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abstract: Recent field data indicate that in a number of cyclic
populations, the cycles are organized spatially with the form of a
periodic traveling wave. One way in which this type of wave is gen-
erated is when dispersing individuals encounter landscape features
that impede movement in certain directions. In this article, we in-
vestigate the dependence of such periodic waves on ecological pa-
rameters and on the form of the landscape feature. Using a standard
predator-prey model as a prototype for a cyclic population, we cal-
culate the speed and amplitude of waves generated by a large land-
scape feature. This enables us to determine parameters for which the
waves are stable; in other cases, they evolve into irregular oscillations.
We then undertake for the first time a detailed study of the effects
of the size and shape of a landscape feature on the waves that it
generates. We show that size rather than shape is the key wave-
forming property, with smaller obstacles generating waves with
longer wavelength and waves from larger landscape features domi-
nating those from smaller ones. Our results suggest that periodic
traveling waves may be much more common than has previously
been assumed in real ecological systems, and they enable quantitative
predictions on the properties of these waves for particular cases.
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It is well known that many natural populations are cyclic.
The possibility of a spatial component to these oscillations
was recognized over half a century ago in the case of
Canadian lynx (Lynx canadensis; Elton and Nicholson
1942; see also Smith and Davis 1981), but detailed spa-
tiotemporal studies have been attempted only recently. In
several cases, this has revealed that the oscillations are
organized into periodic traveling waves. This phenomenon
has been studied in particular detail for field voles (Mi-
crotus agrestis) in the Kielder forest on the Scotland-
England border (Lambin et al. 1998; MacKinnon et al.
2001) and red grouse (Lagopus lagopus scoticus) on Kerloch
Moor in northeast Scotland (Moss et al. 2000). In both
cases, recently developed statistical methods (Bjørnstad et
al. 1999) have been applied to spatiotemporal data sets,
revealing patterns consistent with periodic waves moving
at a speed of 15–20 km/yr for field voles and 2–3 km/yr
for red grouse. Other recent studies show periodic trav-
eling waves in a range of ecological and epidemiological
systems (Ranta and Kaitala 1997; Bjørnstad and Bascompte
2001; Grenfell et al. 2001).

The above observations raise the important issue of
what it is that causes the periodic waves. In a previous
article (Sherratt et al. 2002), we argued that such waves
may be caused by landscape features that impede dispersal
in certain directions. In the case of the field vole study,
this would be Kielder water, a large reservoir in the center
of the forest, and for the red grouse study, it would be the
farmland and woodland adjacent to the study site. Despite
their universality, landscape-mediated heterogeneities are
rarely considered in spatiotemporal models, but it is be-
coming increasingly clear that they can have important
effects on ecological dynamics (e.g., Wiegand et al. 1999).

In this article, we generate quantitative predictions on
the ecological parameters required for landscape-generated
periodic waves, on the way in which obstacle size and shape
affect the period and amplitude of the wave, and on the
way in which waves from different landscape features will
interact. Although we focus on cyclic predator-prey sys-
tems, the methods that we describe could be applied in
the same way to populations that cycle for other reasons,
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such as the interaction between a pathogen and its host.
We suggest that the generation of periodic waves by land-
scape features is a general property of cyclic populations
rather than applying specifically to predator-prey systems,
and we discuss this in more detail later in the article.

We begin by introducing the predator-prey model and
summarizing the results from numerical solutions (“Sim-
ulation of Periodic Wave Generation”). We then describe
the calculation of periodic wave stability (“Predicting Pe-
riodic Wave Stability”) and discuss the effects of varying
the size and shape of the landscape feature (“Periodic
Waves in Two Dimensions”).

