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Abstract

In many semi-arid environments, vegetation is self-organised into spatial patterns. The most striking examples of this are on gentle

slopes, where striped patterns are typical, running parallel to the contours. Previously, Klausmeier [1999. Regular and irregular patterns

in semiarid vegetation. Science 284, 1826–1828.] has proposed a model for vegetation stripes based on competition for water. Here, we

present a detailed study of the patterned solutions in the full nonlinear model, using numerical bifurcation analysis of both the pattern

ODEs and the model PDEs. We show that patterns exist for a wide range of rainfall levels, and in particular for much lower rainfall than

have been considered by previous authors. Moreover, we show that for many rainfall levels, patterns with a variety of different

wavelengths are stable, with mode selection dependent on initial conditions. This raises the possibility of hysteresis, and in numerical

solutions of the model we show that pattern selection depends on rainfall history in a relatively simple way.

r 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In many semi-arid environments, vegetation is not
homogeneous, but rather is self-organised into spatial
patterns. On flat ground, these patterns have a seemingly
random appearance, but on gentle slopes, a striped pattern
is typical, with bands of vegetation up to 250m wide,
separated by gaps of up to 1 km, running along the
contours. These patterns occur in a wide range of grasses
and small shrubs. They are hard to detect on the ground,
and were first observed in aerial photographs of sub-
Saharan Africa in the 1950s (MacFadyen, 1950; Hemming,
1965; Wickens and Collier, 1971). Subsequently, vegetation
patterns have also been found in Australia (Mabbutt and
Fanning, 1987; Dunkerley and Brown, 2002) and Mexico
(Montaña et al., 1990; Montaña, 1992).

Competition for water and the positive feedback
between water availability and plant growth are widely
recognised as the underlying cause of vegetation pattern-
e front matter r 2006 Elsevier Inc. All rights reserved.
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ing. However, the details of the process remain unclear,
and have been subject to a number of mathematical
modelling studies. This paper is concerned with the
modelling approach of Klausmeier (1999), who synthesised
ideas in earlier computer-based simulation models (Thiéry
et al., 1995; Mauchamp et al., 1994; Dunkerley, 1997) to
give coupled differential equations for vegetation Uðx; tÞ
and surface water W ðx; tÞ:

@U=@T ¼ k1U
2W

zfflfflfflffl}|fflfflfflffl{
plant growth

� k2U
zffl}|ffl{
plant loss

þ k3@
2U=@X 2

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{
dispersal

, (1a)

@W=@T ¼ k4
|{z}

rainfall

� k5W
|ffl{zffl}

evaporation

� k6U2W
|fflfflfflffl{zfflfflfflffl}

uptake by plants

þ k7ð@W=@X Þ
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

flow downhill

.

(1b)

Here k1; . . . ; k7 are positive constants. These equations
represent the basic processes of plant growth in proportion
to water availability, plant loss, and plant dispersal. Water
input is due to rainfall, and water is lost through a
combination of evaporation and active uptake by plants.
This last term is nonlinear in the plant density U because
the presence of plant roots in the soil increases water
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infiltration (Rietkerk et al., 2004). The spatial coordinate X

runs uphill, so that there is an active flow of water in the
negative X direction. Klausmeier (1999) showed that
numerical simulations of (1) do predict vegetation stripe
formation, for appropriate parameters; a typical solution is
illustrated in Fig. 1. Intuitively, these patterns arise because
rainfall onto an area without vegetation will run downhill,
facilitating plant growth in the adjacent region of vegeta-
tion on the downhill side. An appropriate balance is
required between water input to a vegetation band and
water loss/uptake, and this determines the possible widths
of the bands and gaps. Intuitively, one expects that the
moist soil on the uphill side of a stripe will create a
tendency for the stripes to migrate uphill. Such movement
is indeed observed in simulations of the Klausmeier model,
and has been reported in some field studies (Worrall, 1959;
Hemming, 1965; Montaña, 1992). However, this remains a
controversial aspect of vegetation patterns, due in part to
the very slow speed of the predicted migrations—typically
it would take about 100 years for the pattern to move a
single wavelength.

The Klausmeier (1999) model is focussed on water flow
downhill, and does not predict patterning on flat ground
ðk7 ¼ 0Þ. However Rietkerk, van de Koppel and coworkers
have subsequently proposed a number of models that
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Fig. 1. An illustration of a typical vegetation pattern, as predicted by the

