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Adhesion of cells to one another and their environment is an important regulator of many

biological processes but has proved difficult to incorporate into continuum mathematical

models. This paper develops further the new modelling approach proposed by Armstrong

et al. (A continuum approach to modelling cell–cell adhesion, J. Theor. Biol. 243: 98–113,

2006). The models studied in the present paper use an integro-partial differential equation for

cell behaviour, in which the integral represents the sensing by cells of their local environment.

This enables an effective representation of cell–cell adhesion, as well as random cell movement,

and cell proliferation. The authors use this modelling approach to investigate the ability

of cell–cell adhesion to generate spatial patterns during cell aggregation. The model is also

extended to give a new representation of cancer growth, whose solutions reflect the balance

between cell–cell and cell–matrix adhesion in regulating cancer invasion. The non-local term

in these models means that there is no standard theory from which one can deduce the

boundedness required for biological realism: specifically, solutions for cell density must lie

between zero and a positive density corresponding to close cell packing. Here the authors

derive a number of conditions, each of which is sufficient for the required boundedness, and

they demonstrate numerically that cell density increases above the upper bound for some

parameter sets not satisfying these conditions. Finally the authors outline what they regard

as the main mathematical challenges for future work on boundedness in models of this type.

1 Introduction

Most biological cells adhere to one another and to their environment via adhesion

molecules on their surface. This is an important regulator of many aspects of physiology

and pathology; for example, adhesion plays a key role in the early stages of vertebrate

development (Cheng et al., 2005; Halbleib & Nelson, 2006) and is central to the invasive

stage of cancer (Gassmann et al., 2004; Hart, 2005). For recent general reviews of

cell adhesion, see Foty and Steinberg (2005), Reddig and Juliano (2005) and Steinberg

(2007).
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Theoretical study of cell adhesion has a relatively long history of using computational

individual cell-based models. Key early work of this type was done by Glazier and co-

workers (Graner & Glazier, 1992; Glazier & Graner, 1993; Glazier et al., 1995; Mombach

et al., 1995), who adapted the Potts model from theoretical physics to biological cell

populations. Here each cell is composed of a number of sites on a fixed grid, and sites

change cell type according to an energy minimisation scheme that depends on contacts

between neighbouring cells. This approach has been extended and refined by a number

of authors, with applications to cellular slime mould morphogenesis (Savill & Hogeweg,

1997; Maree & Hogeweg, 2002), vertebrate development (Zajac et al., 2000; Merks &

Glazier, 2005), epidermal homeostasis (Savill & Sherratt, 2003) and solid tumour growth

(Stott et al., 1999; Turner et al., 2004; Bauer et al., 2007). Other lattice-based models

incorporating cell adhesion include work of Grygierzec et al. (2004) and Anderson et al.

(2006) on solid tumour growth, and the model of Moreira and Deutsch (2005) for

pigmentation patterning in zebrafish. Recent reviews of lattice-based models are given in

the books by Deutsch and Dormann (2005; Chapter 7 focusses on cellular adhesion) and

Anderson et al. (2007, Sections I and II).

A different type of individual cell-based model is of ‘lattice free’ type, in which cells

are tracked as they move through continuous space. Work of this type includes two

important series of papers, by Othmer and co-workers and by Drasdo and co-workers.

The former involves a detailed representation of the mechanical forces, including adhesive

forces, that underlie cell movement; applications have mainly been focussed on cellular

slime moulds (Palsson & Othmer, 2000; Dallon & Othmer, 2004; Palsson, 2007), although

a recent paper concerns avascular tumour growth (Kim et al., 2007). A similar approach

has recently been used to study cohesive and adhesive effects during platelet aggregation

in blood clotting (Fogelson, 2007; Fogelson & Guy, 2008).

The approach of Drasdo and co-workers uses a similar framework, but with a focus on

cell population dynamics rather than mechanical forces; applications have been to tumour

growth (Drasdo et al., 1995; Drasdo & Hohme, 2003, 2005), epidermal homeostasis (Galle

et al., 2005; Schaller & Meyer-Hermann, 2007) and early development (Drasdo & Forgacs,

2000; Drasdo & Loeffler, 2001). Recent reviews of lattice-free individual cell-based models

are given by Galle et al. (2006) and in Sections III and IV of the book by Anderson et al.

(2007).

It is relatively straightforward to include adhesive effects in individual cell-based models

because they include explicit representations of the cell boundaries. However, there is no

corresponding way to incorporate cell adhesion in continuous mathematical models for

cellular dynamics. This is because adhesion is intrinsically a non-local phenomenon; a

natural comparison is with cell movement up chemical gradients (‘chemotaxis’), which can

be effectively modelled as a local process (see Hillen & Painter (2008) for a recent review).

Therefore the extensive literature on PDE models of cell movement mostly neglects

adhesive effects. The main exception is a class of models that incorporate adhesion via

a surface tension on the tumour boundary (Byrne & Chaplain, 1996; Chaplain, 1996;

Cristini et al., 2003; Frieboes et al., 2006, 2007; Friedman, 2007; Macklin & Lowengrub,

2007). Other isolated exceptions are the use by Perumpanani et al. (1996) of a non-linear

diffusion term to reflect reduced cell movement in regions of high cell density and Byrne’s

(1997) approximation of cell–cell adhesion at the surface of a solid tumour by a variation
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in nutrient uptake, which is assumed to correlate with the strength of adhesive bonds. In

all of these cases, the representation of adhesion is indirect: there is no explicit modelling

of cell–cell contact. Recently, three of us proposed a new model for cell adhesion which

does have a direct representation of this kind (Armstrong et al., 2006). The model is of

integro-partial differential equation form, with the non-local term representing adhesion

via an integral over the ‘sensing region’ of a cell. Numerical simulations of this model

reproduce a number of basic properties of adhesive cell populations. Moreover, the

model has been successfully applied to somite formation in early vertebrate development

(Armstrong et al., in press) and to solid tumour growth (Gerisch & Chaplain, 2008). Green

et al. (in preparation) have also used a very similar modelling framework to study liver cell

aggregation.