Simulation of Periodic Wave Generation

In this article we consider only mathematical models of
reaction-diffusion form, although periodic wave genera-
tion by landscape features is also predicted by coupled
map lattice models (Sherratt et al. 2002). Our model equa-
tions are a standard predator-prey system:

benefit from predation death= =dispersal= ACph p�p
2predators p ∇ p � � (1a)X

�T B(1 � Ch) AB

�h Cph
2prey p d∇ h � h(1 � h) � . (1b)X

�T (1 � Ch)\ \ \dispersal intrinsic birth and death
predation

These equations have been nondimensionalized (details in
app. A), and and are predator and preyp(X,T) h(X,T)
densities, respectively, functions of time T and space .X
We consider behavior in one space dimension initially and
then extend to two dimensions (“Periodic Waves in Two
Dimensions”). The dimensionless parameters A and B
have simple ecological interpretations. The parameter A is
the ratio of predator birth and death rates, and parameter
B is the ratio of prey and predator birth rates. The pa-
rameter C reflects the rate at which prey consumption per
predator saturates as prey density increases. Straightfor-
ward mathematical analysis shows that this model is os-
cillatory when C is above the critical value (A � 1)/(A �

; note that is required for prey and predators to1) A 1 1
coexist. Clearly the ecological interpretation of the param-
eter C is less straightforward than for A and B, and it is
often most convenient to work with m p C � (A �

. For fixed A and B, a larger value of m corre-1)/(A � 1)
sponds to larger amplitude population cycles. The param-
eter d is the ratio of the predator and prey diffusion
coefficients.

We consider initially the solutions of equations (1) on
a homogeneous one-dimensional domain; the solutions
depend on the conditions that apply on the two bound-

aries. With no-flux conditions at both ends, randomly gen-
erated initial conditions rapidly evolve to spatially uniform
population cycles. “No-flux” means simply that individ-
uals cannot enter or leave through the boundary; this is
often a suitable condition at the edge of a domain, but it
will not be appropriate for many landscape features, in-
cluding those which alter the rules governing dispersal. In
particular, for a landscape feature that constitutes a region
of very poor habitat or that individuals would attempt to
cross but would always or almost always fail, the appro-
priate boundary condition is to fix population densities at
0. In an extensive program of numerical solutions (Sherratt
et al. 2002), we found that such conditions result in pe-
riodic traveling waves moving across the domain (fig. 1a).
The waves move away from the boundary that corresponds
to the obstacle edge. Our results indicate that this same
qualitative behavior always occurs, with one exception. For
some parameter values, the wave is unstable: it is visible
close to the boundary that corresponds to the obstacle
edge, but then it breaks up into irregular spatiotemporal
oscillations (fig. 1b). From a practical viewpoint, periodic
waves would not be found in field data in such cases, and
an important objective of this article is to predict con-
ditions on parameter values for which an obstacle gen-
erates stable periodic waves.

Predicting Periodic Wave Stability

A systematic investigation of wave stability is not feasible
from numerical simulations alone and requires mathe-
matical analysis of periodic wave solutions. This is not
possible for equations as complex as equations (1). How-
ever, we have been able to get good insight into the way
in which wave stability depends on parameters by studying
the special case of and C just above the critical valued p 1

, or equivalently m small. The restriction to(A � 1)/(A � 1)
is definitely unrealistic for most terrestrial predator-d p 1

prey interactions, for which one typically expects predators
to disperse further than their prey. However, it is a math-
ematical necessity, and numerical solutions indicate that
the dependence of the solution form on kinetic parameters
is relatively insensitive to d. The condition that m is small
means that the population cycles are of low amplitude:
specifically, the ratio of maximum : minimum prey density
is approximately when m is small (app.1/21 � [8(A � 1)m]
B in the online edition of the American Naturalist). Most
real systems have cycles of higher amplitude than this, but
our calculation will give valuable insights into the way in
which wave stability depends on ecological parameters.