Klausmeier model (2). There is a periodic pattern of peaks in vegetation

density u, separated by regions in which vegetation is almost absent. The

surface water density w also has a periodic form; it is largest on the uphill

side of a vegetation stripe, and gradually decreases with distance uphill to

the next stripe. The pattern moves slowly uphill; in this case the

(dimensionless) migration speed is approximately 0.9. The parameter

values are A ¼ 2:5, B ¼ 0:45, n ¼ 182:5, which are in the range of

Klausmeier’s (1999) parameter estimates for grass. The equations were

solved numerically (see text) on the domain 0oxo125 with periodic

boundary conditions.
incorporate an additional variable, as well as plant density
and surface water. In (HilleRisLambers et al., 2001), this
group added a separate variable for water within the soil,
and Rietkerk et al. (2002) performed a detailed numerical
bifurcation study on a minor variant of this model,
showing that the bifurcations leading to patterning are
subcritical. Similarly, van de Koppel et al. (2002) added a
variable for herbivores. These models predict patterns on
flat ground as well as on hillsides, and can be regarded as
more realistic extensions of the Klausmeier (1999) model.
The Klausmeier model and its extensions are not the

only theoretical explanation for vegetation stripes. Lejeune
and coworkers (Lefever and Lejeune, 1997; Lejeune and
Tlidi, 1999; Couteron and Lejeune, 2001; Lejeune et al.,
2004) have studied in detail a model based on the
combination of short-range activation and long-range
inhibition between neighbouring plants. Here the activa-
tion is due to shading of one plant by another, while
competition for water results in inhibition; the difference in
length scales of these processes is due to the root system
within the soil being much more extensive than the parts of
the plants above ground. In this model, slope acts as a
selector rather than an initiator of spatial patterning.
Meron and coworkers (von Hardenberg et al., 2001; Meron
et al., 2004) take yet another approach, with a model
formulated in terms of plant density and water in the soil,
in which the latter has a transport term based on porous
media theory. More recently, the same group has proposed
a related model with separate variables for surface water
and soil water (Gilad et al., 2004). Again, these models
predict pattern formation on flat as well as sloping ground.
At a superficial level, the Klausmeier, Rietkerk-van de

Koppel, Lejeune and Meron models all provide plausible
explanations for vegetation patterning. Therefore, a full
understanding of patterning in the various models is
essential for distinguishing the different mechanisms, and
our objective in this paper is to develop such an under-
standing for the Klausmeier model.
The natural first step in studying pattern formation in (1)

is to use linear analysis to study low amplitude patterns.
Sherratt (2005) has presented a detailed study of this type
and the results are summarised in Section 2. In Section 3,
we present numerical results to which these analytical
approximations can be compared. We show from numerics
that patterned solutions exist for significantly smaller
rainfall levels than previously considered. Our approach
involves applying the bifurcation package AUTO (Doedel,
1981; Doedel et al. 1991a,b) to the ordinary differential
equations governing patterned solutions. This bifurcation
and stability approach has some similarities with that of
Rietkerk et al. (2002); however the patterns generated by
their model are stationary, which gives considerable
simplification. In contrast, the patterns we are studying
move uphill, and the speed of this movement enters as an
additional parameter in our calculations. Our work in
Section 3 indicates possible patterns as a function the speed
of this migration; however, it gives no information about
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the crucial question of whether patterns are stable in the
model PDEs (1). In Section 4 we address this via a different
approach that is much more intensive computationally:
we apply AUTO to a discretised version of the PDEs from
which we obtain a prediction of linear stability. Finally, in
Section 5 we discuss the mathematical and ecological
implications of our results.

2. Linear analysis

The model equations (1) are greatly simplified by the
following non-dimensionalisation

u ¼ Uk
1=2
6 =k

1=2
5 ; w ¼Wk1=k

1=2
5 k

1=2
6 ,

x ¼ Xk
1=2
5 =k

1=2
3 ; t ¼ Tk5,

A ¼ k4k1=k
3=2
5 k

1=2
6 ; B ¼ k2=k5; n ¼ k7=k

1=2
3 k

1=2
5 .

These rescalings are taken from Klausmeier (1999),
although our notation is different. The resulting dimen-
sionless equations are

@u=@t ¼ wu2 � Buþ @2u=@x2, (2a)

@w=@t ¼ A� w� wu2 þ n@w=@x. (2b)

In applications, the main dimensional parameters of
interest are the rainfall k4, plant loss k2 and gradient of
slope k7; note that plant loss will vary depending on the
extent of grazing. These three parameters appear (linearly)
in the dimensionless quantities A, B and n, respectively.
Therefore, in the remainder of the paper we study the
dimensionless equations (2), focussing on the conditions
for patterning, and the way in which the patterns vary with
these three parameters. An indication of the typical values
of these parameters is given by Klausmeier’s (1999)
estimates, which are for trees (rainfall) A 2 ½0:077; 0:23�,
(plant loss) B ¼ 0:045, and for grass A 2 ½0:94; 2:81�,
B ¼ 0:45; in both cases n ¼ 182:5 for a typical slope with
vegetation stripes.

