of this
process results in the steady
state being unstable. However,
in (b), when the growing
perturbation reaches the
right-hand boundary it is
absorbed, so that the steady state
is stable. The initial conditions
and the values of the other
parameters were as in Fig. 3,
and the numerical method was
as in Fig. 1, with the same space
and time discretisations
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(see Sandstede and Scheel 2000b for a more precise statement). Examples of non-
transient convective instabilities are given in Sandstede and Scheel (2000b, Exam-
ple 2 in Sect. 3.3) and (Rademacher et al. 2007, Sect. 5.2). However, we are not
aware of an example from a biological application. This means that the distinctions
between absolute and convective instabilities is the same as that between remnant and
transient instabilities in all mathematical biology models in which these issues have
been investigated at the time of writing.

3 An Illustrative Example

We now present an illustration of different qualitative solution forms resulting from
a steady state being convectively or absolutely unstable. We consider (1a), (1b) on a
finite domain with the zero flux condition hx + ch = dpx + cp = 0 at the left-hand
boundary and the Danckwert condition hx = px = 0 at the right-hand boundary. An
example situation in which such boundary conditions would be relevant is a long
section of river in which the left hand boundary corresponds to the river’s source
(Lutscher et al. 2006). Initially, we set the populations to their coexistence steady
state levels in the interior of the domain. This steady state is incompatible with the
zero flux boundary condition, and the predators are gradually washed out of system
(Fig. 5; Hilker and Lewis 2010). This occurs via a transition front moving across the
domain, so that the prey-only steady state appears to “invade” the co-existence steady
state. In Fig. 5a, the co-existence steady state is stable, and the transition front is of a
simple type. However, in Fig. 5b, the steady state is (transiently) convectively unsta-
ble. The tail of the transition front applies perturbations to the coexistence steady state
ahead of it, and these perturbations all travel in the positive x direction as they grow.
Therefore, the solution remains at (or very close to) the steady state immediately
ahead of the front, with spatiotemporal oscillations developing further to the right,
where the perturbations have grown sufficiently large to have a significant effect. In
Fig. 5c, the steady state is absolutely unstable. Then there are both stationary and
moving linear modes in the perturbation applied to the co-existence steady state by
the transition front. Therefore, spatiotemporal oscillations develop everywhere ahead
of the front (Fig. 5c).

This simple example illustrates the way in which convective and absolute instabil-
ity lead to qualitatively different solutions. Within the convectively unstable param-
eter regime the width of the region in which the populations are at the co-existence
steady state is a decreasing function of μ. Intuitively, as μ increases the perturbations
imposed on the steady state by the invasion front travel away from the front more
slowly, and grow more quickly. In Sect. 6, we will show how a detailed study of the
movement and growth of small perturbations can be used to calculate the dependence
on μ of the width of the steady state region.

4 A Brief History of Absolute Stability

The concept of absolute stability was initially developed in the context of plasma
physics, with the first detailed presentation being the monograph by Briggs (1964).
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Fig. 5 Numerical simulations of the Rosenzweig–MacArthur (1963) model (1a), (1b) with the zero flux
condition hx + ch = dpx + cp = 0 at the left-hand boundary and the Danckwert condition hx = px = 0 at
the right-hand boundary. Initially, the solution is at the co-existence steady state, but this is incompatible
with the left-hand boundary condition, and a transition front develops that replaces the co-existence steady
state with the prey-only state. The co-existence steady state is stable in (a) and unstable in (b), (c). There-
fore, the transition front is of a simple type in (a) while in (b), (c) spatiotemporal oscillations develop,
either some distance downstream (b) or immediately ahead of the front (c). The parameter values were
a = 1.3, b = 4, c = −0.5, d = 2 and (a) μ = 7, (b) μ = 8, (c) μ = 8.6. The numerical method was as in
Fig. 1, with the same space and time discretisations
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In the subsequent decades the ideas have come into common usage in fluid dynamics
(reviewed by Huerre and Monkewitz 1990 and Chomaz 2005) and spiral wave break-
up (e.g. Aranson et al. 1992; Sandstede and Scheel 2000a; Wheeler and Barkley
2006). However, they remain almost entirely absent from the literature on applica-
tions of mathematics to chemistry, ecology, biology, and medicine.

A fundamental issue is how one calculates whether an unstable steady state is con-
vectively or absolutely unstable. The original approach of Briggs (1964) was to solve
the linear equations governing small perturbations by Fourier and Laplace transforms,
and to consider the large time asymptotics of the inverse transforms. Eigenvalues
satisfying a criterion known as the “pinching condition” play a special role in this
asymptotic behaviour, because they prevent appropriate deformation of the Fourier
integration contour. Briggs (1964) showed that the condition for convective insta-
bility was that all eigenvalues satisfying the pinching condition have negative real
part. Briggs’ (1964) work assumed that the integrand in the inverse Fourier transform
has only first order poles; his results were extended to include higher order poles
by Brevdo (1988), and to spatially and temporally periodic solutions by Brevdo and
Bridges (1996, 1997a).

Numerical implementation of the Briggs–Brevdo–Bridges criterion is relatively
difficult. Brevdo and co-workers (Brevdo 1995; Brevdo et al. 1999) developed a pro-
cedure based on numerical continuation of the location of a saddle point of a particu-
lar function of the eigenvalues; this saddle point gives the leading order contribution
to the long-time asymptotics of the inverse Fourier transform. More recently, Suslov
(2001, 2006, 2009), Suslov and Paolucci (2004) extended this approach to give an
automatic search algorithm for calculating the convective-absolute stability boundary
in parameter space. Brevdo’s method is complicated, and Suslov’s (highly ingenious)
method is extremely complicated; neither is really suitable for non-specialists.