In this special case, the standard mathematical technique
of normal form analysis (e.g., Guckenheimer and Holmes
1983) can be used to calculate a systematic approximation
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Figure 1: Generation of periodic waves by an obstacle edge in the predator-prey system (eqq. [1]). Zero population densities ( ) areh p p p 0
imposed at to simulate the edge of an obstacle, with zero flux conditions at the other boundary ( ). The boundary condition atX p 0 X p 600

generates periodic traveling waves, which move away from the boundary. These waves can be either stable and persist (a) or unstable (b),X p 0
in which case they develop into irregular spatiotemporal oscillations. The solutions for prey h are plotted at equally spaced times between T p

and (time increasing up the page). The solutions for predators p are qualitatively similar. Initial conditions ( ) are given by3, 850 T p 4, 000 T p 0
generating random values of h and p between 0 and 1 at 60 equally spaced points in the domain and joining these by straight lines. The parameter
values are (a) , , , ; (b) , , , . The equations were solved numerically using a semi-A p 1.6 B p 1.2 C p 4.9 d p 2 A p 1.8 B p 1.2 C p 6.0 d p 1
implicit Crank-Nicolson method.

to the predator-prey model (1) of the following form,
known as a “l-q” system:

�u
2 2 2p ∇ u � (1 � r )u � (q � q r )v, (2a)x 0 1–�t

�v
2 2 2p ∇ v � (q � q r )u � (1 � r )v, (2b)x 0 1–�t

where . The variables u and are nonlinear22 1/2r p (u � v ) v
combinations of p and h, with correspondingu p v p 0
to the coexistence equilibrium ,h p h { 1/[C(A � 1)]s

. The parameters and dependp p p { Ah (1 � h ) q qs s s 0 1

on the ecological parameters as follows:

1/2 1/22 A(A � 1) A � 1
q p � (3a)0 [ ] [ ]m (A � 1)B A(A � 1)B

2 2 2 2 2 24A B � (A � 1)(A � 5)AB � (A � 1)
q p . (3b)1 5/2 2 1/2 3/26A (A � 1) B

The derivation of equations (3) is a standard “reduction
to normal form” calculation, which we outline in appendix
B. It involves a large amount of algebra that is best done
computationally; we have used the package MAPLE, and
the worksheet is available at the web site http://
www.ma.hw.ac.uk/˜jas/supplements/lovoles. One simple
implication of equations (3) is that and have theq q0 1

same sign; this will be important later in the article.
The equations (2) are much more amenable to math-

ematical analysis than equations (1). In particular, Sherratt
(2003) has calculated the periodic wave solution generated
by obstacles in a system of the form (2), in one space
dimension. This calculation uses a different condition than
in the predator-prey simulations at the obstacle edge, but
in appendix C in the online edition of the American Nat-
uralist we show that the solution form applies despite this
difference. This mathematical work, together with stan-
dard results on periodic wave stability in l-q equations
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Figure 2: Condition on the parameters A and B for the periodic waves generated by an obstacle edge to be stable (unfilled circles) when the third
parameter C is just above the critical value for cyclic behavior. In unstable cases (filled circles), waves will be generated but will(A � 1)/(A � 1)
gradually destabilize to give irregular spatiotemporal oscillations.

(Kopell and Howard 1973), implies that the condition for
periodic wave stability is . Using equa-Fq F ! 1.110468 …1

tion (3b), this gives a condition on A and B, which is
algebraically complex and is best illustrated graphically, as
in figure 2. Stable periodic waves occur at moderate ratios
of predator birth : death rate and when the ratio of
prey : predator birth rate is reasonably large. Wave direc-
tion can also be predicted using the approximate system
(2). The results of Sherratt (2003) show that for system
(2), the periodic waves generated by an obstacle can move
either toward or away from the obstacle edge, depending
on the values of and . When is large, as in ourq q Fq F0 1 0

application, the direction depends simply on whether q0

and have the same or opposite signs; formulas (3) implyq1

that the former case applies in our application, in which
case the waves will always move away from the obstacle
edge, as illustrated in figure 1a.