For all parameter values, (2) has a stable trivial steady
state u ¼ 0, w ¼ A, corresponding to bare ground, without
vegetation. When AX2B, there are also two other
homogeneous steady states which arise from a saddle node
bifurcation

u ¼ u1 �
2B

Aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 � 4B2
p ; w ¼ w1 �

Aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 � 4B2
p

2

(3)

and

u ¼ u2 �
2B

A�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 � 4B2
p ; w ¼ w2 �

A�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 � 4B2
p

2
.

(4)

The first of these (3) is always unstable to homogeneous
perturbations; the second is the key equilibrium from
which patterns develop. This steady state is linearly stable
to homogeneous perturbations whenever Bo2. For larger
values of B and small A, (4) can become unstable, giving
complicated local dynamics including a limit cycle, but
realistic parameter values for semi-arid environments imply
that Bo2. The linear stability analysis presented in
(Sherratt, 2005) then shows that for some parameter
values, (4) is unstable to spatially inhomogeneous pertur-
bations, giving rise to pattern formation. Sherratt (2005)
was unable to obtain an exact condition for instability, but
did derive an approximation to the condition, namely

n4
ffiffiffi

8
p

A2=B5=2 (5)

which gives an approximate upper limit on the rainfall A

for pattern formation. Both Klausmeier (1999) and
Sherratt (2005) assumed that a corresponding lower limit
was given by the condition A42B for the uniform
vegetation state to exist. However, in this paper we show
that stable patterned solutions may exist for Ao2B.
The basis for the approximation used to derive (5) is the

large (dimensionless) value of n in comparison to A and B;
recall that Klausmeier (1999) estimates n ¼ 182:5 for a
typical slope with vegetation stripes, which compares with
A 2 ½0:077; 0:23�, B ¼ 0:045 for trees, and A 2 ½0:94; 2:81�,
B ¼ 0:45 for grass. To understand the intuitive interpreta-
tion of (5), recall that A reflects the rainfall, while B is a
measure of plant loss, and n indicates the steepness of the
slope. If the rainfall A is too small compared to plant loss
B, then vegetation will simply die out. On the other hand, if
rainfall A is sufficiently large, then the competition
amongst plants for water will not be very strong, resulting
in homogeneous vegetation. However, for intermediate
levels of rainfall, vegetation can survive but with a strong
competition amongst plants for water, leading to vegeta-
tion stripes. The dependence of the upper threshold on n
occurs because on steeper slopes rainfall will run off more
quickly, increasing the competitive advantage of areas of
high plant density over those of lower density. However the
whole model assumes that the slope is not too steep,
otherwise the water will not flow downhill as a sheet, and
instead will form gullies.

3. Existence and properties of pattern solutions

From an ecological viewpoint, a key issue is the
dependence on parameters of the wavelength and uphill
migration speed of vegetation stripes. Sherratt (2005)
studied this question in detail by assuming that the
patterns correspond to the most unstable wavenumber.
This will be valid sufficiently close to the onset of
patterning, but numerical simulations suggest more com-
plicated dependencies for larger amplitude patterns. The
basic objective of this paper is to investigate pattern form,
selection, and dependence on parameters in the fully
nonlinear regime. Our numerical analysis suggests that
(2) does not have any stationary patterns, with the
homogeneous steady states being the only stationary
solutions. Instead, the patterns move at a constant speed,
so that they have the mathematical form uðx; tÞ ¼ UðzÞ,
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and wðx; tÞ ¼W ðzÞ, where z ¼ x� ct and c is the migration
speed; the patterns are periodic travelling wave solutions.
Substituting these solution forms into (2) gives the ODEs

d2U=dz2 þ c dU=dzþWU2 � BU ¼ 0, (6a)

ðnþ cÞ dW=dzþ A�W �WU2 ¼ 0. (6b)

In this section we investigate numerically the existence,
speed and wavelength of patterns. Our approach is to use
the bifurcation package AUTO (Doedel, 1981; Doedel et al.
1991a,b) to study the pattern ODEs (6). To do this, the most
natural bifurcation parameter is the wave speed c. In the
partial differential equation model (2), the wave speed is a
model output, dependent on the model parameters and on
the initial and boundary conditions, but in (6) the speed
enters explicitly as an independent parameter. Because the
system (6) is third order, computations are rapid, but they
give no information about the stability of patterns as
solutions of the model PDEs (2); that question is addressed
in Section 4.