Fortunately, a new approach to the determination of convective/absolute instability
has been developed by Sandstede and Scheel (2000b). Building on the work of Beyn
and Lorenz (1999) on exponential dichotomies, Sandstede and Scheel (2000b) intro-
duced the notion of the “absolute spectrum”. This term is a slight misnomer, since
the absolute spectrum is not the set of eigenvalues of any linear operator. However
it serves a similar purpose in practice: It is a set of eigenvalues, and different types
of instability can be distinguished by whether the absolute spectrum does/does not
cross into the right-hand half of the complex plane. In practice, the absolute spectrum
provides a relatively straightforward means of calculating absolute stability, even for
the non-specialist.

5 The Absolute Spectrum

The first step in considering stability of a homogeneous steady state is to linearise
the governing PDEs about the steady state. In the standard way, one then looks for
solutions of these linear equations that are proportional to eλt+ikx ; for non-trivial
solutions, this leads to a dispersion relation D(λ, k) = 0 to be satisfied by λ and k.
We denote by N the order of D as a polynomial in k; thus for (1a), (1b), N = 4. To
calculate stability of the steady state, one considers values of λ satisfying D(λ, k) = 0
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with k ∈ R; the steady state is stable if and only if all such λ’s (except possibly λ = 0)
have Reλ < 0.

The set of values of λ for which D(λ, k) = 0 with k ∈R is known as the “essential
spectrum”. Many readers who are unfamiliar with this term will nevertheless have
calculated an essential spectrum, since this is how one derives the conditions for
diffusion driven instability (Turing patterns).

When considering absolute stability, it is necessary to allow both k and λ to be
complex-valued. For any given λ, we denote the roots for k of the dispersion relation
by k1(λ), k2(λ), . . . , kN(λ), repeated with multiplicity, and labelled so that

Im(k1) ≤ Im(k2) ≤ · · · ≤ Im(kN).

For absolute stability, one must consider a particular root kn∗ . A formal definition of
n∗ is given in Sandstede and Scheel (2000b, Sect. 2.1), but it is most easily understood
in the following intuitive way: for the PDE to be well defined on a finite domain
with separated boundary conditions, n∗ boundary conditions are required at the right-
hand boundary, with N − n∗ conditions at the left-hand boundary. Thus, for (1a),
(1b), n∗ = 2 (and N = 4). As a different example, consider the model of Klausmeier
(1999) for vegetation patterning on gentle slopes in semi-arid environments. This
model involves equations for the plant biomass m(x, t) and the water density w(x, t),
with the spatial coordinate x increasing in the uphill direction:

∂m/∂t =

plant
growth
︷︸︸︷

wm2 −
plant
loss
︷︸︸︷

Bm +

plant
dispersal

︷ ︸︸ ︷

∂2m/∂x2, (2a)

∂w/∂t = A
︸︷︷︸

rain-
fall

− w
︸︷︷︸

evap-
oration

− wm2
︸︷︷︸

uptake
by plants

+ν ∂w/∂x
︸ ︷︷ ︸

flow
downhill

. (2b)

Here, the parameters A, B , and ν are all positive. For these equations, conditions on
m would be required at both boundaries, but a condition on w is required only at the
right-hand (upslope) boundary: Therefore, n∗ = 2 (and N = 3).

The “absolute spectrum” is the set of values of λ such that Im kn∗ = Im kn∗+1. It is
also useful to have a name for the more general set of λ’s for which Im ki = Im ki+1

for any i, and this is known as the “generalised absolute spectrum”. This latter set of
eigenvalues was considered (without the name) in the original monograph of Briggs
(1964), but the special significance of the case i = n∗ was not realised until Sandstede
and Scheel’s (2000b) work. Two final pieces of terminology are also useful: values of
λ for which kn = kn+1 are known as “branch points of index n”, and “branch points
in the absolute spectrum” are simply those with index n∗. Figure 6 shows examples
of absolute spectra and generalised absolute spectra. Panels (a) and (b) show the
absolute spectrum and the generalised absolute spectrum for the parameters used in
Fig. 3b, c.

Note that the absolute spectrum differs from the essential spectrum because the
latter corresponds to both perturbations that grow pointwise and perturbations that
only grow while simultaneously moving. Thus, the absolute spectrum lies to the left
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Fig. 6 Illustrations of the absolute spectrum (solid black; green online) and generalised absolute spectrum
(all three line types/colours) for the Rosenzweig–MacArthur model (1a), (1b). Branch points are indicated
by filled circles. The values of μ were (a) μ = 9, c = −1, (b) μ = 20, c = −1, (c) μ = 15, c = 10; the
other parameters were a = 1.3, b = 4, d = 2. The numerical method was as described in the text: We
first calculated the branch points (see Appendix A.1), then used these as starting points for the calcu-
lation of the generalised absolute spectrum, monitoring all of the ki ’s during the continuation in order
to determine which sections constitute the absolute spectrum. The dashed black curves (red online) cor-
respond to Im k1 = Imk2, while on the solid grey curves (blue online) Imk3 = Im k4. The parameters
used on panels (a) and (b) are the same as in the case of Fig. 3b and Fig. 3c. Note that the absolute
spectrum can emanate not only from branch points but also from triple points, which are defined by
Im ki = Im ki+1 = Imki+2 for some i. For example on panel (c), a triple point occurs at λ = −18.37
where the corresponding spatial eigenvalues are characterised by Imk1 = Im k2 = Im k3; parts of the ab-
solute spectrum emanate from this triple point

of the essential spectrum in the eigenvalue complex plane; this is proved formally in
Rademacher (2006).

