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� Semi-diurnal tidal oscillations are included in a model for mussel bed patterning.

� Conditions for patterning are determined using Floquet analysis.
� Neglecting the tides underestimates the tendency to form patterns.
� Tidal oscillations also prevent large-scale migration of patterns.
� Realistic representation of tides will be important in future detailed models.
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a b s t r a c t

In the Wadden Sea, mussel beds self-organise into spatial patterns consisting of bands parallel to the
shore. A leading explanation for this phenomenon is that mussel aggregation reduces losses from dis-
lodgement and predation, because of the adherence of mussels to one another. Previous mathematical
modelling has shown that this can lead to spatial patterning when it is coupled to the advection from the
open sea of algae—the main food source for mussels in the Wadden Sea. A complicating factor in this
process is that the advection of algae will actually oscillate with the tidal flow. This has been excluded
from previous modelling studies, and the present paper concerns the implications of this oscillation for
pattern formation. The authors initially consider piecewise constant (“square-tooth”) oscillations in ad-
vection, which enables analytical investigation of the conditions for pattern formation. They then build
on this to study the more realistic case of sinusoidal oscillations. Their analysis shows that future re-
search on the details of pattern formation in mussel beds will require an in-depth understanding of how
the tides affect long-range inhibition among mussels.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Over the last few decades, aerial photographs and satellite
images have revealed landscape-scale patterns in a wide variety of
ecosystems. The best-documented case is vegetation patterns in
semi-arid environments, for which there is an extensive literature
of both empirical research (e.g. Deblauwe et al., 2011; Pelletier
et al., 2012; Sheffer et al., 2013) and mathematical modelling (e.g.
Stewart et al., 2014; Siteur et al., 2014; Zelnik et al., 2015; Sherratt,
2015). Other examples include patterns of ridges and hollows in
peatlands (Eppinga et al., 2008, 2009), linear patterns of trees such
as “ribbon forest” (Bekker et al., 2009) and “Shimagare” (Suzuki
et al., 2012), and patterned mussel beds, which are the subject of
this paper. The self-organised formation of mussel patches on
att),
rocky shores has been studied via both field work and modelling
for more than 40 years (Levin and Paine, 1974; Paine and Levin,
1981; Wootton, 2001). More recently, pattern formation has been
studied in soft-bottomed mussel beds—the essential difference
here is that the mussels adhere only to one another, not to the
underlying substrate. Labyrinthine patterns are common in these
systems (e.g. Snover and Commito, 1998), and have been re-
plicated in laboratory and modelling studies (van de Koppel et al.,
2008; Commito et al., 2014). In 2005, van de Koppel et al. pub-
lished the first report of larger scale regular patterning in mussel
beds, which are shown in aerial photographs of the Wadden Sea
(Fig. 1). This is the largest unbroken system of intertidal sand and
mud flats in the world, and is a UNESCOWorld Heritage site; it lies
off the coast of the Netherlands, Germany and Denmark. The
patterns consist of stripes of mussels running parallel to the shore,
separated by stripes of bare sediment, with a wavelength of about
6 m.

As well as documenting the mussel bed patterns, the paper of
van de Koppel et al. (2005) also presents a mathematical model
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Fig. 1. An aerial photograph of a banded patterned mussel bed in the Dutch
Wadden Sea. Photograph courtesy of Jasper Donker and reproduced from Donker
(2015), with permission.
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that aims to explain them. In the Wadden Sea, mussel beds are
subject to disruption by predation, wave action and ice scouring
(Donker et al., 2015). The basis of van de Koppel et al.'s (2005)
model is that these effects are reduced at higher mussel densities.
Empirical data shows that mussel density does increase in re-
sponse to both greater wave exposure (Tam and Scrosati, 2014)
and greater predation threat (Cote and Jelnikar, 1999; Naddafi
et al., 2010). Conversely, increased densities have been shown to
give greater resilience to disturbances (Bertness and Grosholz,
1985). This is because mussels attach to their neighbours via byssal
threads, with more attachments forming when mussels are sub-
ject to perturbations (wa Kangeri et al., 2014). Note that the ab-
sence of substrate attachments in soft-bottomed beds means that
other mussels or shell fragments provide the only available
anchorage.