The stability condition shown in figure 2 applies only
when C is just above the critical value .(A � 1)/(A � 1)
However, the calculations in appendix C also enable pre-
diction of how stability changes as C (or equivalently m)

increase. Figure 3 illustrates the results of this study, in
which wave amplitude is plotted against m for fixed A and
B. The key implication of figure 3 is that although periodic
waves are unstable when for this A and B, them p 0
predicted wave amplitude increases with m, with the wave
becoming stable at .m ≈ 0.3

The values of A and B used in figure 3 ( ,A p 1.8
) are derived from crude estimates of dimensionalB p 1.2

parameters for the predation of field voles (Microtus agres-
tis) by weasels (Mustela nivalis); the basis for these param-
eter values is described elsewhere (Sherratt 2001; Sherratt
et al. 2002). One of the best-studied examples of periodic
traveling waves in a real ecological population is for field
voles in Kielder forest (northern United Kingdom), where
predation by weasels is one of a number of possible ex-
planations for the cyclic dynamics of the voles (Turchin
and Hanski 1997; Lambin et al. 2000; Korpimäki et al.
2002). Moreover, in the center of Kielder forest is a very
large reservoir (∼1,000 ha), which is a natural candidate
as a landscape feature that might generate periodic waves.
Precise formulation of boundary conditions at the reser-
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Figure 3: Predicted variation in periodic wave amplitude with the pa-
rameter . The calculations used for this figurem p C � (A � 1)/(A � 1)
and the interpretation of the numerical values of wave amplitude are
discussed in appendix B. The dashed line is the critical amplitude for
stability: there is thus a transition from unstable to stable waves as m

increases. In this figure, and , which are based on crudeA p 1.8 B p 1.2
estimates for the weasel–field vole interaction. The results in this figure
are only approximate for two reasons: first, due to high-order terms in
m being neglected, and second, because of the approximate nature of our
calculation of , which is explained at the end of appendix B.rbdy

voir edge is not possible because the details of vole be-
havior near the reservoir are not known. However, the
vole density in the reservoir is certainly 0, so that setting
vole density to 0 at the reservoir edge is certainly a plau-
sible boundary condition.

An important question is therefore whether the param-
eter values for this interaction imply stable periodic wave
generation by obstacles. Figure 3 implies that this depends
on the third ecological parameter C (or equivalently m).
Our estimate of this parameter is , based on theC p 4.9
amplitude of the field vole population cycle (Sherratt 2001;
Sherratt et al. 2002). This corresponds to , whichm p 1.4
is clearly above the threshold for stability shown in figure
3. Our calculations do not really apply to such a large
value of m because they assume m to be small, but they
strongly suggest that the field vole–weasel interaction is
within the parameter region giving stable periodic waves.
The solution of the predator-prey equations in figure 1a
is for the field vole–weasel parameters and demonstrates
these stable waves.

Periodic Waves in Two Dimensions

Real terrestrial predator-prey interactions occur in two
spatial dimensions. The analysis described above only ap-
plies in one dimension and cannot easily be extended to
higher dimensions, but numerical solutions indicate that
the key aspects of the results apply equally in two dimen-
sions. Figure 4 illustrates the periodic waves generated by
a central obstacle with population densities set to 0 at its
edge; the shading corresponds to prey density, but the
predator profile is very similar except for a phase differ-
ence. The waves have “target pattern” form and will
approach a one-dimensional periodic wave as they move
further away from the obstacle. The movement of the
periodic waves can be seen in a movie clip corre
sponding to this figure, which is available at http://
www.ma.hw.ac.uk/˜jas/supplements/lovoles/.

An important new question arises in two space dimen-
sions that has no equivalent in one dimension: how does
obstacle size and shape affect the periodic waves? From
an ecological viewpoint, this is a vital question relating to
the type of landscape features that will tend to cause ob-
servable periodic waves in practice. Numerical investiga-
tion is hampered by the time-consuming nature of two-
dimension simulations. Therefore, we approached the
problem by considering the waves generated by circular
obstacles of different sizes. The waves will then also be
circular so that the problem is effectively one-dimensional,
and an extensive program of numerical solutions is pos-
sible. As a measure of wave selection in these solutions,
we calculated the spatial wavelength. This will, of course,
vary with distance from the obstacle as the curvature of
the wave changes, and we calculated the wavelength far
from the obstacle. Here, the curvature of the waves is
effectively negligible, but nevertheless their wavelength is
significantly affected by the radius of the obstacle, as il-
lustrated in figure 5. In this figure, we again use parameter
values corresponding to the vole-weasel interaction, and
we have converted dimensionless lengths into kilometers
using these estimates. These results show that sufficiently
large circular obstacles generate waves of the same wave-
length as those found in the one-dimensional simulations
discussed above. However, as the obstacle radius is de-
creased, the selected wave gradually changes, with wave-
length increasing. As the obstacle becomes even smaller,
the wavelength becomes even longer, and in the limiting
case of a “point obstacle” (zero radius), the solution has
the form of just homogeneous oscillations, which are
equivalent to periodic waves of infinite wavelength.