For a spatially homogeneous steady state that is unstable as a solution of the kinetic
ODEs, Sandstede and Scheel (2000b) showed that the absolute spectrum determines
the nature of its instability in the PDEs as follows:

• the steady state is absolutely/convectively unstable according to whether there
are/are not branch points of the absolute spectrum in the right-hand half of the
complex plane;

• the steady state is remnantly/transiently unstable according to whether the absolute
spectrum does/does not extend into the right-hand half of the complex plane.

More precise versions of these statements, including the required technical assump-
tions, are given in Sandstede and Scheel (2000b). Note that the “pinching condition”
of Briggs (1964) translates to the condition that λ is a branch point in the absolute
spectrum. As mentioned at the end of Sect. 2, in all mathematical biology examples
that have been considered to date, the most right-hand part of the absolute spectrum
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is a branch point, so that the notions of absolute and remnant instability, and also of
convective and transient instability, coincide.

The relationship between the condition Im kn∗ = Im kn∗+1 and these different
types of instability is far from obvious. To motivate it intuitively, we present a simple
example, due originally to Worledge et al. (1997, Sect. 3). We consider a system of
two coupled reaction–diffusion equations

ut = uxx + f (u, v),

vt = vxx + g(u, v)

on −� < x < �, subject to boundary conditions u = v = 0 at x = ±�, with � large.
Here, subscripts x and t denote partial derivatives. For these equations, n∗ = 2 and
N = 4. We denote by (us, vs) the homogeneous steady state whose stability is be-
ing considered, and write ũ = u − us , ṽ = v − vs . Then to leading order for small
perturbations ũ, ṽ,

ũt = ũxx + fu(us, vs)ũ + fv(us, vs)ṽ, (3a)

ṽt = ṽxx + gu(us, vs)ũ + gv(us, vs)ṽ, (3b)

where subscripts u and v denote partial derivatives. For a given value of the temporal
eigenvalue λ, this has the general solution

(ũ, ṽ) = eλt

4
∑

j=1

(ūj , v̄j )Hj e
ikj x,

where (ūj , v̄j ) is the eigenvector corresponding to the spatial eigenvalue kj , and the
Hj ’s are constants. Suppose first that the Im kj ’s are distinct. Then the behaviour
of the solution at large positive x is dominated by indices j = 1 and j = 2 in the
summation, so that to leading order for large �, the boundary condition at x = +�

requires

2
∑

j=1

(ūj , v̄j )Hj e
ikj � = (0,0). (4)

Similarly, the boundary condition at x = −� requires

4
∑

j=3

(ūj , v̄j )Hj e
−ikj � = (0,0) (5)

to leading order. In general, (4) and (5) do not have any non-trivial solutions for the
Hj ’s. This argument is unaffected if Im k1 = Im k2 and/or Imk3 = Imk4. However, if
Im k2 = Im k3 the situation changes. Then we have

3
∑

j=1

(ūj , v̄j )Hj e
ikj � =

4
∑

j=2

(ūj , v̄j )Hj e
−ikj � = (0,0)
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to leading order, which typically does admit non-trivial solutions for the Hj ’s.
Hence, Im k2 = Imk3 is the condition for non-trivial solutions of the linearised equa-
tions (3a). Therefore, the extension of the absolute spectrum into the right-hand half
of the complex plane (i.e. a remnant instability) corresponds to the existence of such
non-trivial solutions for λ > 0, and this is exactly the condition for the steady state to
be unstable on this bounded domain.

Branch points are the key to numerical calculation of the absolute spectrum. Since
D has a repeated root for k at a branch point, we have

D(λ, k) = 0 and (∂/∂k)D(λ, k) = 0. (6)

Now D is a polynomial in both λ and k, and thus it is usually relatively straightfor-
ward to solve (6) for the branch points. For example, for (1a), (1b) one can eliminate
λ between the two equations in (6) to give a sixth order polynomial in k. This can be
solved numerically and then each of the solutions can be substituted back into (6) to
get the corresponding values of λ (see Appendix A.1 for further details).

Branch points will be in the absolute spectrum if their index is n∗. To check this for
a given branch point, one substitutes the calculated value of λ back into D(λ, k) = 0
and solves the resulting polynomial in k. Two of the roots will be the repeated pair
corresponding to the branch point. If these are kn∗ and kn∗+1 , then the branch point
is in the absolute spectrum; otherwise it is not.

The above procedure may seem a little involved at first sight, but in practice it is
very straightforward and very quick, involving just the numerical solution of polyno-
mials. In the Appendix, we demonstrate the calculation of the branch points for the
Rosenzweig–MacArthur (1963) model (1a), (1b) and the Klausmeier (1999) model
(2a), (2b).