This paper concerns models for cell aggregation and cancer invasion, based on the

approach of Armstrong et al. (2006). The non-local form of our models means that there

is relatively little general theory from which its underlying mathematical properties can

be determined. In particular, biological realism demands that solutions for cell density

be bounded both below (by zero) and above (by a density corresponding to close cell

packing). The key results of this paper are Propositions 1 and 2 in Section 4, which give a

series of conditions that are sufficient for these boundedness requirements to hold. Before

discussing these results, we describe the basic form of the mathematical model in Section

2 and then an extended model for cancer invasion in Section 3. Finally, in Section 5, we

discuss open mathematical questions on the boundedness properties of models of this

type.

2 The basic mathematical model

Our model for an adhesive cell population is based on the work of Armstrong et al. (2006).

We consider an integro-advection-diffusion equation in which the integral represents the

effect of adhesion between cells on their movement:

∂n(x, t)

∂t
=

Random
movement︷ ︸︸ ︷

D
∂2n(x, t)

∂x2
− αφ

R

∂

∂x

[
n(x, t)

∫ R

−R

A(n(x + x0, t))ω(x0) dx0

]
︸ ︷︷ ︸

Adhesion

+ f(n)︸︷︷︸
Cell

kinetics

. (1)

Here n(x, t) is the cell density at position x and time t. D, α, φ and R are positive

constants, a full description of which can be found in Armstrong et al. (2006). In brief,

D is the diffusion coefficient, α is the adhesion coefficient, φ relates to the viscosity of

the cells and R describes the radius over which cells can sense their surroundings, via

protrusions such as filopodia. These protrusions cause adhesive bonds to form between

cells that are significantly separated, and it is the making and breaking of these adhesive

bonds that generate an adhesive cell flux (see Lock et al. (2008) or Alberts et al. (2008,

pp. 1133–1150) for a detailed discussion). The function A(n) represents the attractive

adhesive force between the cells. This force will increase with cell density when this is

small, but will decrease at higher cell densities as close-packing is approached, with A= 0

at the cell density n= nmax corresponding to close-packing. Values of n>nmax are not
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biologically meaningful, but it is mathematically convenient to set A(n) = 0 for n>nmax.

Armstrong et al. (2006) take A(n) = max{n(1 − n/nmax), 0} as a simple function with an

appropriate qualitative form.

The function ω(·) represents the variation in adhesive force over the sensing region

of the cell; for uniqueness, we impose the condition
∫ R

0
ω(x0) dx0 = 1. There is a natural

constraint that ω(·) is odd, since adhesive forces will always be directed towards cell

centres, but otherwise there is no data that we are aware of on which ω(·) can be based.

Armstrong et al. (2006) take ω(x0) = (1/R) sign(x0) (though with a different scaling factor)

as their basic functional form for mathematical simplicity.

The function f(n) represents cell division and cell loss, and must satisfy f(0) = 0. Again,

this function will increase with cell density when this is small, but will decrease due to

crowding pressure at higher values of n. Cell division and death are subject to separate

regulatory mechanisms (see Jorgensen & Tyers (2004) or Alberts et al. (2008, Chapters 17

and 18) for review), and there will be a critical value n= n0 above which cell loss occurs

more rapidly than the generation of new cells via division, so that f(n)< 0 for n>n0. This

shift in the balance between division and loss must occur at an achievable cell density, and

thus n0 <nmax, the close-packing density, which is an upper bound on n for biologically

realistic solutions.

In the remainder of this section, we fix the functional forms as A(n) = max{n(1 −
n/nmax), 0}, ω(x0) = (1/R) sign(x0) and f(n) = μn(1 − n/n0). Equation (1) then has exactly

the form studied by Armstrong et al. (2006), except for the addition of the cell proliferation

term. For algebraic simplicity, we non-dimensionalise (1) using the following rescalings:

x∗ = x/R, t∗ = tD/R2, n∗ = 2n/nmax, α∗ = αφnmax/(4D), μ∗ = μR2/D, n∗
0 = 2n0/nmax.

Substituting these into (1) and dropping the asterisks gives the dimensionless equations

∂n(x, t)

∂t
=

∂2n(x, t)

∂x2
− α

∂

∂x

[
n(x, t)

∫ 1

−1

max{n(x + x0, t)[2 − n(x + x0, t)], 0} sign(x0) dx0

]
+ μn(1 − n/n0). (2)

Armstrong et al. (2006) showed that in the absence of proliferation (μ= 0), (2) predicts

the aggregation of an initially uniform cell population (with a small amount of noise)

into discrete cell clusters. Such aggregation is well documented in in vitro experiments (see

for example Steinberg, 1962; Foty & Steinberg, 2004, 2005). The model (2) has a unique

non-zero spatially uniform steady state n= n0, and intuitively one expects aggregation

patterns to be possible when this steady state is unstable. Straightforward linear stability

analysis gives the dispersion relation

λ = −γ2 + 4αn0(1 − n0)(1 − cos γ) − μ

for the growth rate λ of perturbations of wavenumber γ to n = n0 < 2. Therefore the

condition for instability is

4αn0(1 − n0) > min
γ>0

(
γ2 + μ

1 − cos γ

)
=

4θ2 + μ

2 sin2 θ
, (3)
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Figure 1. Illustrations of the condition (3) for stability of the uniform steady state n= n0 in the

model (2) for cell aggregation. For given values of n0 and μ, (3) defines a critical value of α above

which n= n0 is unstable. We plot this critical value of α as a function of μ for n0 = 0.75, and as a

function of n0 for μ=1. When the steady state is unstable, we expect intuitively that aggregation

patterns will develop, and this is confirmed by numerical simulations (for example, Figure 2).

where θ is the unique solution on (0, π/2) of tan θ= (4θ2 + μ)/(4θ). This condition is

illustrated in Figure 1. As the rate of cell turnover increases, higher levels of adhesion are

required to generate aggregations. This prediction could be tested in experiments, but we

are not aware of any relevant existing data. In Figure 2 we plot the results of numerical

solutions of (2) for initial conditions in which a small amount of noise is added to the

steady state n= n0. These solutions confirm that the steady state is stable unless (3) is

satisfied, in which case a pattern of cell aggregations develops.