When obstacles are not circular, numerical solutions in
two dimensions are required, making a comprehensive
study difficult. However, the simulations that we have done
suggest that the main determinant of the periodic wave is
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Figure 4: Periodic traveling waves in two space dimensions, generated by a central obstacle, for the predator-prey model (1). We plot prey and
predator density as a function of space at one time point; the periodic waves move away from the obstacle. The boundary conditions are zero
population densities at the edge of the obstacle and zero flux at the edge of the domain. The parameter values are , , , andA p 1.8 B p 1.2 C p 4.9

, and the domain is a square of side length 400; the solution is plotted after 900 time units, with initial conditions generated randomly. Thesed p 2
parameter values are based on crude estimates for the field vole–weasel interaction (Sherratt 2001; Sherratt et al. 2002), and the dimensionless
domain length would then be ∼100 km. The equations were solved numerically using an alternating direction implicit implementation of the Crank-
Nicolson scheme. A movie clip corresponding to this figure is available at http://www.ma.hw.ac.uk/˜jas/supplements/lovoles/.

the largest dimension of the obstacle generating it. This is
illustrated in figure 6, where we plot the wavelength of
periodic waves generated by rectangular obstacles of aspect
ratio (length : width) 3 as a function of the longest side
length. The wavelength of waves generated by circular ob-
stacles for the same parameters is also shown for com-
parison. This shows that obstacle shape does not have a
significant effect on periodic wave solutions in comparison
to the effect of obstacle size.

In a real ecological domain, there are probably a con-
siderable number of small obstacles as well as possibly one
or more that are large. The different sizes of obstacle will
then generate different periodic waves, and it is clearly
important to consider what will emerge from the inter-
action of these waves. Insight into this comes from re-
turning to the l-q system (2) discussed in “Predicting
Periodic Wave Stability.” Numerical solutions of these
equations show that when different periodic waves are
generated in different regions of space, a moving transition

develops with one periodic wave invading the other (fig.
7a).

Careful numerical study shows that this transition
moves with constant shape and speed in the wave ampli-
tude r and phase gradient (fig. 7b), where r and v arevx

polar coordinates in the u– plane. Substituting solutionsv
of the form , , and intor p R(z) v p W(z) z p x � atx

equations (2) gives

′′ ′ 2 2R � aR � R(1 � R � W ) p 0, (4a)

′2WR′ 2W � � aW � q � q R p k, (4b)0 1R

where k is a constant of integration. We denote by R , Wl l

and the (constant) amplitude and phase gradient ofR , Wr r

the periodic wave to the left and right, respectively, of the
transition. Substituting these into equation (4b) and sub-
tracting implies
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Figure 5: Illustration of the dependence of wavelength on the radius of
the circular obstacle generating the periodic wave. We solve the predator-
prey equations (1) on a domain that is circularly symmetric with the
obstacle at the center. The wavelength is measured away from either the
obstacle or domain edge after 3,000 dimensionless time units, by which
time the long-term solution structure has developed. The dimensionless
parameter values are as in figure 4, and the dimensionless lengths have
been converted to kilometers using the parameter estimates for the field
vole–weasel interaction (Sherratt 2001; Sherratt et al. 2002).