Having calculated the branch points, one can proceed to calculate the entire gen-
eralised absolute spectrum via numerical continuation. Using a branch point of in-
dex j as a starting point, one performs a numerical continuation of the polynomial
D(λ, k), using Rekj −Rekj+1 as a continuation variable. This method was proposed
by Rademacher et al. (2007), and it is also described in detail in Smith et al. (2009);
the latter paper includes an online supplement with a detailed tutorial guide and sam-
ple code. Repeating this procedure for each branch point generates the entire gener-
alised absolute spectrum, since for constant coefficient problems all curves of gen-
eralised absolute spectrum emanate from a branch point, at least for a wide class of
equations including reaction–diffusion systems (Rademacher et al. 2007). The same
statement does not necessarily hold for the absolute spectrum itself1 and, therefore, it
is not possible to calculate the absolute spectrum directly using this approach. Rather
it is necessary to calculate the generalised absolute spectrum, and to monitor all four
roots for k of D(λ, k) = 0 as one moves along it. The absolute spectrum is simply the
part of the generalised absolute spectrum for which Imkn∗ = Im kn∗+1.

In practice, one is interested in the most unstable point in the absolute spec-
trum, and also its most unstable branch point. Usually these are the same: This will

1Instead, curves of absolute spectrum can emanate from “triple points”, defined by Im ki = Imki+1 =
Im ki+2 for some i (Rademacher et al. 2007; Smith et al. 2009). See Fig. 6c for an example of parts of an
absolute spectrum emanating from triple points.
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Fig. 7 An example of stability
boundaries in the (μ, c) plane
for (1a), (1b). The vertical line
(dot-dash; solid red online)
marks the transition between the
coexistence steady state being
stable and unstable, while the
solid curve (blue online) shows
the transition between
convective and absolute
instability. The latter curve was
plotted via the calculation of
branch points, as described in
Appendix A.1. The parameter
values were a = 1.3, b = 4,
d = 2

be the case unless there is a non-transient convective instability (see Sect. 2). For
some systems, it has been proved that the most unstable point in the absolute spec-
trum is a branch point (Smith et al. 2009), but the complexity of most models of
biological phenomena puts them outside the compass of these results. Therefore,
when considering absolute stability in a model for the first time, it is good prac-
tice to calculate the full absolute spectrum for a selection of parameter sets; usually
these will show that the most unstable point in the absolute spectrum is a branch
point in each case. One can then have confidence in making statements about ab-
solute/convective/remnant/transient stability on the basis of branch points, which is
usually a very simple calculation. In fact, in the physics literature, where differ-
ent types of instability are often considered, many authors draw their conclusions
based only on calculations of branch points. As an example of a calculation done
in this way, Fig. 7 shows the boundary between convective and absolute stability
of the coexistence steady state in the μ–c plane for (1a), (1b), based simply on nu-
merically solving a polynomial to determine the branch points, as described in Ap-
pendix A.1.

6 Quantitative Calculations Using Absolute Stability

The example in Sect. 3 illustrates how determination of the type of instability can
be used to understand and predict important qualitative features of spatiotemporal
behaviour. However, the theory is in fact much more powerful than this. Quantita-
tive information can also be obtained, by investigating stability in different frames of
reference. We will demonstrate this for the solutions presented in Sect. 3, by adapt-
ing the method proposed by Sherratt et al. (2009) for invasions in reaction–diffusion
systems of λ–ω type.

Given a PDE with space variable x and time variable t , one changes to a moving
frame of reference in the usual way, by changing coordinates to z = x − V t and t .
The frame velocity V is an additional parameter. For any given V , one can use the
methods in Sect. 5 to calculate the most unstable point in the absolute spectrum, say
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Fig. 8 An example of the dependence of Reλ∗ against V . For a given velocity V , λ∗(V ) is the most un-
stable point in the absolute spectrum, meaning that Reλ∗(V ) is the maximum growth rate of perturbations
moving with velocity V . The example shown is for the Rosenzweig and MacArthur (1963) model (1a),
(1b) with parameters a = 1.3, b = 4, c = 0, d = 2, μ = 9. Calculation of the absolute spectrum for this
case, with a variety of different V values, showed that the most unstable point in the absolute spectrum was
a branch point in all cases. Therefore, we determined λ∗(V ) by calculating branch points, as described in
Appendix A.1

λ∗(V ). This is the eigenvalue associated with the most unstable linear mode moving
with velocity V . We denote by k∗ the corresponding value of k. Figure 8 shows a
typical plot of Reλ∗ against V , for the model (1a), (1b). There is a finite range of
velocities for which there are growing linear modes: all linear modes moving with
speed (= |V |) greater than V ∗ are decaying.

A plot such as Fig. 8 is quite instructive in its own right. For example, we pre-
sented simulations in Sect. 1 showing that there can be a plateau region behind
the invasion front in which the (unstable) co-existence steady state is “dynami-
cally stabilised”. Denoting the invasion velocity by Vfront, the condition for such
a plateau is Vfront > V ∗, so that the invasion can outrun all growing linear modes
(Dagbovie and Sherratt 2013). But the curve λ∗(V ) can also form the basis of cal-
culations. For example, a natural question arising from the simulations shown in
Sect. 3 is how the width of the steady state region depends on parameters. To deter-
mine this, note that the amplitude of a linear mode travelling with velocity V will
double over the time period log(2)/Reλ∗(V ). During this time, the linear mode
moves a distance V log(2)/Reλ∗(V ) while the transition front moves a distance
Vfront log(2)/Reλ∗(V ). Recall that Vfront is the speed of the front, which can be found
using the theory of minimal spreading speeds (van Saarloos 2003); in the absence of

advection, this speed is given by Vfront0 = 2
√

d
ab

(
aμ

μ+1 − 1) but in the context of this

paper, it is defined by Vfront = −Vfront0 −c. Therefore, the linear mode doubles in am-
plitude while moving a distance (V −Vfront) log(2)/Reλ∗(V ) from the front. One can
reasonably assume that the transition front applies a perturbation to the co-existence
steady state that contains all unstable linear modes. Therefore, the perturbation dou-
bles in amplitude over the “doubling distance”