3 Applications to cancer invasion

Cancer invasion is the process of cells migrating away from a solid tumour and into the

surrounding extracellular matrix. It is a key early stage in metastasis: as they move through

the matrix around the tumour, cells may encounter a blood vessel and be transported in

the blood stream, potentially initiating a secondary tumour in a different part of the body.

Cancers typically become invasive as a result of mutations affecting some combination of

their production of enzymes that degrade extracellular matrix, their tendency to move up

matrix gradients (‘haptotaxis’) and changes in their adhesiveness (reviewed by Hart (2005)

and Ala-aho & Kähäri (2005)). The first two of these processes have been studied in a

large number of mathematical models of both discrete and continuous (PDE) forms; see

Araujo and McElwain (2004, Sections 4 and 6.4) and Chaplain & Lolas (2005, Section

2) for reviews. The role of cell–cell adhesion has received significant attention in discrete

models (for example Turner & Sherratt (2002); Anderson (2005)). However, the lack of an

effective modelling approach means that adhesion has been neglected in most continuum
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Figure 2. Numerical solutions of the model (2) with three different values of the adhesion strength

parameter α. At t=0 we impose a small level of noise to n= n0; specifically n(x, 0) = n0 + Φ(x),

with Φ(·) chosen randomly at each grid point from a uniform distribution between ± 5 × 10−4. We

fix μ=1 and n0 = 0.8, in which case (3) implies that the steady state n= n0 will be stable when

α< 5.38 . . . . In (a) we take α= 3 so that this condition is satisfied, and the solution returns to

n ≡ n0. In (b) and (c), α=6 and 10 respectively, and aggregation patterns develop. We use periodic

boundary conditions, and the equations were solved numerically using a finite volume scheme with

first-order upwinding. The resulting system of ODEs was solved using ROWMAP (Weiner et al.,

1997; see also Gerisch & Chaplain, 2008), a stiff integrator based on a Rosenbrock-type method.

The spatial grid spacing was 0.1. A detailed discussion of methods for numerical evaluation of the

integral term in equations such as (2) is given by Gerisch (submitted).

models of cancer invasion. The most successful previous approach has been to represent

cell–cell adhesion as a surface tension on the tumour boundary (Byrne & Chaplain, 1996;

Chaplain, 1996; Cristini et al., 2003; Frieboes et al., 2006, 2007; Macklin & Lowengrub,

2007). However, this does not allow an investigation of the role of cell–matrix adhesion,

which also plays a key role in cancer invasion (see Berrier & Yamada (2007) for a review).

The standard paradigm is that invasive cancer cells have decreased cell–cell adhesion

and/or increased cell–matrix adhesion in comparison to their non-invasive counterparts

(see Zigrino et al. (2005) for a detailed biological discussion). The modelling approach of

Armstrong et al. (2006) provides a natural way of investigating how changes in cell–cell

and cell–matrix adhesiveness can conspire to produce an invasive phenotype, and we now

describe a simple model of this type.

The model is formulated in terms of the densities n(x, t) of tumour cells and m(x, t)

of extracellular matrix; as in Section 2, we restrict attention to one space dimension for

simplicity. We assume that cell movement is driven entirely by the adhesion of cells to

one another and to the extracellular matrix. In reality, other factors such as chemical

gradients make important contributions to cell movement, but we neglect these in order



Non-local reaction–diffusion model for adhesion in cell aggregation and cancer invasion129

to focus specifically on adhesion. It is natural to assume that cells have the same sensing

radius for both types of adhesion, since both will be determined by the extension of cell

protrusions such as filopodia. On the same basis we take the decrease in adhesive force

with cell and matrix densities to be the same for both adhesion types; for simplicity, we

assume a linear decrease. Our model equations are then

nt =

Proliferation︷ ︸︸ ︷
k1n

(
1 − n

k2

)

−

Cell–cell adhesion︷ ︸︸ ︷[
n
αφ

R

∫ R

−R

n(x + x0, t) max

{
K − n(x + x0, t)

k3
− m(x + x0, t)

k4
, 0

}
ω(x0) dx0

]
x

,

−
[
n
βφ

R

∫ R

−R

m(x + x0, t) max

{
K − n(x + x0, t)

k3
− m(x + x0, t)

k4
, 0

}
ω(x0) dx0

]
x︸ ︷︷ ︸

Cell–matrix adhesion

(4a)

mt = −k5k6nm
2︸ ︷︷ ︸

Proteolysis

, (4b)

where α, β, φ, R, K and the ki’s are positive constants. The second equation represents

the degradation of extracellular matrix by proteolytic enzymes. In many cases, these

are produced by the tumour cells, in response to interactions with extracellular matrix

(see Zigrino et al. (2005, Section 4) for a review of the relevant biological literature).

A suitable equation for the concentration P (x, t) of enzyme would be Pt = k7nm − k8P ,

with mt = −k6mP being the equation for matrix density. Proteolytic enzymes have very

fast dynamics in comparison to those of cells and extracellular matrix, so that k7 and

k8 are large in comparison to k1 and k6. Therefore a quasi-steady-state assumption is

appropriate, giving P = (k7/k8)nm, which implies (4b), with k5 = k7/k8.

The parameters k1 and k2 reflect the dependence of cell division on local cell density,

and K , k3 and k4 relate to the restrictions imposed by the availability of space on cellular

sensing of the local environment. The parameters φ and R and the function ω0 have the

same interpretation as in the model (1). For notational simplicity we non-dimensionalise

the model using the rescalings

x∗ =
x

R
, t∗ = k1t, n∗ =

2n

k3K
, m∗ =

2m

k4K
,

α∗ =
αK2φk3

4k1R
, β∗ =

βK2φk4

4k1R
, γ =

k3k4k5k6K
2

4k1
, n0 =

2k2

k3K
, ω∗(ξ) = Rω(ξR).