The model of van de Koppel et al. (2005) is formulated in terms
of mussel density ( )m x t, and algal concentration ( )a x t, , where t is
time and x is a spatial coordinate running away from the shore.
Algae are the main food source for mussels in the Wadden Sea,
and their availability is the limiting factor for mussel growth
(Dolmer, 2000; Øie et al., 2002). They reside primarily in upper
water layers, where their concentration is maintained by advec-
tion from the open sea in the incoming tide, but there is some
transport to lower layers where they become susceptible to pre-
dation by mussels. van de Koppel et al.'s (2005) model represents
these various processes via the equations

⏞
( )α β∂ ∂ = ( − ) − + ∂ ∂    1aa t a am a x/ 1 /

transfer to/ from upper water layers
consumption by mussels

advection by tide

⏟
δ γ∂ ∂ = − ( + ) + ∂ ∂

( )
    m t am m m m x/ / 1 / .

1bbirth dislodgement by waves

2 2

random movement

which have been non-dimensionalised (see van de Koppel et al.,
2005 for details); α, β, γ and δ are positive parameters. Note that
although mussels are often thought of as sessile organisms, they
actually move both within and between clusters (Toomey et al.,
2002; Nicastro et al., 2008), and this is represented in a simple
way by the diffusion term in (1b). More realistic modelling of
mussel movement is discussed in Liu et al. (2014b).

The model (1) has been studied in a number of recent papers.
Wang et al. (2009) and Liu et al. (2012) presented numerical bi-
furcation studies providing details of pattern existence, and
Sherratt (2013) extended this to examine pattern stability. Gha-
zaryan and Manukian (2015) used geometric singular perturbation
theory to study travelling wave solutions of the model—both
patterns and fronts; the latter includes moving transitions be-
tween patterned and non-patterned regions. Cangelosi et al.
(2015) extended the model by replacing the advection term in the
algae equation by diffusion. Their weakly nonlinear analysis pro-
vides a detailed account of patterns in this amended model, which
they compared with experimental data.

The present paper concerns exclusively the van de Koppel
model (1) based on the “reduced losses” hypothesis, but it is im-
portant to remark that alternative mechanisms have been pro-
posed for mussel bed patterning. In particular, Liu et al. (2012,
2014a) have developed a mathematical model based on a “sedi-
ment accumulation” hypothesis, namely that more rapidly grow-
ing mussels deposit greater amounts of sediment beneath them,
which raises them towards their food source (algae) and thus
further promotes their growth.

The advection term in (1a) plays a central role in pattern for-
mation: it creates a long-range inhibition between mussels that
combines with the short-range activation arising from the density-
dependent loss term in (1b) to generate patterns. Advection also
plays an important role in other types of landscape-scale pat-
terning, including vegetation patterns. Labyrinthine or spotted
patterns of semi-arid vegetation occur on flat ground, but the
propensity for patterning is increased on slopes, where one typi-
cally sees banded patterns running parallel to the contours (De-
blauwe et al., 2008, 2011; Meron, 2012; Siteur et al., 2014). This is
due to the downhill advection of rain water, which is the key re-
source in semi-arid ecosystems and therefore plays a role analo-
gous to that of algae in mussel beds in the Wadden Sea.

The original presentation of the model (1) (van de Koppel et al.,
2005) and the subsequent papers studying the model all use a
unidirectional advection term, except for Cangelosi et al. (2015)
who replaced the advection term with diffusion. This is based on
the assumption that the most important process in the supply of
algae is their advection from the open sea on the incoming tide.
However in reality algae are advected both towards the shore by
the incoming tide, and away from it by the outgoing tide. In the
present paper we will use a bidirectional advection term, and in-
vestigate the implications of this for pattern formation. Specifi-
cally, we will study the equations

⏞
( )α ββ∂ ∂ = ( − ) − + ( )∂ ∂      2aa t a am t a x/ 1 /

transfer to/ from upper water layers
consumption by mussels

advection by tide

⏟
δ γ∂ ∂ = − ( + ) + ∂ ∂

( )
    m t am m m m x/ / 1 / .