xdbl = log(2)(Vdbl − Vfront)/Reλ∗(Vdbl) (7)
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Fig. 9 An illustration of the correlation between the doubling distance xdbl and the width of the steady
state region in simulations of (1a), (1b) with the zero flux condition hx +ch = dpx +cp = 0 at the left-hand
boundary and the Danckwert condition hx = px = 0 at the right-hand boundary, as in Fig. 5. The parameter
μ was varied between 7.9 and 8.5. (a) A plot of xdbl against the numerically calculated width (dots),
showing a very strong linear correlation between the two quantities (regression coefficient = 0.999). This
confirms that the dependence on parameters of the width of the steady state region is captured by xdbl . The
line is the best-fit regression line, which has slope 98.05 and intercept 5.795; there is a non-zero intercept
because our method for measuring the width of the steady-state region excludes small portions on either
side (see Smith and Sherratt 2009 for further discussion). (b) A plot of the width of the steady state region
(dots) against μ. We superimpose on this a curve showing xdbl , rescaled using the regression line found
from (a). The doubling distance was calculated using (7) and (8). The width of the steady state region was
calculated using numerical simulations performed as in Fig. 5; the space and time discretisations are as
in Fig. 1. The method used to measure the width in numerical simulations is described in Dagbovie and
Sherratt (2013). The parameter values were a = 1.3, b = 4, c = −0.5, d = 2

where Vdlb minimises (V − Vfront)/Reλ∗(V ), i.e.

(Vdbl − Vfront)
d

dV
Reλ∗(V )

∣

∣

∣

∣

V =Vdbl

= Reλ∗(Vdbl). (8)

Numerical solution of (8) is made relatively straightforward by the identity
(d/dV )Reλ∗(V )|V =Vdbl

= − Imk∗(Vdbl) (Sherratt et al. 2009). In some cases,
(8) will have more than one solution: Then the relevant solution is the one giving
the smallest value of xdbl ; an example of this is given in Fig. 5 of Smith and Sher-
ratt (2009). The formula (7) for xdbl contains all of the parameter dependence of the
width of the steady state region in the simulations shown in Sect. 3. For example,
Fig. 9 plots xdbl against estimates of the width from simulations as the parameter μ

is varied, demonstrating their linear relationship.

7 Summary and Discussion

Biology abounds with complex spatiotemporal phenomena. Mathematical models
have been highly successful at reproducing this complexity, but currently our abil-
ity to numerically simulate such phenomena far outstrips our ability to provide an
underlying mathematical understanding. As a result, models can sometimes fail to
fulfil their potential for qualitative and quantitative prediction. The theory of absolute
stability provides a tool that has the potential to redress this inbalance in some cases,
and whose use within mathematical biology is currently almost non-existent. Until
recently, one had to overcome a steep learning curve to make practical use of this
theory, but new computational methods based on the absolute spectrum now make it
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easily accessible to non-specialists. We hope that this article will encourage greater
use of these methods within the mathematical biology community.

We have focussed on the stability of spatially homogeneous solutions, for which
both the theory and methods for numerical calculation are most complete. The abso-
lute stability of spatially varying solutions was first considered by Brevdo and Bridges
(1996, 1997b). Most of the key concepts that we have discussed extend from homo-
geneous solutions to a wide variety of non-uniform solutions, including solutions of
reaction–diffusion systems that approach either constant or spatially periodic states
at infinity. One complication is that the absolute spectrum can be augmented by dis-
crete eigenvalues, and Wheeler and Barkley (2006) discuss an example of spiral wave
break-up in which absolute stability is determined by discrete eigenvalues rather than
by the absolute spectrum. However, for large classes of systems it can be shown there
are no such discrete eigenvalues: this includes spatially homogeneous solutions, and
wavetrain solutions of reaction–diffusion systems (Sandstede 2002, Sect. 3.4.2).

The biggest difficulty when considering spatially varying solutions is numerical
calculation. Numerical continuation is still a viable method for calculation of the ab-
solute spectrum (Rademacher et al. 2007), but finding appropriate starting points is
problematic. In particular, branch points lose their suitability because for spatially
varying solutions there are in general infinitely many branch points (Rademacher
et al. 2007, Sect. 4.3). Alternative approaches to the generation of starting points are
discussed in Sect. 4.4 of Rademacher et al. (2007), but in most cases the only system-
atic way of calculating absolute stability for non-constant solutions is the method of
Brevdo and co-workers (Brevdo 1995; Brevdo et al. 1999; see also Suslov 2006).

The restriction to spatially uniform solutions is more inclusive than it appears su-
perficially. For example, wavetrain solutions to reaction–diffusion systems of “λ–ω

type” are spatially uniform when the equations are written in phase-amplitude form
(Kopell and Howard 1973), and the same is true for wavetrains in the complex
Ginzburg–Landau equation (Aranson and Kramer 2002). Also, the absolute spec-
trum of wave fronts and pulses in reaction–diffusion systems depends only on the
asymptotic states behind and ahead of the wave (Sandstede 2002, Sects. 3.4.3, 3.4.4),
although in this case one will also need to consider discrete eigenvalues, and these do
depend on the wave profile.