Substituting these into (4) and dropping the asterisks gives the dimensionless equations

nt = n(1 − n/n0) − ∂

∂x

[
n

∫ 1

−1

[αn(x + x0, t) + βm(x + x0, t)]

· max {2 − n(x + x0, t) − m(x + x0, t), 0}ω(x0) dx0

]
, (5a)

mt = −γnm2. (5b)
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Figure 3. Numerical simulation of non-invasive tumour growth using the model (5). Initially we

introduce a small population of tumour cells into a uniform level of extracellular matrix; specifically

n=0.01 on 9<x< 11 and zero elsewhere, and m ≡ 1, at t=0. The parameter values α=1, β = 0.8,

γ= 1 and n0 = 1 are such that the tumour population grows but does not invade the surrounding

matrix. The function ω(x0) = sign(x0), and the equations were solved numerically as described in

the legend to Figure 2. A detailed discussion of methods for numerical evaluation of the integral

term in equations such as (5) is given by Gerish (submitted). The boundary conditions were zero

flux. For the integral, these are implemented by assuming that there are no cells located outside

the domain. Since the adhesion term only allows cells to move to regions with positive cell density,

this prevents movement over the boundary. Note however that the cell density remains almost zero

close to the boundary.

The four dimensionless parameters have simple biological interpretations. α and β reflect

the strengths of cell–cell and cell–matrix adhesion respectively, γ reflects the degradation

rate of matrix by tumour cell-derived proteolytic enzymes and n0 reflects the effects of

crowding on cell proliferation and death, relative to the dimensionless close-packing cell

density of 2.

Simultaneously with our work, and independently, Gerisch and Chaplain (2008) have

developed a model for cancer invasion that is also based on the work of Armstrong et al.

(2006). Their model has many similarities to (5), though it differs in a variety of details.

To the best of our knowledge, these two models are the first continuum representations

of tumour growth to explicitly include the effects of cell–cell and cell–matrix adhesion on

cell movement.

To investigate the predictions of the model (5) for tumour growth, we solved the

equations numerically for initial conditions corresponding to the introduction of a small,

localised tumour cell population into uniform matrix. The resulting behaviour falls into

two categories, depending on parameter values. When α is large compared to β, the

tumour cell population increases in the region in which it was introduced, but does not

spread out in space (Figure 3). Biologically, this corresponds to a non-invasive tumour

developing when cell–cell adhesion dominates cell–matrix adhesion. In the long term, the

region occupied by the tumour is simply that in which the cells are initially introduced,

and is independent of the initial level of tumour cell density.
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Figure 4. Numerical simulation of invasive tumour growth using the model (5). Initially we

introduce a small population of tumour cells into a uniform level of extracellular matrix; specifically

n=0.01 on 9<x< 11 and zero elsewhere, and m ≡ 1, at t= 0. The parameter values α= γ=1, β =2

are such that the tumour invades the surrounding matrix. The function ω(x0) = sign(x0), and the

equations were solved numerically as described in the legend to Figure 2. We use zero flux boundary

conditions, with the domain sufficiently large that the cell density remains almost zero close to the

boundary throughout the solution.

When α is small compared to β, the small initial population of tumour cells again

grows, but also expands, invading the surrounding matrix (Figure 4). Biologically, this

corresponds to tumour invasion occurring when cell–matrix adhesion dominates cell–cell

adhesion, in keeping with standard thinking about the mechanisms underlying cancer

invasion. In Figure 5 we show the division of the α–β parameter plane into invasive and

non-invasive cases for one pair of values of the other two parameters γ and n0. Calculation

of the curve dividing the two types of behaviour in the α–β plane is a natural objective

for future work.

4 Mathematical results on boundedness

In our models, the dimensionless cell density of 2 corresponds to close-packing. Therefore,

biologically meaningful solutions cannot have cell density increasing through 2, and of

course cell density must also be non-negative. We now obtain a number of conditions

that are sufficient for these boundedness properties to hold. We formulate our results for

the following equation system, which includes both the cell aggregation model (2) and the

cancer invasion model (5):

∂n(x, t)

∂t
= D

∂2n

∂x2
− ∂K

∂x
+ f(n), (6a)

∂m(x, t)

∂t
= −γnm2, (6b)

for t � 0, x ∈ �
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Figure 5. A plot of invasion speed as a function of cell–cell adhesion strength, α, and cell–matrix

adhesion strength, β, in the model (5). Speeds of zero correspond to non-invasive tumour growth.

The parameter γ=1. We used initial and boundary conditions as in Figures 3 and 4, and the same

method of numerical solution.

with K(x, t) = n(x, t)

∫ +1

−1

[αn(x + x0, t) + βm(x + x0, t)]

·g(n(x + x0, t) + m(x + x0, t))ω(x0) dx0 (6c)

subject to D � 0, α > 0, β � 0, γ � 0 (6d)

and f(0) = f(n0) = 0 for some n0 ∈ (0, 2), f(ξ) > 0 on 0 < ξ < n0,

f(ξ)< 0 on ξ >n0 (6e)

and g(ξ) > 0 and bounded on 0 < ξ < 2, g(ξ) = 0 on ξ � 2 (6f)

and ω(·) an odd function, ω(ξ) � 0 on ξ � 0,
∫ 1

0 ω(x0) dx0 = 1. (6g)

We will prove the following:

Proposition 1 Suppose that n(x, t) and m(x, t) satisfy (6) with n(x, 0) � 0 and m(x, 0) � 0

for all x ∈ �. Then n(x, t) � 0 and m(x, t) � 0 for all t> 0, x ∈ �.