2bbirth dislodgement by waves

2 2

random movement

Here ( ) >t 0 at times t when the tidal flow is towards the shore,
and ( ) <t 0 when flow is away from the shore. Mathematical
modelling of tides has a history of more than two hundred years
(Cartwright, 1999), and their computational study remains an ac-
tive research area: Griffiths and Hill (2015) give a recent review.
However such detailed work is beyond the scope of the present
paper: we are looking only for a simple representation of the basic
phenomenon of repeated switches in flow direction. The Wadden



Fig. 2. Pattern formation in the model (1a), with unidirectional advection. (a) The
dispersion relation, plotting the growth rate λ( )Re of small perturbations as a
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Sea has a semi-diurnal tide: two nearly equal high and low tides
each day. We approximate this tidal pattern by taking ( ). to be a
periodic function with zero mean. Of course tides are not actually
periodic because of longer term fluctuations, but periodicity is a
mathematically useful simplification that captures the essential
phenomenon. To ensure uniqueness, we impose the condition

∫ ( ) = ( )=

=

T
t dt

1
1 3t

t T

0

which ensures that the overall strength of advection depends only
on the (positive) parameter β. We begin (Section 2) by summar-
ising the conditions for the onset of pattern formation in (1), so
that tidal flow is unidirectional. We then (Section 3) consider the
case of piecewise constant ( ). , meaning that ( ). alternates
between the values of �1 and 1. Although not biologically rea-
listic, this form enables detailed mathematical analysis and thus
provides a valuable case study on the implications of bidirectional
advection. Building on this, we then (Section 4) consider more
general (and more realistic) forms for ( ). . Throughout the paper
we restrict attention to the onset of patterning, that is Turing (or
Turing–Hopf) bifurcation points. We do not consider the wider
issue of the full parameter space in which patterns occur. When all
parameter values are constant, that can be studied via numerical
bifurcation methods (Sherratt, 2012, 2013; Siteur et al., 2014).
However to our knowledge this approach has never been extended
to patterns in systems with temporally varying parameters; this is
a natural but very challenging area for future research.
function of their wavenumber k. We show plots for β = 8, 11, 15: pattern for-
mation occurs for values of β greater than about 11. (b,c) A typical pattern solution.
We show the mussel and algal densities m and a as functions of space at three
equally spaced time points, to illustrate the movement of the patterns. The initial
conditions for the solutions were random perturbations of the steady state ( )a m,s s
and the plotted solutions are for times =t 10 000, 10 050 and 10 100; the large
initial time ensures that transients have dissipated. The arrows show the direction
of pattern movement. The parameter values are α = 0.6667, γ = 0.1333, δ = 0.15,
based on the estimates of Wang et al. (2009). In (b) and (c) β = 15, and the
equations were solved numerically using a semi-implicit finite difference scheme
with upwinding.
2. Pattern formation for unidirectional advection

Eqs. (1) have two homogeneous steady states: ( ) = ( )a m, 1, 0
and ( )a m,s s where

( )
( )γ δα

δ α
α δ γ
γ δα

= −
−

=
−

− ( )
a m

1
and .

4
s s

We require ( )a m,s s to be positive and stable to spatially homo-
geneous perturbations. Necessary and sufficient conditions for this
are very complicated algebraically, but a simple sufficient condi-
tion is

δ γ δα> > > ( )4 5

and we assume this to hold in the remainder of the paper. An
explanation for (5) is given in the Appendix; note that it is satisfied
comfortably by realistic parameter estimates (van de Koppel et al.,
2005; Wang et al., 2009). The onset of patterning occurs when this
steady state becomes unstable to inhomogeneous perturbations.
We investigate this in the standard way, by linearising (1) about
( )a m,s s and then substituting the solution ansatz

λ( − − ) = ( ˜ ˜ ) ( + )a a m m a m t ikx, , exps s where ã and m̃ are non-zero
constants. This gives a quadratic dispersion relation whose solu-
tions have