2 2q (R � R )1 r la p .
W � Wr l

We have shown that in predator-prey systems, periodic
waves move away from the obstacle generating them. If
the periodic waves on either side of the transition are
generated by obstacles far to the left and right, and as-
suming as implied by equations (3), this cor-q k q 1 00 1

responds to and . Therefore, a is positive ifW 1 0 W ! 0r l

and negative otherwise, so that the periodic waveR 1 Rr l

of smaller amplitude, and thus of smaller wavelength, in-
vades that of larger amplitude (and wavelength). This is
illustrated in figure 7.

When combined with the results illustrated in figure 5,
this calculation implies the following simple result: the
periodic waves generated by larger obstacles will outcom-
pete those generated by smaller obstacles. For the predator-
prey model (1), this is illustrated in figure 8. Here we have
placed different sized obstacles in opposite corners of a
square domain. Both generate periodic waves, and the
longer wavelength of those generated by the smaller ob-
stacle is very clear. In due course, the two periodic waves
meet and begin to interact, and the wave generated by the

smaller obstacle recedes. A movie clip corresponding
to figure 8 is available at http://www.ma.hw.ac.uk/˜jas/
supplements/lovoles/.

Discussion

Periodic traveling wave solutions of oscillatory systems
have been studied mathematically for about 30 yr, and
applications in physiology and chemistry are well estab-
lished (Williams et al. 1990; Winfree 2001). However, it
is only in the last few years that their importance in ecology
has been appreciated. Analysis of spatiotemporal data on
cyclic populations has shown periodic traveling waves in
a number of natural populations, with some of the most
detailed studies covering field voles (Lambin et al. 1998;
MacKinnon et al. 2001) and red grouse (Moss et al. 2000),
both in the northern United Kingdom. Determination of
the mechanism causing these waves is a major challenge
for theoreticians. We have previously proposed landscape
features as a possible mechanism for the generation of
periodic waves (Sherratt et al. 2002). Here, we have sig-
nificantly developed this theory, focussing on quantitative
prediction of the parameter regimes in which stable pe-
riodic waves are expected and on the properties of these
waves in two dimensions.

We have restricted attention to the specific case of cyclic
predator-prey systems. However, we believe that the gen-
eration of periodic waves by landscape features will also
apply to ecological systems that oscillate for other reasons,
such as parasitism. This belief is based on the work we
have described for l-q equations. Because these equations
are the normal form for any simple oscillatory system,
behavior seen in them will occur quite generally. The spe-
cific calculations leading to equations (3) and figure 2 are,
of course, only applicable to the predator-prey model (1),
but corresponding calculations can be done for other sys-
tems using the methods outlined in appendix B.

A factor that is missing from our model but that will
be present in any real ecological system is environmental
stochasticity. We have not attempted a systematic study of
the wide range of possible stochastic effects, but as a par-
ticular example we considered the effects of random noise
in the carrying capacity of the prey population. As one
would expect, such noise has little effect when its ampli-
tude is low, but at a relatively high amplitude (e.g., �20%
of the mean level), an effect is clearly visible (not illustrated
for brevity). Surprisingly, a key additional factor was the
spatial frequency over which the carrying capacity fluc-
tuated. High frequency noise causes relatively minor mod-
ulations of the periodic wave pattern produced by obsta-
cles, such as ruffling of wave fronts. But lower frequency
fluctuations in carrying capacity can dominate the wave
pattern, with periodic waves forming around extreme val-
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Figure 6: Comparison of the wavelengths of periodic waves generated
by rectangular (filled circles) and circular (crosses) obstacles of different
sizes. In each case the rectangular obstacles have an aspect ratio of
3 : 1, and half of the longer side length is plotted on the horizontal axis.
The close correspondence between the results for the two obstacle shapes
shows that the key factor controlling wavelength is the longest overall
dimension of the obstacle, with obstacle shape playing a relatively minor
role. The dimensionless parameter values are , ,A p 1.6 B p 1.2 C p

, and . In contrast to figure 5, these parameters do not corre-4.9 d p 2
spond to a particular ecological system, and thus the distances plotted
are dimensionless. Readers considering reproducing these results should
be warned that the computations for the rectangular obstacles are very
time consuming. We solved on a spatial domain that is square with
dimensionless side length 400 and with the obstacle in one corner. This
relatively large domain is required for there to be several full wavelengths
away from both the obstacle and domain edges. We solved for 4,000 time
units, which is sufficient for the long-term solution to develop. Each
simulation takes about 30 h on our alpha processor.