Proposition 2 Suppose that n(x, t) and m(x, t) satisfy (6) with 0 � n(x, 0) � 2 and 0 �
m(x, 0) � M for some M> 0, for all x ∈ �. Then n(x, t) � 2 for all t> 0 and x ∈ � if any

of the following conditions hold:
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(i) ω(x0) = sign(x0)

(ii) ω(·) is continuous on [−1, 1] and differentiable on (−1, 1), and α + min{1, 1
2
M}β <

−f(2)[4 sup{g(ξ) : 0<ξ< 2}
∫ 1

−1
|ω′(x0)| dx0]

−1

(iii) ω(·) is continuous on [−1, 1] and differentiable on (−1, 1), with ω′(x0)> 0 on

|x0|<xm and ω′(x0)< 0 on xm < |x0|< 1 for some xm ∈ (0, 1), and α + min{1, 1
2
M}β <

−f(2) [8 sup{g(ξ) : 0<ξ< 2}ω(xm)]−1

(iv) ω(x0) =Ω(λx0)/
∫ 1

0 Ω(λx0) dx0 for λ> 0 sufficiently large, where Ω(·) is differentiable on

�, |Ω′(η)| ∈ L1(�) and Ω(η) → ±Ω∗ as η → ±∞ for some Ω∗ > 0, assuming additionally

that D> 0 and that there exist c> 0 and ε> 0 such that |∂3n/∂x3| � cλ3−ε for all (x, t) ∈
� × [0,∞)

Remarks The conditions on ω(·) in part (iv) include the normalised tanh(λx0) case which

will be discussed later. Note that an ω(x0) satisfying (iv) will tend to the function sign(x0)

of case (i), as λ → ∞. Thus as λ → ∞ the model formally becomes independent of λ. This

suggests that the solution for case (iv) approaches that for case (i) in this limit, so that

the additional assumption on |∂3n/∂x3| for case (iv) is not unrealistic. In fact |∂3n/∂x3| is

probably bounded independently of λ as λ → ∞, but our proof works even if |∂3n/∂x3|
grows with λ to some extent. The restriction D> 0 is required for our proof of case (iv),

but we expect the boundedness property to be preserved in the limit D → 0.

Part (iii) of Proposition 2 is included because of its particular importance in the very

common situation in which the one-dimensional behaviour represented by (6) actually

occurs in a two-dimensional system. In this case, n and m will be functions of the cartesian

coordinate x only, independent of y, but the adhesive flux will be determined by an integral

over the two-dimensional sensing region of the cell. Assuming this sensing region to be

circular gives

K(x, t) = n(x, t)

∫ 2π

θ=0

∫ 1

r=0

[αn(x + r cos θ, t) + βm(x + r cos θ, t)]

· g(n(x + r cos θ, t) + m(x + r cos θ, t)) ω̂(r) cos θ r dr dθ.

Here the positive function ω̂(·) describes the variation in the sensing ability of cells across

their sensing region; for simplicity we take this to be a constant. Changing to cartesian

coordinates in the integral then gives

K(x, t) = n(x, t)

∫ 1

x0=−1

∫ √
1−x2

0

y0=−
√

1−x2
0

x0√
x2

0 + y2
0

[αn(x + x0, t) + βm(x + x0, t)]

· g(n(x + x0, t) + m(x + x0, t)) ω̂ dy0 dx0

= n(x, t)

∫ 1

−1

[αn(x + x0, t) + βm(x + x0, t)]

· g(n(x + x0, t) + m(x + x0, t)) ω̂ x0 log

⎛
⎝1 +

√
1 − x2

0

1 −
√

1 − x2
0

⎞
⎠dx0.
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Figure 6. A plot of the function ω(x0) given in (7). This is derived by assuming one-dimensional

behaviour in a two-dimensional system, with a circular cell sensing region, over which sensing is

uniform.

This corresponds to (6c) if we take

ω(x0) = x0 log

⎛
⎝1 +

√
1 − x2

0

1 −
√

1 − x2
0

⎞
⎠ (−1 < x0 < 1); (7)

the constant ω̂ must be 1 in order to satisfy the integral constraint in (6g). This function,

which is illustrated in Figure 6, has the form required for part (iii) of Proposition 2, with

xm = 0.552. . . .

Proof of Proposition 1 Non-negativity of the m(x, t) variable is clear and is consequent

upon the fact that m satisfies mt = −γnm2 which has no spatial derivative terms and in

which x behaves as a parameter. This equation behaves as a one-dimensional ODE in

which the right-hand side is zero when m= 0 and for which a local Lipschitz condition

holds. Thus m(x, t) � 0.

Now suppose that non-negativity of n(x, t) ceases to hold at some finite time, considering

first the case D> 0. Then

tn0 := sup{t : n(x, t) � 0 for all x ∈ �}

exists, and there is a point x= xn0 such that n(xn0, tn0) = 0 and n(xn0, tn0 + 0)< 0 (xn0 is

not necessarily unique). Then at (xn0, tn0),

n = 0,
∂n

∂x
= 0,

∂2n

∂x2
� 0,

∂n

∂t
� 0. (8)
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Note that the second and third terms in the right-hand-side of (6a) are zero at

(xn0, tn0). Proof of non-negativity now proceeds by considering separately the two cases

∂2n(xn0, tn0)/∂x2 > 0 and ∂2n(xn0, tn0)/∂x2 = 0.

The first case ∂2n(xn0, tn0)/∂x2 > 0 is trivial, since evaluating (6a) at (xn0, tn0) implies

that ∂n(xn0, tn0)/∂t> 0, which contradicts (8). The second case ∂2n(xn0, tn0)/∂x2 = 0 is more

delicate and implies a higher order of tangency of the graph of n(x, tn0) to the x-axis

at xn0. Unless n(x, tn0) is zero for all x ∈ � (in which case n would remain zero for all

subsequent t), there must exist a spatial derivative of n of even order (2i say, i ∈ �) that

is strictly positive at (xn0, tn0), and with all the lower order spatial derivatives of n being

zero at (xn0, tn0). Then explicit differentiation of (6a) gives

∂in

∂ti
= Di ∂

2in

∂x2i
> 0

at (xn0, tn0), if D> 0. Since n= ∂n/∂t= · · · = ∂i−1n/∂ti−1 = 0 at (xn0, tn0), the graph of n(x, t)

must lift off the x-axis as t increases from tn0, and this contradicts the definition of tn0.

We have assumed that all relevant derivatives exist. However, for D> 0 this is reasonable

because of the well-known smoothing property of the Laplacian operator; see Alibaud

et al. (submitted) for a detailed discussion of this smoothing property in the context of a

(different) non-local equation.