Our starting point is the homogeneous steady state (4).
When c ¼ 0 this steady state is stable, but provided n is
sufficiently large, the stability changes as c is increased, via
Speed, c
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Fig. 2. Typical bifurcation diagrams for the pattern ODEs (6). The homogeneo

speed c, but unstable (- - - - -) at intermediate values of c. The changes in stab

ð� � �Þ emanate; these are the vegetation stripe patterns. At moderate values of

for larger n as in (b), there are two separate branches, both of which terminate

periodic orbit branches; the wavelengths tend to infinity at the ends of the two

are: (a), (c) A ¼ 1:45, B ¼ 0:45, n ¼ 70; (b), (d) A ¼ 1:45, B ¼ 0:45, n ¼ 182:
travelling wave ODEs (6) rather than the PDEs (2).
a Hopf bifurcation of (6). The periodic solutions that
emanate from this Hopf bifurcation are the slowly moving
patterns corresponding to vegetation stripes, where the
spatial wavelength is the period. As c is increased beyond
the Hopf point, the steady state (4) is at first unstable, but
regains stability through a second Hopf bifurcation. Note
that here we use the terms ‘‘stable’’ and ‘‘unstable’’ as
referring to the ODE system (6) rather than the model PDE.
There is no relationship between the stability of solutions
in one system and the stability in the other.
Typical bifurcation diagrams are illustrated in Fig. 2,

which shows that for moderate values of n the patterns
form a single branch that links the two Hopf points
(Fig. 2a). However a gap develops as n is increased, giving
two separate branches with an intermediate range of speeds
for which there are not any pattern solutions (Fig. 2b).
Careful investigation shows that the gap is formed by
bifurcations to two homoclinic orbits with different wave
speeds c. The slower homoclinic orbit is homoclinic to the
trivial steady state u ¼ 0, w ¼ A whereas the faster
homoclinic orbit is homoclinic to the steady state ðu2;w2Þ.
This is illustrated by plots of pattern wavelength against
speed c in Figs. 2c and d, which use the same parameter
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us steady state (4) is stable (—-) for very small and for large values of the

ility occur via Hopf bifurcations, from which a branch of periodic orbits

the slope n as in (a), the periodic orbits form a single solution branch, but

in homoclinic solutions. Parts (c) and (d) show the wavelength along the

separate branches, reflecting the homoclinic orbits. The parameter values

5. Note that the stability shown in the bifurcation diagram refers to the
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values as Figs. 2a and b, respectively. For the moderate
value of n used in Figs. 2a and c, the wavelength initially
increases with c, reaches a maximum, and then decreases;
however in Fig. 2d the wavelength tends to infinity at both
edges of the gap in the bifurcation diagram.

Using AUTO, it is possible to track the locus of both the
Hopf bifurcation points and the homoclinic solutions in a
parameter plane, and a typical example of this for the n–c

plane is illustrated in Fig. 3a. As n is decreased, the two
Hopf bifurcation points move towards one another and
eventually meet, so that the locus of Hopf points is in fact a
single curve. The minimum value of n along this curve
corresponds to the condition (5) for pattern formation. The
locus of homoclinic orbits lies inside the locus of Hopf
points; again the speeds of the two homoclinic solutions
come together as n is decreased, at a bifurcation of higher
co-dimension (seen as the cusps in Fig. 3). Patterned
solutions exist for values of c and n lying in between these
two loci. Using AUTO, it is also possible to track the loci of
patterns with a particular wavelength, and a typical
example is shown in Fig. 3a. The curve emanates from
the locus of Hopf bifurcations, and approaches c ¼ 0
asymptotically as n!1. Note that the loci of homoclinic
orbits shown in Fig. 3 are in fact approximations given
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Fig. 3. An illustration of the variations in parameter space of the solution stru
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wavelength along the dashed curve is 30; in (d) a number of different wavelengt

a close-up of behaviour for small B, which is unclear in the main part of the

A ¼ 1:45, n ¼ 182:5; (c), (d) B ¼ 0:45, n ¼ 182:5.
by the loci of solutions of a fixed but very long wavelength
(3000).
The corresponding loci are shown for the B–c and A–c

planes in Figs. 3b and c, respectively. The basic structure is
the same, except that in both cases, all three loci have an
additional fold at very small values of c. Fig. 3d shows a
more comprehensive series of loci of patterns of fixed
wavelength, for the same parameters as in Fig. 3c. Note
that for any given value of the migration speed c,
intermediate levels of both plant loss B and rainfall A are
required for patterns. If plant loss is too high, or rainfall is
too low, vegetation cannot survive; this edge of the
parameter region giving patterns is bounded by the
homoclinic orbit curve. Conversely if plant loss is too
low or rainfall too high, competition for water is weak and
vegetation is spatially homogeneous; here the parameter
region giving patterns is bounded by the Hopf bifurcation
curve. The maximum value of rainfall A required for
patterning is exactly as predicted by linear analysis
(Sherratt, 2005), and corresponds to the steady state
ðu2;w2Þ becoming unstable to inhomogeneous perturba-
tions. However, the minimum value, which corresponds to
the fold in the locus of homoclinic orbits to ð0;AÞ, is
significantly less than that assumed by previous authors
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steepness of the slope, respectively. We plot the minimum A as a function

of B for three different values of n (50, 150 and 250). In previous studies of

the model (1) (Klausmeier, 1999; Sherratt, 2005), it has been assumed that

the minimum value of A for patterns is the same as the minimum value for

the homogeneous equilibrium (4), which is 2B (independent of n). This is
shown as a dashed line in the figure, demonstrating that in fact, patterns

exist for much lower levels of rainfall. The minimum value of A is

calculated by a numerical continuation of the lower fold in the locus of

homoclinic orbits in the A–c plane (see Fig. 3c); this locus is the lower

bound on A for known patterned solutions of a given speed, and therefore

the fold gives the lower bound for the existence of patterned solutions of

any speed.
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(Klausmeier, 1999; Sherratt, 2005), namely the value of A