λ ϕ θ ϕ= − + + + + +
( )

⎡
⎣
⎢
⎢

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭
⎤
⎦
⎥
⎥k p sRe

1
2

1
2 6

2 2 2
1/2

where

( )
( )

αδ α
γ δα

γ δα
δ α

=
−

−
= −

− ( )
p q

1

1 7a

( ) ( )( )
( )

δα δ γ
γ δα

α δ γ γ δα

γ α
=

−
−

=
− −

− ( )
r s

1 7b
2

( )ϕ β= + − − + ( )k p s k qr4 82 2 2 2

( )θ β= − + − ( )k k p s2 . 92

The constants p, q, r and s are the entries in the Jacobian matrix of
the kinetics of (1) at ( )a m,s s . Fig. 2a shows typical plots of λRe
against k as the advection parameter β is increased. For small β,

λ <Re 0 for all k so that the steady state is stable; but stability is
lost as β is increased and λRe becomes positive for some values of
k. Pattern formation is then expected, and this is confirmed in
numerical simulations (Fig. 2b,c). Note that the patterns move
away from the shore. Intuitively this is because the model predicts
higher algal densities on the off-shore side of a mussel band
compared to the on-shore side, because of consumption in the
band, and this causes a net growth of mussels on the off-shore side
and a net loss on the on-shore side, resulting in a gradual net off-
shore migration of the band. Mathematically the movement is a
consequence of the unidirectional advection term and it is ex-
pected from the linear analysis because the growth rate λ is
complex-valued. However such migration is not observed in real
mussel bed patterns; we will show that with a bidirectional ad-
vection term, as in (2), patterns form which do not show large
scale migration.
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3. Pattern formation for “square-tooth” advection

As a first step in the study of bidirectional advection, we con-
sider (2) with the forcing function having “square-tooth” form:

( ) =
≤ < +

− + ≤ < ( + )
( )

⎧
⎨
⎪⎪

⎩
⎪⎪

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

t
nT t n T

n T t n T

1,
1
2

1,
1
2

1
10

for any integer n. Such a discontinuous advection coefficient is not
a realistic representation of tidal flow, but its mathematical sim-
plicity enables detailed analysis and it is for this reason that we
use it as an initial case study.

To investigate the possibility of pattern formation, we line-
arised (2) with (10) about ( )a m,s s and looked for solutions of the
form ( ) = ( ) + ( ( ) ( ))a m a m a t m t e, , ,s s

ikx, giving

= ≤ < +
( )

+
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
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d
dt

a
m

M a
m

nT t n Tfor
1
2 11

= + ≤ < ( + )
( )

−
⎡
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⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
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d
dt

a
m

M a
m

n T t n Tfor
1
2

1
12

β
=

±
− ( )

±
⎡
⎣⎢

⎤
⎦⎥M

p i k q

r s k
where .

132

For a system with periodic coefficients such as (11), (12) the
stability of ( )a m,s s depends on the Floquet multipliers; an over-
view of Floquet theory is given in many books on ODEs, for ex-
ample Jordan and Smith, 2007, pp. 308–315. The piecewise con-
stant form of (11), (12) enables the Floquet multipliers to be
calculated analytically, following a methodology developed by
Sherratt (1995a,b) for studying Turing pattern formation for os-
cillating parameters. The first step is to consider the equations in
(11) and (12) separately. These equations have fundamental so-
lutions (that is, matrices whose columns are a pair of linearly
independent solutions) of the form Φ Λ( ) =± ± ± ±t Z Cn n, , where
Λ λ λ= [ ( ) ( )]± ± ±t tdiag exp , exp1 2 with λ ±

i being the eigenvalues of ±M
(i¼1,2), and ±Z is a matrix whose columns are the corresponding
eigenvectors. The entries of the (non-singular) matrices ±C n, are
constants of integration.

Continuity at = ( + )t n T1/2 gives a relation between +C n, and
−C n, :

( ) ( )Λ Λ+ = + ( )− − − + + +Z nT T C Z nT T C/2 /2 . 14n n, ,

Thus there are four independent constants of integration, corre-
sponding to arbitrary combinations of two linearly independent
solutions for each column of the fundamental solution.