Figure 7: Illustration of the moving transition between periodic waves
of different wavelengths for the l-q system (2). In a we show a space-
time plot for , and in b we plot the solution amplitude asu(x, t) r(x, t)
a function of space at equally spaced times (time interval 26.7). As initial
conditions, we impose a periodic wave of amplitude 0.9 in the region

and a wave of amplitude 0.96 on the remainder of the domain.x ! 25
The smaller amplitude wave invades the larger amplitude wave for reasons
discussed in the main text. In this simulation, the waves are not generated
by obstacles. Rather, they are maintained artificially by the boundary
conditions and , with on2 1/2 2 1/2u p �v(1 � R ) v p �u(1 � R ) R p 0.9x l l lx

the left-hand boundary and and2 1/2u p �v(1 � R ) v p �u(1 �x r x

with on the right-hand boundary. These conditions cor-2 1/2R ) R p 0.96r r

respond to , and , , re-1/2 1/2r p R v p �[l(R )] r p R v p �[l(R )]l x l r x r

spectively. The parameter values are , .q p 1.5 q p 10 1

ues of the carrying capacity rather than around the ob-
stacle. This illustrates the way in which the wave-
generation capacity of obstacles must be considered in
parallel with other aspects of the local environment.

In spatially discrete populations, periodic traveling
waves can arise spontaneously from small random fluc-
tuations in density (Kaitala and Ranta 1998; Sherratt et
al. 2000). However, this behavior depends intrinsically on
the discreteness of the simulation and does not apply to
continuous systems, where a specific mechanism of pe-
riodic wave generation is required. In applications to
chemistry and physiology, a variety of such mechanisms
has been studied (e.g., Hagan 1981; Kopell et al. 1991).
Within ecology, invasion has been the most widely studied
mechanism; for example, the invasion of a prey population
by predators can leave behind periodic waves (Sherratt et

al. 1995, 1997; Petrovskii and Malchow 2000, 2001). As
in the results we have described, such an invasion can in
some cases generate a periodic wave that is unstable and
that develops into irregular spatiotemporal oscillations.
Sherratt (2001) previously derived conditions on the pa-
rameters in the model (1) for stability of the periodic waves
generated by invasion, and it is instructive to compare the
results of that study with those derived in the present
article. Specifically, for wave generation by invasion, there
is a direct analog of the plot in figure 2, which shows the
region of A-B parameter space giving stable waves when
C is just large enough to give population cycles; the anal-
ogous figure is presented in Sherratt (2001). The two fig-
ures have the same qualitative form, although the param-
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Figure 8: Illustration of the interaction between periodic waves generated
by obstacles of different sizes for the predator-prey model (1). The model
is solved with randomly generated initial population densities, which
rapidly evolve toward homogeneous oscillations. The two obstacles, which
are quarter circles of different radii in opposite corners of the domain,
each generate periodic waves, which are clearly visible early in the solution
(a). Note that the wavelength is significantly larger for the smaller ob-
stacle. In due course the two sets of waves meet (b). The longer wavelength
waves quickly begin to recede (c), so that at large times (d) the waves
generated by the larger obstacle dominate. The parameter values are

, , , and , and the spatial domain is a squareA p 1.6 B p 1.2 C p 4.9 d p 2
of dimensionless length 300. The obstacles in the corners have radii 25
and 4. The solutions are plotted at times (a) 1,200, (b) 2,300, (c) 3,300,
and (d) 7,300. The boundary conditions on the edge of the square domain
are zero flux, with on the obstacle edges. This figure is veryh p p p 0
computationally intensive, taking about a week to run on our alpha
processor. A movie clip corresponding to this figure is available at http:
//www.ma.hw.ac.uk/˜jas/supplements/lovoles/.