ð¼ 2BÞ below which ðu2;w2Þ does not exist. This is
illustrated more clearly in Fig. 4.

This figure shows that in fact, patterns exist for A as low
as about 0:2B for a wide range of B and n. Moreover, our
investigation of stability (below) suggests that throughout
this large range, there are patterns that are stable as
solutions of the original model (2).

It is possible to convert the values of A shown in Fig. 4
into dimensional rainfall levels, using the parameter
estimates of Klausmeier (1999).1 These imply that the
minimum levels of rainfall for vegetation patterns is
45mmyear�1 for grass and 100mmyear�1 for trees, which
are broadly consistent with the lowest rainfalls at which
vegetation patterning has been reported (Tongway and
Ludwig, 2001).
1The details of Klausmeier’s (1999) parameter estimation are mainly

contained in footnote 21 of the paper. In this footnote, there is an

error associated with the units. Klausmeier’s dimensional parameter

R should have units of m4 year�1 ðkg dry massÞ�2, not ðkg waterÞm2

year�1ðkg dry massÞ�2.
From parameter space plots such as those shown in
Fig. 3, it is possible to deduce the range of possible
wavelengths for pattern solutions, as a function of the
model parameters. As a specific case, we consider the
wavelengths as a function of the rainfall parameter A. Fig.
3d shows that for a fixed and sufficiently large wavelength,
the maximum possible value of A for which there is a
pattern is given by the right-hand fold in the locus of
patterns of fixed wavelength. For smaller wavelengths (less
than about 15), there is no such fold, and the maximum A

lies on the locus of Hopf bifurcation points. In either case,
the minimum possible A is given by the left-hand fold in the
locus of patterns of fixed wavelength. Tracing loci of the
folds using AUTO gives the wavelength-A parameter plane
shown in Fig. 5. This figure shows that when the rainfall is
relatively small (A less than about 2.2), there is a wide
range of possible wavelengths, but as A increases above this
level the range of wavelengths rapidly shrinks, until
patterns disappear entirely at A � 3:27.

4. Stability of pattern solutions

The results of Section 3 give a detailed understanding of
the existence of patterned solutions, as a function of the
model parameters A, B and n and the migration speed c.
However, because we have been studying the travelling
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wave ODEs (6), we have not been able to determine the
stability of the patterns as solutions of the model equations
(2). Determination of periodic travelling wave stability,
even numerically, is a notoriously difficult problem
(Sandstede, 2002). We have taken the approach of
discretising the PDEs (2) in space, applying upwinding to
the convective term, to give a system of coupled ODEs:

@ui=@t ¼ wiu
2
i � Bui þ ðuiþ1 � 2ui þ 2ui�1Þ=Dx2, (7a)

@wi=@t ¼ A� wi � wiu
2
i þ nðwiþ1 � wiÞ=Dx (7b)

(i ¼ 1; . . . ;N). For simplicity, we assume periodic bound-
ary conditions u0ðtÞ ¼ uN ðtÞ, w0ðtÞ ¼ wN ðtÞ, uNþ1ðtÞ ¼ u1ðtÞ,
wNþ1ðtÞ ¼ w1ðtÞ. We studied system (7) using the bifurca-
tion package AUTO, with the objective of recovering
bifurcation diagrams such as those shown in Fig. 3, but
with additional information about pattern stability.

For any discretisation that is sufficiently fine to be of
practical use, (7) is a large system of equations, and
studying patterned solutions using AUTO is a major
computational challenge. Therefore, we have focussed on
pattern variation with just one of the three parameters, the
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correspond to unstable solutions. We plot: (a) solution amplitude; (b) speed an

n ¼ 182:5, N ¼ 40 and Dx ¼ 2. The solution branches with different spatial mo

of the homogeneous steady state from which the spatial pattern branches bifu
rainfall A, with the values of B and n fixed at 0:45 and
182:5, respectively. We have used N ¼ 40, which gives 80
equations in (7), with a spatial grid length Dx ¼ 2. This
gives a discrete representation of the model equations on a
domain of length 80, which is large enough to capture a
range of pattern behaviour; for a more accurate represen-
tation we would use a smaller value of Dx and a larger
value of N, but the problem quickly exceeds computational
feasibility.
For a sufficiently large value of A, there are no patterned