For the case when D= 0, non-negativity is immediate. Equation (6a) implies that

∂n/∂t= 0 at (xn0, tn0), and repeated differentiation of this equation with respect to time

implies further that ∂in/∂ti = 0 for all i � 0. Therefore n(xn0, t) = 0 for all t � tn0, which

contradicts the definition of tn0. �

Proof of Proposition 2 The first stage in the proof is essentially the same for each of the

parts (i)–(iv) of the proposition. Suppose that n(x, t) � 2 ceases to hold at some finite

time. Then

t∗ := sup{t : n(x, t) � 2 for all x ∈ �}

exists; n(x, t∗) is still �2 everywhere but its graph touches the line n= 2 somewhere. Let x∗

be a value of x at which such a tangency occurs, with n(x∗, t∗ +0)> 2 (x∗ is not necessarily

unique). Then at (x∗, t∗),

n = 2,
∂n

∂x
= 0,

∂2n

∂x2
� 0,

∂n

∂t
� 0 (9)

and 0 � n(x, t∗) � 2 for all x ∈ �. Evaluating (6a) at (x∗, t∗) and making use of (9), we

obtain

∂n

∂t

∣∣∣∣
(x∗ ,t∗)

� −2
∂

∂x

(∫ 1

−1

[αn(x + x0, t) + βm(x + x0, t)]

· g(n(x + x0, t) + m(x + x0, t))ω(x0) dx0

)
(x∗ ,t∗)

+ f(2)
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= −2

(∫ 1

−1

∂

∂x
{[αn(x + x0, t) + βm(x + x0, t)]

· g(n(x + x0, t) + m(x + x0, t))}ω(x0) dx0

)
(x∗ ,t∗)

+ f(2)

= −2

(∫ 1

−1

∂

∂x0
{[αn(x∗ + x0, t

∗) + βm(x∗ + x0, t
∗)]

· g(n(x∗ + x0, t
∗) + m(x∗ + x0, t

∗))}ω(x0) dx0

)
+ f(2). (10)

For notational convenience in the following, we define

g̃(x) = [αn(x∗ + x, t∗) + βm(x∗ + x, t∗)]g(n(x∗ + x, t∗) + m(x∗ + x, t∗)).

Considering now part (i) of the proposition, we have ω(x0) = sign(x0), so that the

integral on the right-hand side of (10) can be evaluated immediately. This gives

∂n

∂t

∣∣∣∣
(x∗ ,t∗)

� −2 [g̃(1) + g̃(−1)] + 4g̃(0) + f(2).

Since n(x∗, t∗) = 2 from (9) and m(x∗, t∗) � 0 from Proposition 1, g(n(x∗, t∗) +m(x∗, t∗)) = 0

⇒ g̃(0) = 0. Therefore

∂n

∂t

∣∣∣∣
(x∗ ,t∗)

� −2 [g̃(1) + g̃(−1)]ω(1) + f(2) � f(2) < 0.

This contradicts (9), which implies part (i) of the proposition.

For parts (ii)–(iv), evaluating the integral in (10) by parts gives

∂n

∂t

∣∣∣∣
(x∗ ,t∗)

� −2 [g̃(1) + g̃(−1)]ω(1) + 2

∫ 1

−1

g̃(x0)ω
′(x0) dx0 + f(2)

� 2I + f(2) (11)

where

I =

∫ 1

−1

g̃(x0)ω
′(x0) dx0.

To complete the proof, it is sufficient to show that 2I + f(2)< 0, since this then implies

that ∂n/∂t< 0 at (x∗, t∗), giving a contradiction with (9).

We will prove that 2I + f(2) < 0 is implied by each of the conditions in parts (ii), (iii)

and (iv) of the proposition, with case (iv) being considerably more delicate. We begin

with part (ii). For all x ∈ �, 0 � n(x, t∗) � 2. Moreover, for all x ∈ �, Proposition 1

implies that m(x, t∗) � 0, and equation (6b) implies that ∂m/∂t � 0 for all t � 0, so that

m(x, t∗) � M. Therefore

I �

∫ 1

−1

∣∣∣[αn(x∗ + x0, t
∗) + βm(x∗ + x0, t

∗)]g(n(x∗ + x0, t
∗) + m(x∗ + x0, t

∗))ω′(x0)
∣∣∣ dx0

�

∫ 1

−1

[2α + min{M, 2}β] sup{g(ξ) : 0 < ξ < 2}|ω′(x0)|dx0. (12)
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Here we are using the fact that if m(x∗ + x0, t
∗)> 2, then n(x∗ + x0, t

∗) +m(x∗ + x0, t
∗)> 2

and thus g(n(x∗ + x0, t
∗) + m(x∗ + x0, t

∗)) = 0. Applying the condition in the statement of

(ii) then implies that 2I + f(2)< 0, as required.

For part (iii), the argument is very similar:

I �

∫ xm

−xm

[
αn(x∗ + x0, t

∗) + βm(x∗ + x0, t
∗)

]
g(n(x∗ + x0, t

∗) + m(x∗ + x0, t
∗))ω′(x0) dx0

�

∫ xm

−xm

[
2α + min{M, 2}β

]
sup {g(ξ) : 0 < ξ < 2} ω′(x0) dx0

= 2[2α + min{M, 2}β] sup{g(ξ) : 0 < ξ < 2}ω(xm),

and applying the condition in the statement of (iii) then implies that 2I + f(2)< 0, as

required.

The proof of part (iv) of the proposition is more delicate. Suppose, for contradiction,

that there is a sequence {λi} of values of λ, with λi → ∞ as i → ∞, for which the variable

n violates the bound n(x, t) � 2. The corresponding values of x∗ and t∗ will depend on

λi and are therefore denoted as x∗
i and t∗i henceforth. The solution components n and m

also depend on λ, and we denote them as ni and mi. At (x∗
i , t

∗
i ),

ni = 2,
∂ni
∂x

= 0,
∂2ni

∂x2
� 0,

∂ni
∂t

� 0, (13)

with 0 � ni(x, t
∗
i ) � 2 for all x ∈ �. The previous parts of the proof are valid up to the

point at which we defined the integral hitherto known as I . In part (iv) the dependence

of this integral on i is important, so it will henceforth be denoted Ii. Thus

Ii =

∫ 1

−1

[
αni(x

∗
i + x0, t

∗
i ) + βmi(x

∗
i + x0, t

∗
i )

]
g(ni(x

∗
i +x0, t

∗
i )+mi(x

∗
i +x0, t

∗
i ))

λiΩ
′(λix0)∫ 1

0 Ω(λiξ) dξ
dx0.