eter region giving stable waves is slightly larger for wave
generation by obstacles, compared to invasion. But the key
difference lies in the effects of increasing C giving larger
amplitude cycles; recall that C reflects the rate at which
prey consumption per predator saturates as prey density
increases. Increasing C has a relatively small effect on sta-
bility in the invasion case; mathematically, there is no
change in stability to leading order in the small parameter
m. However, for wave generation by obstacles, increasing
m has a very significant stabilizing effect, as illustrated in
figure 3. For this reason, we predict that the presence of
landscape features is a much more widely applicable mech-
anism than predator invasion for the generation of stable
periodic traveling waves in cyclic predator-prey systems.
Moreover, the relationship we have derived between ob-
stacle size and wavelength suggests that only large obstacles
generate waves with a wavelength short enough to be easily
detected, with many waves that arise from small obstacles
going undetected.

Our work highlights the importance of understanding
the way in which natural populations respond to the
edges of landscape features. This has been best studied
for butterflies (Dover and Fry 2001; Ries and Debinski
2001) and songbirds (Belisle and Clair 2002; Belisle and
Desrochers 2002), revealing a strong tendency to avoid
crossing habitat boundaries. For instance, Belisle and
Desrochers (2002) found that forest birds attracted to
a mobbing call preferred to travel under forest cover
rather than using significantly shorter routes across
open areas. For mammals, direct analysis of behavior
at barrier edges is rare. Examples include the work of
Rondinini and Doncaster (2002) demonstrating the ten-
dency of hedgehogs (Erinaceus europaeus L.) to avoid
crossing large (but not small) roads and the work of
Bright (1998) showing that dormice (Muscardinus
avellanarius) are averse to crossing even small gaps in
hedgerows. In addition to this direct observational data,
there is some genetic evidence that landscape features
may reduce dispersal. For example, Piertney et al.
(1998) found genetic differences between populations
of red grouse (Lagopus lagopus scoticus) on either side
of an area of unsuitable habitat, showing that this area
acts as an effective barrier to movement. Similarly, Ger-
lach and Musolf (2000) used genetic data to demon-
strate significant subdivision of bank vole (Clethriono-
mys glareolus) populations separated by a highway. We
anticipate that, as further data emerge on responses to
landscape features, theoretical modeling of the type we
have presented will reveal further details of the impli-
cations that such data have for overall population
dynamics.
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APPENDIX A

In this appendix, we discuss the nondimensionalization that gives the predator-prey model (1) used in the article. The
dimensional equations we use are a standard predator-prey model:

benefit from predation=dispersal death= =akph�p
2predators p D∇ p � � bp , (A1a)p

�T (1 � kh)

�h 1 � h ckph
2prey p D∇ h � rh � . (A1b)( )h

�T h (1 � kh)\ 0 \dispersal
predation

\
intrinsic birth and death

Here a, b, c, r, k and are positive kinetic parameters, and and are dispersal coefficients. The prey consumptionh D D0 p h

rate per predator has a maximal value c at very high prey densities; the constant k reflects how quickly the consumption
rate decreases as prey density increases. Parameters a and r denote maximal per capita predator and prey birth rates;
for predators, that is the birth rate when the prey density is very high, while for prey, it is the birth rate at very low
prey density. The per capita predator death rate is denoted by b, and is the prey carrying capacity. We nondimen-h 0

sionalize equations (A1) using the rescalings

c h r∗ ∗ ∗ ∗ �p p p , h p , T p rT, X p X ,
rh h D0 0 h

D a rp∗ ∗ ∗ ∗d p , A p , B p , C p kh , (A2)0D b ah

where the asterisks denote a dimensionless quantity. The interpretations of A, B, and C, as discussed in the main text,
arise from these rescalings. Substituting equation (A2) into equations (A1) and dropping the asterisks give the di-
mensionless equations (1) in the main text.
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