solutions and the homogeneous steady state ui ¼ u2, wi ¼

w2 ði ¼ 1; . . . ;NÞ is stable as a solution of (7). As A is
decreased, the steady state becomes unstable via a Hopf
bifurcation at A � 3:05 (Fig. 6). The branch of periodic
solutions emanating from this Hopf bifurcation is spatially
as well as temporally periodic, with a wavelength of 8 space
points (i.e. a spatial wavelength of 16). This is a mode 5
pattern. As the branch is continued, both A and the speed
gradually decrease until a fold at A � 0:75, after which A

then increases. As A approaches infinity, the speed
approaches zero, while the amplitude tends to a non-zero
finite limit. Note that the wave speed is not now a
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parameter in system (7), but rather is a property of the
solution, calculated as the ratio of the space and time
periods. This solution branch is the discrete analogue of the
locus of patterns of wavelength 16 that is plotted in Fig. 3d.
However, because (7) is a representation of the PDEs, AUTO

calculates not only the solution branch but also its linear
stability as a solution of a large system of ODEs. This shows
that these mode 5 patterns are stable for A greater than
about 2.15, and are unstable for smaller values of A.

As A is decreased further, the homogeneous steady state
ui ¼ u2, wi ¼ w2 ði ¼ 1; . . . ;NÞ undergoes another Hopf
bifurcation at A � 3:01. In this case the branch of periodic
solutions consists of mode 4 patterns, with a wavelength of
10 space points (i.e. a spatial wavelength of 20). Again this
is a discrete analogue of the locus of patterns of wavelength
20 shown in Fig. 3d. In this case the Hopf bifurcation is
subcritical and A initially increases on the branch, with a
fold at A � 3:05. The patterns are initially unstable, and
gain stability at this fold. Both A and the wave speed then
decrease along the branch, with a loss of stability at
A � 1:6. There is then a further fold at A � 0:6 after which
A increases again with the speed approaching zero.

Decreasing A still further, the homogeneous steady state
undergoes a series of additional Hopf bifurcations. At each
of these, a branch of periodic solutions emanates,
corresponding to a pattern of a particular spatial mode.
For our parameter set, the order at which the bifurcations
occur is mode 5 first, then modes 4, 6, 3, 7, 2, 8, 1 and 9
successively; it is straightforward to predict this order via
linear stability analysis (details omitted for brevity). We
have not detected any Hopf bifurcations for values of A

below the bifurcation at A � 1:26, which corresponds to
the mode 9 branch. Of course, system (7) cannot have
solutions with an exact spatial mode of 6, 3, 7 or 9 because
these are not divisors of the number of equations ðN ¼ 40Þ.
Strictly, the solutions on these branches have a spatial
period of 40 points. Nevertheless they are approximately
periodic in space with quasi-periods of 40/6, 40/3, 40/7 and
40/9, respectively, and we interpret them as discrete
analogues of the corresponding branches of periodic
travelling waves. This correspondence can be made precise
via linear stability analysis using the eigenvectors of the
discretised Laplacian. Typical spatial variations of solu-
tions on the various branches is illustrated in Fig. 7. Within
the context of our coarse discretisation, the solutions on
the mode 6–9 branches are all unstable, while the mode 1–5
branches all have regions of stability and regions of
instability.

In Fig. 6 we illustrate the behaviour described above
with a bifurcation diagram for (7), plotted in three different
ways: the parameter A against: (a) solution amplitude;
(b) wave speed, and (c) spatial wavelength. The plots in (b)
and (c) are the discrete analogues of Figs. 3d and 5,
respectively. The qualitative comparison between the
figures is very good, despite the relative coarseness of
the discretisation. The additional information available in
Fig. 6 concerns stability, showing that there are stable
patterns across the full range of values of A for which
patterns exist, and moreover that for many values of A,
several different spatial modes are stable.
To investigate the implications of the coexistence of

different stable pattern modes, we solved the discretised
PDEs (7) numerically as an initial value problem. For time
stepping we used both VODE (Brown et al., 1989; Garcı́a-
Archilla, 1995), which is a variable coefficient solver, and
MATLAB ode23s specifying the Jacobian and absolute
and relative error tolerances of 10�6 and 10�3, respectively.
We deliberately used the same coarse discretisation as for
Figs. 6 and 7, so that we could expect an exact match
between the solutions of the initial value problem and the
solutions predicted by AUTO. We used initial conditions
consisting of small random perturbations about one of the
two homogeneous steady states ðu2;w2Þ and ðu1;w1Þ,
defined in (4) and (3), respectively. For values of A for
which several different pattern modes are stable, we expect
different perturbations of the steady states to evolve to
different patterns, and this is confirmed by our simulations,
which are illustrated in Fig. 8. For each value of
A ¼ 0:1; 0:2; . . . ; 3:4, we ran 100 simulations, using differ-
ent seeds for the random initial perturbations. In each case,
the solutions evolved either to a spatial pattern of mode
1–5, or to a homogeneous steady state. This last possibility
is denoted by the wavelength being zero in the figure, and
the corresponding steady state is ðu2;w2Þ when A43, and
the desert state ð0;AÞ when Ao0:9. The distribution of
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Fig. 8. An illustration of the dependence of pattern selection on initial