The Floquet multipliers are the eigenvalues of

Φ Φ Λ Λ

Λ Λ

Λ Λ

Λ Λ

Λ Λ

( ) ( + ) = ( ) ( + )

= ( )

( + )

= ( ) ( + )·

( + ) ( + )
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= ( ) ( )
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+ − + − + − − −

−

+ − + − + − − −

− − − − + +

+
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⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
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C nT Z Z

nT T C

C nT Z Z nT T

nT T Z Z nT T

C
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/2 /2

using 14

n n n n

n

n

n

n

n n

, 1 , , 1 ,

, 1 1 1

,

, 1 1 1

1 1

,

, 1 ,

where Λ= [ ]± ± ± ± −M Z Z 1. Therefore the Floquet multipliers are the
eigenvalues of − +M M .
Calculation of ±M is straightforward, albeit algebraically la-
borious. It shows that the Floquet multipliers are given by
μ μ Γ= ^· ( − )Texp /2 , where μ μ^ − ^ + =Y 1 02 . Here

Γ = − − ( )k p s 152

( )( )
( )( )( ) ( )

= + +

+ − − +
( )

( + ) − −

− − + − + −

+ − + −

+ −

⎡
⎣⎢

⎤
⎦⎥

Y e e e

e e qr Q Q P P

1
2

1 1

1 1 4
16

P P T P T P T

P T P T

/4 /2 /2

/2 /2

β= ± − − + ( )±Q ik k p s 172

= + ( )± ±P qr Q4 . 182

Unless either k or β is zero, ±Q have non-zero imaginary parts and
thus ±P have non-zero real and imaginary parts; for uniqueness
we take >±PRe 0. Note that ±Q and hence also ±P are complex
conjugates, implying that Y is real. Fig. 3a shows a typical plot of
the larger of the two values of μ| |log against k as the advection
parameter β is increased; the steady state ( )a m,s s is unstable if
μ| | > 1 for some value of k, in which case pattern formation is ex-
pected, and this is confirmed in numerical simulations (Fig. 3b,c).

Comparing the results shown in Fig. 3 for bidirectional ad-
vection and those in Fig. 2 for unidirectional advection, the main
qualitative difference concerns the movement of the patterns. In
Fig. 2 the pattern moves away from the shore at a constant
speed, whereas in Fig. 3 there is an oscillatory motion. This
difference is of course entirely expected; in particular, the
symmetry of (2), (10) in the positive and negative x-directions
suggests that there will be no net translation of the pattern.
Note that in real mussel bed patterns there is no large scale
migration of the bands.

There is also a quantitative difference between the two cases:
the critical value of β at which patterns arise is slightly higher for
bidirectional advection. (Note that all parameters are the same in
Figs. 2 and 3). This suggests that van de Koppel et al.'s (2005)
assumption of unidirectional advection leads to slight over-esti-
mates of the propensity of the model to predict patterning. We
will now investigate this in more detail by considering how the
conditions for the onset of pattern formation depend on the for-
cing period T.

We begin by considering the case of large T. Eqs. (16)–(18)
imply that to leading order as → ∞T ,

= [ + ( + ) ( )]+ − + −Y e qr Q Q P P1 4 /P T1
2

/2real where = >±P PRe 0real .

Therefore → ∞Y as → ∞T , and thus the two roots for μ̂ ∼ Y and
Y1/ . The Floquet multiplier with the larger absolute value corres-

ponds to the former root, and is

( )μ = + ( + )Γ( − ) + − + −⎡⎣ ⎤⎦e qr Q Q P P
1
2

1 4 /P T /2real

to leading order as → ∞T . Therefore the condition for ( )a m,s s to be
stable is Γ> = − −P k p sreal

2 . Comparing (17) with (8) and (9)
shows that ϕ θ+ = ±±Q qr i42 . Therefore (6) can be rewritten as

λ = [ − + + + ]k p s PRe 1
2

2
real . Hence the leading order condition

for stability of ( )a m,s s in (2) as → ∞T is the same as the condition
for stability in (1), the unidirectional case.