(14)

It is sufficient to show that lim supi→∞ Ii � 0, since this implies that 2Ii + f(2), and hence

∂ni(x
∗
i , t

∗
i )/∂t are negative for sufficiently large i, which contradicts (13).

It is straightforward to show that

lim
λ→∞

∫ 1

0

Ω(λξ) dξ = Ω∗.

(For example, substitute η= λξ in the integral, and apply l’Hôpital’s rule.) Therefore, for

sufficiently large i, the denominator of the integrand in (14) exceeds Ω∗/2, so that

Ii �
2

Ω∗ (2α + βM)

∫ 1

−1

g(ni(x
∗
i + x0, t

∗
i ) + mi(x

∗
i + x0, t

∗
i ))λi|Ω′(λix0)| dx0

=
2

Ω∗ (2α + βM)

∫ λi

−λi

g(ni(x
∗
i + η/λi, t

∗
i ) + mi(x

∗
i + η/λi, t

∗
i )) |Ω′(η)| dη

�
2

Ω∗ (2α + βM)

∫ ∞

−∞
g(ni(x

∗
i + η/λi, t

∗
i ) + mi(x

∗
i + η/λi, t

∗
i )) |Ω′(η)| dη.
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The integrand in the above expression is dominated by

(
max
ξ∈[0,2]

g(ξ)

)
|Ω′(η)|

which is independent of i and is in L1(�) by hypothesis. This allows us to apply Fatou’s

lemma, giving

lim sup
i→∞

Ii �
2

Ω∗ (2α + βM)

∫ ∞

−∞
lim sup

i→∞
g(ni(x

∗
i + η/λi, t

∗
i ) + mi(x

∗
i + η/λi, t

∗
i )) |Ω′(η)| dη.

We now show that for each fixed η,

lim sup
i→∞

g(ni(x
∗
i + η/λi, t

∗
i ) + mi(x

∗
i + η/λi, t

∗
i )) = 0.

Since mi(·) � 0 and since g(ξ) = 0 when ξ � 2, it is enough to show that limi→∞ ni(x
∗
i +

η/λi, t
∗
i ) = 2 for each fixed η. This is not completely trivial even though ni(x

∗
i , t

∗
i ) = 2 for

all i, since (x∗
i , t

∗
i ) may not converge as i → ∞. Indeed, due to the unboundedness of the

domain in both space and time, it is not even clear if (x∗
i , t

∗
i ) has a convergent subsequence

in �2. (Otherwise we could have worked with the corresponding subsequence of {λi} from

the outset.) The possible difficulty is to do with the fact that in principle the function

ni(·, t∗i ) could develop tighter and tighter curvature at x∗
i as i → ∞ such that ni(x

∗
i +η/λi, t

∗
i )

stays away from 2, even though η/λi → 0. We will now argue, via a Taylor series expansion

and a bound for ∂2ni/∂x2 at (x∗
i , t

∗
i ), that this does not in fact happen. Evaluating (6a) at

(x∗
i , t

∗
i ) and using (13) gives

∂ni
∂t

∣∣∣∣
(x∗

i ,t
∗
i )

� D
∂2ni

∂x2

∣∣∣∣
(x∗

i ,t
∗
i )

+ 2Ii + f(2).

This corresponds to (11), except that we have retained the Laplacian term in this case.

Therefore

D
∂2ni

∂x2

∣∣∣∣
(x∗

i ,t
∗
i )

�
∂ni
∂t

∣∣∣∣
(x∗

i ,t
∗
i )

− 2Ii − f(2)

� −2Ii − f(2)

� − 4

Ω∗ (2α + βM)

(
max
ξ∈[0,2]

g(ξ)

) ∫ ∞

−∞
|Ω′(η)| dη − f(2).

Since ∂2ni(x
∗
i , t

∗
i )/∂x2 � 0 and f(2)< 0, it implies that

∣∣∣∣∣D ∂2ni

∂x2

∣∣∣∣
(x∗

i ,t
∗
i )

∣∣∣∣∣ < 4

Ω∗ (2α + βM)

(
max
ξ∈[0,2]

g(ξ)

) ∫ ∞

−∞
|Ω′(η)| dη.
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Figure 7. Numerical solution of (6) with m ≡ 0, illustrating the solution for n remaining below 2

when α satisfies the condition in Proposition 4(iii), but increasing through 2 (and then decreasing

below 2 again) for a larger value of α. The cell diffusion coefficient D=0. The functional forms

are f(n) = n(1 − n), g(n) = max{(2 − n), 0} and ω(x0) = x0 log[(1 +
√

1 − x2
0)/(1 −

√
1 − x2

0)]. The

initial condition is n(x, 0) = 1.99 exp[−(x− 10)2] on the domain 0 � x � 20 with zero flux boundary

conditions at both ends. For clarity, the line n= 2 is superimposed on the solution. The equations

were solved numerically as described in the legend to Figure 2.

Then for each fixed η we have, for some θi ∈ (0, 1),

|ni(x∗
i + η/λi, t

∗
i ) − 2| = |ni(x∗

i + η/λi, t
∗
i ) − ni(x

∗
i , t

∗
i )|

=

∣∣∣∣∣ η
2

2λ2
i

[
∂2ni

∂x2

]
(x∗

i ,t
∗
i )

+
η3

6λ3
i

[
∂3ni

∂x3

]
(x∗

i +θiη/λi,t
∗
i )

∣∣∣∣∣
�

η2

2Dλ2
i

[
4

Ω∗ (2α + βM)

(
max
ξ∈[0,2]

g(ξ)

)∫ ∞

−∞
|Ω′(η)| dη

]
+

c|η|3
6λεi

for i sufficiently large, where we have used |∂3ni/∂x3| � cλ3−ε
i . (Recall that we assume D> 0

for this part of the proposition.) Therefore, for each fixed η, limi→∞ ni(x
∗
i + η/λi, t