We also emphasise that our remarks only concern behaviour in one space dimen-
sion. Absolute stability has been widely used to study spiral wave break-up (e.g.
Aranson et al. 1992; Sandstede and Scheel 2000a; Wheeler and Barkley 2006), but
this is effectively a one-dimensional problem. There has been some discussion of
absolute stability for genuinely two-dimensional solutions in the hydrodynamics lit-
erature (e.g. Chomaz 2004; Biancofiore et al. 2011), but a detailed theory is currently
lacking. This, and more effective numerical methods for spatially varying solutions,
are major current objectives for the research community working on absolute stabil-
ity.

In ecology, the term ‘stability’ plays a central role. In their 1997 review of the
ecological literature, Grimm and Wissel (1997) found 163 definitions of 70 different
stability concepts. Yet, the theory of absolute stability has been, to our knowledge,
absent from the ecological literature, and it appears that the spatial dimension is gen-
erally lacking in ecological stability concepts.
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This is particularly surprising since stream ecologists (and water resource man-
agers alike) have long been on the quest of how lotic systems respond to disturbances
and spatial variabilities. Much of the current knowledge comes from experiments
in study sites that comprise only a small fragment of the stream or river (Fausch
et al. 2002). But how do populations much further downstream, i.e. outside the study
arena, respond to upstream perturbations (Cooper et al. 1998)? This is a key question
in the assessment of instream flow needs, or how the location of wastewater treatment
plants affects environmental conditions downstream (Anderson et al. 2006). One at-
tempt to address this question is the concept of the response length (Anderson et al.
2005), a characteristic length scale measuring the scale over which environmental
disturbances are felt by distant populations.

Convective instabilities appear particularly intriguing in this context. The per-
turbed steady state remains stable locally, but is enormously brought out of equi-
librium further downstream (cf. Fig. 5b). Small-scale experiments and observations
might only see the local (stable) response, but miss out on the instabilities arising
further away. In Sect. 6, we have shown how the width of the region where the steady
state remains stable can be calculated quantitatively (see also Dagbovie and Sher-
ratt 2013). This may be useful information for the design of experiments, ecological
monitoring as well as environmental assessment.

The convective and absolute instabilities that we have described do not necessarily
need to be ‘harmful’ to the populations. On the contrary, the spatiotemporal oscilla-
tions caused by the instabilities can be beneficial. For example, they might facili-
tate non-equilibrium coexistence of species that would otherwise mutually exclude
each other (Armstrong and McGehee 1980; Huisman and Weissing 1999). In a more
water-flow oriented context, Scheuring et al. (2000) have shown that the chaotic flow
around a cylindrical obstacle creates a small-scale mosaic ensuring that coexisting
species can co-exist. Similarly, Lee (2012) has argued that rotational flow, as caused
by a rock, can increase survival probabilities of predators and prey. Petrovskii et al.
(2004) have shown, in a non-advective model that spatiotemporal chaos can reverse
the paradox of enrichment, and thus make the persistence of predators and prey more
likely.

Convective and absolute instabilities can lead to spatial and spatiotemporal pat-
terns. Many of the well-known mechanisms inducing biological pattern formation
are based on the phenomenon that steady states which are locally stable in the
kinetic ODEs become destabilised in the PDEs. For instance, the diffusion-driven
instabilities of the Turing mechanism are caused by the addition of significantly
different diffusivities, which lead to short-range activation and long-range inhibi-
tion. Advective environments feature a number of spatiotemporal pattern formation
mechanisms that cannot arise in non-advective systems. In contrast to the Turing
mechanism, they do not require activator–inhibitor type of interactions, but they
critically depend on other conditions, e.g. a significant difference in the flow ex-
perienced by species (Rovinsky and Menzinger 1992; Perumpanani et al. 1995;
Malchow 2000) or resource-dependent dispersal (Anderson et al. 2012). However,
they all have in common that the steady states in the kinetic ODEs are locally stable.

The patterns generated by convective and absolute instabilities do not require any
of these conditions (activator–inhibitor dynamics; significantly different mobilities
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of the interacting species; resource-dependent dispersal). However, in contrast to the
previously mentioned mechanisms, the steady states are already unstable in the ki-
netic ODEs. Considering the abundance of endogenous population oscillations, this
is frequently the case in nature and can be caused by a number of mechanisms (see
Turchin 2003). Hence, convective and absolute instabilities appear to be a fairly gen-
eral mechanism for spatiotemporal pattern formation in ecology.

Streams and river are particularly iconic examples of flow-dominated systems, but
there are many others. Marine organisms dispersed in longshore currents (Gaylord
and Gaines 2000) or plant seeds and insects dispersed by winds with a prevailing
wind direction (Levine 2003) are also environments with a predominantly unidirec-
tional flow. These systems are strongly characterised by the importance of longitudi-
nal transport through habitat. The theory of absolute stability appears to have a lot to
offer when there is a downstream bias that can induce very different spatial responses
to localised perturbations.
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Appendix: Examples of Calculating Branch Points

In this Appendix, we show how to calculate the branch points for the Rosenzweig–
MacArthur model (1a), (1b) and the Klausmeier model (2a), (2b). We present these
calculations in some detail, with the aim of providing templates that readers can fol-
low when performing corresponding calculations for their own models.