conditions for the discretised model equations (7). We plot pattern

wavelength vs the rainfall parameter A, with solid and dotted horizontal

lines showing the wavelength of patterns that are stable and unstable,

respectively; these are the same in (a) and (b), and the same as in Fig. 6c.

Superimposed on this is the pattern wavelength that evolves from initial

conditions that are small random perturbations of the uniform steady

states (a) ðu2;w2Þ and (b) ðu1;w1Þ. In all cases, the initial conditions evolve

either to a homogeneous steady state, for which the wavelength is shown

as zero, or to a pattern of mode 1–5. For each value of

A ¼ 0:1; 0:2; . . . ; 3:4, we have run 100 simulations, using different seeds

for the random number generator used in the initial conditions. The

patterns selected by these initial conditions are indicated by circles, with

the interior of the circles showing frequency of selection in greyscale

(darker ¼ higher frequency). We also plot the variation of wavelength

with A that is predicted by linear stability analysis. Pattern wavelength is

tightly clustered around this curve in (a), but is significantly different in

(b). The parameter values are B ¼ 0:45, n ¼ 182:5, N ¼ 40 and Dx ¼ 2.

The specific form of the initial conditions is: (a) ui ¼ Riu2, vi ¼ Siw2, (b)

ui ¼ Riu1, vi ¼ Siw1, where Ri and Si are chosen randomly from a

uniform distribution between 0:9 and 1:1.
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solutions between the possible outcomes is illustrated by
greyscale shading, with darker shading indicating a higher
frequency of pattern selection. Thus a circle with a white
interior indicates that only one out of the 100 initial
conditions developed into a pattern of that particular
wavelength, whereas a circle with a black interior indicates
that all of the initial conditions generated that pattern. Our
results show that the observed spatial pattern does indeed
depend on the initial conditions. When the initial condi-
tions involve perturbations about ðu2;w2Þ, the observed
wavelengths are clustered around those predicted by linear
stability analysis (Fig. 8a); this is because pattern selection
occurs while the solutions are still of low amplitude, so that
the linearised equations are a good approximation to the
full system. The same clustering does not occur when the
initial conditions involve perturbations around the un-
stable (and so unphysical) solution ðu1;w1Þ (Fig. 8b).
The clustering of pattern wavelength around the most

linearly unstable mode is important because in applica-
tions, patterns will most commonly develop from spatially
homogeneous vegetation, for example due to a drop in
rainfall or an increase in grazing. We investigated this
clustering as domain length increased, and found that it is
remarkably pronounced even on relatively large domains.
We took as a particular example the case of N ¼ 160, again
with Dx ¼ 2: this is a coarse discretisation of a domain of
length 320. Linear analysis predicts that the most unstable
pattern is mode 12 in this case. We ran 1000 simulations
with initial conditions consisting of small perturbations to
the steady state ðu2;w2Þ. Of these runs, 42.9% evolved to
mode 12 patterns and 47.2% to mode 11 or mode 13
patterns. Of the remainder, 4.5% evolved to mode 10 or
mode 14 patterns, and 5.4% did not converge to a periodic
pattern within our allocated solution time (which was
4800). This finding of persistent clustering around the most
unstable mode as domain length is increased implies that
the distribution of pattern wavelength becomes progres-
sively sharper.
Our finding that multiple pattern modes are unstable for

many parameter sets raises the interesting possibility of
hysteresis. To investigate this, we returned to the original
model PDEs (2), solving numerically using a much finer
discretisation than for (7). We imposed a variation in the
rainfall parameter A over time, as illustrated in Fig. 9; the
parameter values and domain length are the same as in
Figs. 3 and 5. Initially the system is at the spatially uniform
steady state ðu2;w2Þ, with A sufficiently large that this is
stable. As A is decreased, a pattern develops that is mode 5,
as expected from our results in Section 5. A further
decrease in A causes a change in the qualitative form of the
pattern but the wavelength remains the same: the solution
moves along the solution branch consisting of mode 5
patterns. The smallest value of A used in Fig. 9 is too low
for stable mode 5 patterns (see Fig. 5), and the pattern
changes to mode 1. But as A is increased again, the mode 5
pattern does not reappear. Rather, the solution moves to
the mode 3 branch and continues on this until the
homogeneous steady state is retrieved. Note that the
parameter values used in Fig. 9 are based on estimates
for grass derived by Klausmeier (1999), and these imply
that the range A 2 ½0:5; 3:5� used in the figure corresponds
to rainfall levels between about 130 and 930mmyear�1.
5. Discussion