∗
i ) = 2,

which is what we needed to show. We now have that lim supi→∞ Ii � 0 which, as explained

previously, leads to ∂ni(x
∗
i , t

∗
i )/∂t< 0 for sufficiently large i, which contradicts (13). �

Numerical investigation of boundedness Numerical simulations suggest that when the

conditions in Proposition 2 do not hold, the solution for n may increase through 2. In

Figures 7 and 8 we show two examples of this. In both cases, we fix m ≡ 0 (implying

that we can choose M = 0) and take f(n) = n(1 − n) and g(n) = max{(2 − n), 0}. In the first

case, we use the form of ω(·) given in (7). Part (iii) of Proposition 2 then implies that the

solution for n remains less than 2 when α< 0.377 . . .: note that this condition is sufficient

but not necessary. Figure 7 illustrates solutions in which n increases through 2 for α

above this critical value, but remains less than 2, for the same initial conditions, when α
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Figure 8. Numerical solution of (6) with m ≡ 0 and with ω(·) having a form corresponding to

part (iv) of Proposition 2. The solution for n remains below 2 when λ is large, but increases through 2

(and then decreases below 2 again) for a smaller value of λ. The adhesion coefficient α= 5, and the

cell diffusion coefficient D= 0.0001. The functional forms are f(n) = n(1 − n), g(n) = max{(2 − n), 0}
and ω(x0) = tanh(λx0) · λ/ log cosh λ. The initial condition is n(x, 0) = 1.99 exp[−(x − 10)2] on the

domain 0 � x � 20, with zero flux boundary conditions at both ends. For clarity, the line n= 2 is

superimposed on the solution. The equations were solved numerically as described in the legend

to Figure 2. For this figure, we have deliberately used a very small value of D; the corresponding

solutions with D= 0 are indistinguishable from those shown. This reinforces our comment after the

statement of Proposition 2 that we expect boundedness to be preserved in the limit as D → 0.

is smaller. In Figure 8 we use ω(x0) =Q(λ) tanh(λx0), where Q(λ) is chosen to satisfy the

integral constraint in (6g) (specifically Q(λ) = λ/log cosh λ). Part (iv) of Proposition 2 then

implies that the solution for n remains less than 2 provided that λ is sufficiently large.

The figure illustrates a solution in which n increases through 2 for λ= 1, but remains less

than 2, for the same initial conditions, when λ is larger.

5 Discussion

Previously, Armstrong et al. (2006) demonstrated aggregation patterns in numerical simu-

lations of their model for cell adhesion. In this paper, we have extended these results to an

expanded version of their model including cell proliferation, showing that the level of in-

tercellular adhesion required for aggregation goes up as the proliferation rate is increased.

Furthermore, we have used the representation of adhesion by Armstrong et al. (2006) in

a new model for cancer invasion, demonstrating a requirement for cell–matrix adhesion

to dominate cell–cell adhesion in an invasive phenotype. These successful applications of

the model, combined with other recent applications to developmental biology (Armstrong

et al., in press) and cancer (Gerisch & Chaplain, 2008), and very similar modelling of

liver cell aggregation (Green et al., in preparation), mean that it is important to put

the model on a firm mathematical footing. In particular, there is a need to investigate
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when the solutions for cell density remain within the bounds demanded by biological

realism, namely zero (lower bound) and the density corresponding to close cell packing

(upper bound). We have proved the first results of this type, showing that the positivity

requirement is satisfied for a broad class of functional forms in the model and deriving

a number of conditions, each of which is sufficient for the upper bound to hold. This is

the first step in the study of boundedness for the model, and we now summarise what we

see as the main outstanding questions.

1. When the adhesion coefficients α and β are zero, standard theory for reaction–diffusion

equations implies that the boundedness conditions always hold for (6). Therefore, for

any given functions f, g, ω and parameters D, γ, the conditions either hold for all

α, β � 0, or fail as α is increased through some critical curve in the α–β plane. Our

Proposition 2 shows that the former applies in two cases (parts (i) and (iv)) and the

latter in the other two cases (parts (ii) and (iii)) and gives upper bounds on the critical

values of α and β. The key outstanding issue is to extend these results in the direction

of a comprehensive classification for general functions and parameters, with a precise

form for the critical curve determining boundedness in the α–β plane.

2. Armstrong et al. (2006) consider aggregation patterns for (2) when f ≡ 0, a possibility

excluded by (6e). Although almost all cell populations do undergo division, it can be

very slow in comparison to the rates of cell movement and rearrangement, so that there

can be no cell division at all on the time scale of some in vitro experiments. Therefore,

investigation of boundedness when f ≡ 0 is important. The numerical simulations of

Armstrong et al. (2006) suggest that the required boundedness conditions continue to

hold for many α and ω(·); however, analytical work is significantly more difficult in

this case.

3. Armstrong et al. (2006) discuss two extensions to their model for cell aggregation,

both of which are important biologically but which lack any boundedness results at

present. The first is two interacting cell populations, without any term for adhesion

to extracellular matrix. This gives a model consisting of two coupled integro-PDES

with three adhesion parameters: self-adhesion for each cell population and cross-

adhesion between the populations. In this case the boundedness requirements apply to

the sum of the two cell densities, and derivation of corresponding constraints on the

three adhesion parameters is a major mathematical challenge. The second extension

is to higher space dimensions. Most solid tumour growth occurs in three dimensions,

while some developmental processes and many in vitro experiments are effectively two-

dimensional. In higher dimensions, the non-local term in the model involves a multiple

integral, and derivation of conditions for boundedness will be significantly more difficult

than in one dimension.
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Zigrino, P., Löffek, S. & Mauch, C. (2005) Tumor-stroma interactions: Their role in the control

of tumor cell invasion. Biochimie 87, 321–328.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 15%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveEPSInfo false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.30000
    0.30000
    0.30000
    0.30000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.30000
    0.30000
    0.30000
    0.30000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /DetectCurves 0.100000
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /PreserveDICMYKValues true
  /PreserveFlatness true
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /ColorImageMinDownsampleDepth 1
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /GrayImageMinDownsampleDepth 2
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /CheckCompliance [
    /None
  ]
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /Description <<
    /DEU <>
    /FRA <>
    /JPN <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Cambridge University Press - Distiller version 6 job options for Press quality - 16-Feb-05)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