A.1 Branch Points for the Rosenzweig–MacArthur Model

Recall that the Rosenzweig–MacArthur model (1a), (1b) has a unique homogeneous
co-existence steady state (hs,ps) where hs = 1/(aμ − μ) and ps = (1 − hs)(1 +
μhs)/μ. We begin by linearising (1a), (1b) about (hs,ps) giving

p̃t = αp̃ + βh̃ + cp̃x + dp̃xx,

h̃t = γ p̃ + δh̃ + ch̃x + h̃xx,

where p̃ = p −ps , h̃ = h−hs , and α, β, γ, δ are coefficients from linearisation and
are given by

α = μhs

b(1 + μhs)
− 1

ab
,

β = μps

b(1 + μhs)2
,

γ = 1 − 2hs − μps

(1 + μhs)2
,
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δ = − μhs

1 + μhs

.

Substituting (p̃, h̃) = (p̄, h̄) exp(ikx +λt) into (1a), (1b) and requiring p̄ and h̄ to be
non-zero gives the dispersion relation

D(λ, k) = dk4 − cik3(d + 1) − k2(α − λ + dγ − dλ + c2)

+ cik(γ + α − 2λ) + (α − λ)(γ − λ) − δβ = 0. (9)

Branch points are double roots of the dispersion relation for k, and satisfy (9) and
also

0 = ∂D/∂k

= 4dk3 − 3k2(1 + d)ci − 2k
(

γ + dα − (1 + d)λ
) + c2 + ci(α + γ − 2λ) ⇒

λ = 4dk3 − 3cidk2 − 2dkγ + αci − 2c2k − 3cik2 − 2αk + ciγ

−2(k + dk − ci)
.

(10)
Substituting (10) into (9) gives the following hexic polynomial in k:

[−4d(d − 1)2]k6 + [

2ci(d + 1)(d − 1)2]k5 + [

(d − 1)
(

c2d + 8dα − 8dγ − c2)]k4

+ [

4ci(−α + γ )(d − 1)(d + 1)
]

k3

+ [

2c2(d − 1)(γ − α) − 4βδ(d + 1)2 − 4d(α − γ )2]k2

+ [

2i
(

4βδ + α2 − 2αγ + γ 2)c(d + 1)
]

k + c2(4βδ + α2 − 2αγ + γ 2) = 0.

(11)

We must now proceed numerically and we fix a = 1.3, b = 4.0, c = −1, d = 2, and
μ = 9. These parameter values satisfy μ > μcrit, so that the coexistence steady state
is unstable. Substituting these values into (11), we obtain six roots for k, two real
and two pairs of complex conjugates. We then substitute each into (10) to find the
corresponding value of λ. To determine whether these branch points belong to the
absolute spectrum, we substitute each λ value into (9) and solve for k, giving the
repeated roots found from (11) and two others.

Branch point k = 0.676i. Substituting this value of k into (10) gives λ = 1.380. Sub-
stituting this value of λ back into (9) gives a quartic polynomial for k whose roots
are −1.727i, −1.125i, 0.676i, 0.676i. Recall that a branch point is in the absolute
spectrum if the repeated roots are k2 and k3, when the roots k1, k2, k3 and k4 of (9)
are labelled in increasing order of their imaginary parts. In this case, the repeated
roots are k3 and k4 so that the branch point is not in the absolute spectrum.

Branch point k = −0.473 − 0.013i. Substituting this value of k into (10) gives λ =
−0.255 + 0.483i. Substituting this value of λ back into (9) gives a quartic poly-
nomial for k whose roots are 0.570 − 0.943i, 0.377 − 0.530i, −0.473 − 0.013i,
−0.473 − 0.013i Therefore, the repeated roots are k3 and k4 so that the branch
point is not in the absolute spectrum.
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Branch point k = 0.473 − 0.013i. Substituting this value of k into (10) gives λ =
−0.255 − 0.483i. Substituting this value of λ back into (9) gives a quartic poly-
nomial for k whose roots are −0.570 − 0.943i, −0.377 − 0.530i, 0.473 − 0.013i,
0.473 − 0.013i. Therefore, the repeated roots are k3 and k4 so that the branch point
is not in the absolute spectrum.

Branch point k = 0.001 − 0.334i. Substituting this value of k into (10) gives λ =
−0.110 − 0.167i. Substituting this value of λ back into (9) gives a quartic poly-
nomial for k whose roots are −0.314 − 0.816i, 0.001 − 0.334i, 0.001 − 0.334i,
0.312−0.0165i. Therefore, the repeated roots are k2 and k3 so that the branch point
is in the absolute spectrum.

Branch point k = −0.001 − 0.334i. Substituting this value of k into (10) gives λ =
−0.110 + 0.167i. Substituting this value of λ back into (9) gives a quartic poly-
nomial for k whose roots are 0.314 − 0.816i, −0.001 − 0.334i, −0.001 − 0.334i,
−0.312 − 0.0165i. Therefore, the repeated roots are k2 and k3 so that the branch
point is in the absolute spectrum.

Branch point k = −0.732i. Substituting this value of k into (10) gives λ = 0.000.
Substituting this value of λ back into (9) gives a quartic polynomial for k whose
roots are −0.732i, −0.732i, 0.160 − 0.017i, −0.160 − 0.017i. Therefore, the re-
peated roots are k1 and k2 so that the branch point is not in the absolute spectrum.

Therefore, of the six branch points, two are in the absolute spectrum, with the corre-
sponding eigenvalues being −0.110 ± 0.167i. Since these eigenvalues have negative
real parts, the steady state (hs,ps) is absolutely stable. To determine whether the
convective instability is of transient or remnant type, it is necessary to calculate the
absolute spectrum. This can be done via numerical continuation of the generalised
absolute spectrum, using the six branch points listed above as starting points, as dis-
cussed in Sect. 5. This shows that the branch points are the most unstable points in
the absolute spectrum, so that the steady state has a transient convective instability.