Wavelength is the most accessible property of vegetation
stripes in the field. It requires observation at only a single
time and moreover this can be done via aerial photo-
graphy, avoiding the logistical difficulties and expense of
ground-based study. Therefore, the most important pre-
diction of theoretical models for vegetation stripes is
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Fig. 9. An illustration of hysteresis in the full model PDEs (2) as the rainfall is varied. In the upper panel, we plot vegetation density as a function of space

and time in grey scale (dark ¼ low density, light ¼ high density). In the lower panel we show the rainfall parameter A, which has an imposed variation in

time, rather than being constant. We also indicate the mode number of the corresponding vegetation pattern. Initially A is sufficiently large that there are

no vegetation patterns, and the stable solution is spatially uniform vegetation u ¼ u2, w ¼ w2. We use this as the initial condition in our simulation. As A is

decreased, a mode 5 pattern emerges; this is expected by reference to Fig. 3 and 6, which show that the initial bifurcation to patterns gives a mode 5

solution. As A is decreased further to 1.5, the mode 5 pattern persists but changes its form. Note that Fig. 6 indicates that the mode 5 pattern is unstable

for this value of A, but for the finer discretisation we are using here it is stable. Finally, A is decreased sufficiently that the mode 5 solution loses stability

and the solution changes to a mode 1 pattern, which is the only stable patterning mode at low values of A (see Fig. 6). As A is increased again, the solution

remains on the mode 1 branch until this loses stability, when a mode 3 pattern develops. This persists until A is increased back to its original value, when

homogeneous vegetation is restored. The critical feature of this figure is that although the decrease and increase in A are symmetric, the change in

vegetation patterns is highly asymmetric. The system of 400 ODEs resulting from the finite difference approximation (with Dx ¼ 0:2) was solved using

MATLAB (see text).
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pattern wavelength and its variation with model para-
meters.

For the Klausmeier (1999) model, linear stability
analysis of the uniform vegetation state reveals the stability
of different spatial wavenumbers, and previous authors
(Klausmeier, 1999; Sherratt, 2005) have made predictions
on pattern wavelength based on the most unstable
wavenumber. Our results show that it is wrong to make
this simple assumption that the observed pattern has the
most unstable wavenumber. Rather, pattern selection is
nonlinear and history-dependent. To be specific, we have
focussed on patterning in response to changes in rainfall,
although analogous results hold for changes in grazing
levels.

Vegetation stripes can be initiated either by the
destabilisation of the homogeneous vegetation state, or
by the introduction of plants to desert regions. In the
former case, the Klausmeier model predicts a critical
rainfall level at which pattern formation occurs; linear
stability analysis enables calculation of this critical level,
and also the corresponding spatial wavelength (Sherratt,
1999). Our results show that as rainfall is further decreased,
pattern wavelength remains the same, although the form of
the pattern changes gradually, with the vegetation stripes
becoming thinner and the stripe separation increasing. The
pattern wavelength only changes at a rainfall level that is
significantly less than that at which patterns first arise—by
a factor of 0.7 for the specific parameter set on which we
focussed in Section 4. In comparison, the most unstable
wavelength changes by about 30% during this change in
rainfall. Once pattern wavelength does finally increase, the
longer wavelengths persist even when rainfall increases
again (see Fig. 9).
Patterns that might arise via the introduction of plants to

desert areas cannot be studied using the stability and
bifurcation approach used in this paper, because the desert
steady state is always linearly stable in the Klausmeier
model, so that even with high rainfall it requires a large
perturbation to get vegetation growth. However, our
results in Fig. 8 indicate that at the lowest rainfall levels
allowing patterns, these will have mode 1, so that there is a
single vegetation stripe on the domain, whatever its size.
This is confirmed by numerical simulations of the model
PDEs (2), which show that for any rainfall level for which a
mode 1 pattern exists, introduction of plants to a desert
area always generates this pattern unless the plants die out.
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At high rainfall levels, the mode 1 patterns become
unstable (see Fig. 8), and large perturbations of the desert
state then generate shorter wavelength patterns. If the
rainfall is then decreased again these patterns persist, in a
manner analogous to the hysteresis shown in Fig. 9.

In conclusion, our results show that pattern selection in
the Klausmeier (1999) model differs significantly from the
‘‘most unstable mode’’ rule assumed by previous authors.
Moreover, our work enables predictions of pattern
wavelength based on parameter values and on a basic
knowledge of rainfall history. In the context of a
parameterisation of the model for a particular vegetation
system, such predictions could be used to test the validity
of the Klausmeier (1999) model.
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