A.2 Branch Points for the Klausmeier Model

For all parameters, the Klausmeier model (2a), (2b) has a “desert” steady state m = 0,
w = A. When A ≥ 2B , there are two further steady states (m±,w±) where

m± = 2B

A ± √
A2 − 4B2

, w± = A ± √
A2 − 4B2

2
.

Ecologically realistic values of B are relatively small, and in particular satisfy B < 2
(Klausmeier 1999; Rietkerk et al. 2002). Under this constraint, (m−,w−) is stable
as a solution of the kinetics ODEs, although it can be destabilised by the diffusion
and advection terms, leading to spatial patterns (Klausmeier 1999; Sherratt 2005,
2010). However, (m+,w+) is unstable as a solution of the kinetic ODEs, and we will
consider the nature of its instability as a solution of the PDEs (2a), (2b).

We begin by linearising (2a), (2b) about (m+,w+), giving

m̃t = α̃m̃ + β̃w̃ + m̃xx, (12a)

w̃t = γ̃ m̃ + δ̃w̃ + νw̃x, (12b)
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where m̃ = m − m+, w̃ = w − w+, and the linear coefficients α, β , γ , δ are given by

α̃ = B, (13a)

β̃ = A − √
A2 − 4B2

A + √
A2 − 4B2

, (13b)

γ̃ = −2B, (13c)

δ̃ = −2A

A + √
A2 − 4B2

. (13d)

Substituting (m̃, w̃) = (m,w) exp(ikx + λt) into (12a), (12b) and requiring m and w

to be non-zero gives the dispersion relation

D̃(λ, k) = λ2 + λ
(

k2 − α̃ − ikν − δ̃
) + (

α̃ − k2)(ikν + δ̃) − β̃γ̃ = 0. (14)

Branch points are double roots (for k) of the dispersion relation, and satisfy (14) and
also

0 = ∂D̃/∂k = λ(2k − iν) − (

3ik2ν + 2δ̃k − iνα̃
) ⇒

λ = (

3ik2ν + 2δ̃k − iνα̃
)

/(2k − iν).
(15)

Substituting (15) into (14) gives a quintic polynomial in k:

(

3ik2ν + 2δ̃k − iνα̃
)2 + (2k − iν)

(

3ik2ν + 2δ̃k − iνα̃
)(

k2 − α̃ − ikν − δ̃
)

+ (2k − iν)2[(α̃ − k2)(ikν + δ̃) − β̃γ̃
] = 0. (16)

We must now proceed numerically, and we will fix the parameter values to be
A = 2, B = 0.5 and ν = 20. These parameters satisfy the condition A > 2B , but
otherwise they are chosen arbitrarily. The value ν = 20 is too small for ecological
realism: The formula for the dimensionless parameter ν involves the ratio of the ad-
vection rate of water and the (square root of the) plant diffusion coefficient (Klaus-
meier 1999; Sherratt 2005), so that ν is relatively large, with Klausmeier’s (1999)
estimate being 182.5. However, we use the smaller value to improve the clarity of the
numerical calculations. Substituting the parameter values into (16) gives five distinct
roots for k, two complex and three pure imaginary. For each, we substitute into (15)
to find the corresponding value of λ. We then substitute this value of λ into (14) to
determine whether the branch point is in the absolute spectrum. We performed all of
the various calculations using the software package MAPLE with 20 decimal places,
but for clarity we give results to 3 decimal places.

Branch point k = −0.099 + i0.012. Substituting this value of k into (15) gives λ =
0.473 + i0.022. Substituting this value of λ back into (14) gives a cubic polynomial
for k whose roots are −0.099 + i0.012, −0.099 + i0.012, 0.199 − i0.101. Recall
from Sect. 5 that the branch point is in the absolute spectrum if the repeated roots are
k2 and k3, when the roots k1, k2, k3 of (14) are labelled in increasing order of their
imaginary parts. Therefore, in this case the branch point is in the absolute spectrum.
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Branch point k = −i19.950. Substituting this value of k into (15) gives λ = 398.112.
Substituting this value of λ back into (14) gives a cubic polynomial for k whose roots
are −i19.950, −i19.950 and i19.94. Therefore, the repeated roots are k1 and k2, so
that this branch point is not in the absolute spectrum.

Branch point k = −i19.892. Substituting this value of k into (15) gives λ = 396.587.
Substituting this value of λ back into (14) gives a cubic polynomial for k whose roots
are −i19.892, −i19.892 and i19.902. Therefore, the repeated roots are k1 and k2,
so that this branch point is not in the absolute spectrum.

Branch point k = −i0.181. Substituting this value of k into (15) gives λ = 0.569.
Substituting this value of λ back into (14) gives a cubic polynomial for k whose
roots are −i0.181, −i0.181, and i0.281. Therefore, the repeated roots are k1 and
k2, so that this branch point is not in the absolute spectrum.

Branch point k = 0.099 + i0.012. Substituting this value of k into (15) gives λ =
0.473 − i0.022. Substituting this value of λ back into (14) gives a cubic polynomial
for k whose roots are −0.199 − i0.101, 0.099 + i0.012, and 0.099 + i0.012. There-
fore, the repeated roots are k2 and k3, so that this branch point is in the absolute
spectrum.

Therefore, of the five branch points, two are in the absolute spectrum, with the cor-
responding eigenvalues being 0.473 ± i0.022. Since these eigenvalues have positive
real part, the steady state (m+,w+) is absolutely unstable.
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