We now turn to the opposite extreme of →T 0. Taylor series
expansion of (16) implies

( )( )= + + + + ++ − + −Y P P qr Q Q T O T2
1

16
8 2 .2 2 2 3
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Therefore the Floquet multipliers are real and positive, with the
larger being

( )μ = + + + + − − − + ( )+
+ − + −⎛

⎝⎜
⎞
⎠⎟P P qr Q Q k p s T O T1

1
4

8 2 2 .2 2 2 2

Now (5) implies that + <p s 0. Hence for small T the condition
μ >+ 1 for instability to a perturbation with wavenumber k reduces
to

+ + + > ( − − )+ − + −P P qr Q Q k p s8 2 4 .2 2 2 2

Substituting (17) and (18) into this inequality and simplifying
shows that the condition for instability is > −pk ps qr2 . Straight-
forward calculations show that (5) implies that − >ps qr 0 and

<p 0. Therefore for sufficiently small T, ( )a m,s s is stable to all
perturbations. Intuitively this is exactly as expected: when the
advection coefficient fluctuates rapidly between two values, one
expects the behaviour to be the same as for a constant coefficient
with the average of the two values, which is 0, and pattern for-
mation cannot occur in (1) with β = 0.
Fig. 3. Pattern formation in the model (2), with bidirectional advection given by
the square-tooth function (10). (a) The logarithm of the larger of the absolute va-
lues of the Floquet multipliers, plotted against wavenumber k. We show plots for
β = 8, 11, 15: pattern formation occurs for values of β greater than about 11. (b,c)
A typical pattern solution. We show the mussel density m as a function of space at
seven equally spaced time points, to illustrate the movement of the patterns. The
algal density a has a similar solution form, except that the oscillations are partly out
of phase with those for the mussel density (see Fig. 2). The plots in (b)/(c) are for
the halves of the forcing period in which advection is directed towards/away from
the shore. The arrows show the direction of pattern movement; as expected, this is
in the opposite direction to the advection. The initial conditions for the solutions
were random perturbations of the steady state ( )a m,s s and the times at which the

solutions are plotted are: (b) − T200 000 , − T200 000 5
6

, − T200 000 4
6

,

− T200 000 3
6

; (c) − T200 000 3
6

, − T200 000 2
6

, − T200 000 1
6

, 200 000. The large

initial time ensures that transients have dissipated. The parameter values are
α = 0.6667, γ = 0.1333, δ = 0.15, based on the estimates of Wang et al. (2009); the
period T¼200. In (b) and (c) β = 15, and the equations were solved numerically
using a semi-implicit finite difference scheme with upwinding.
These results suggest that the parameter region in which
( )a m,s s is unstable—corresponding to pattern formation—shrinks
as the period T decreases. To test this, we calculated the curve in
the β–δ plane on which stability changes, for fixed values of the
other parameters. For given values of β and δ, we used (15)–(18) to
calculate the Floquet multipliers on a grid of k values. This gives an
approximation to the Floquet multiplier with largest absolute va-
lue, which we refined by fitting a parabola through the three k
values adjacent to the maximum. Following this procedure, we
calculated the Floquet multiplier with the largest absolute value
on a grid of β values, determining the critical value at which it
crosses 1 by linear interpolation between grid points. Repeating
this process for a succession of δ values generates the critical
curves in the β–δ plane; examples are illustrated in Fig. 4. As T is
decreased the parameter region for patterning gradually shrinks,
starting at the curve for unidirectional advection in the limiting
case of → ∞T , and disappearing entirely as →T 0.

The fact that the conditions for pattern formation depend
strongly on T means that we must investigate the appropriate
value of T for mussel beds in the Wadden Sea. The tide here
changes direction about every 6.5 h (e.g. http://www.tide-forecast.
com/countries/Netherlands), so that an appropriate value for T is
13 h; the nondimensionalisation and parameter estimates in van
de Koppel et al. (2005) imply that this corresponds to a di-
mensionless value of about 2000. Fig. 4 shows that for this value of
T the difference between the region of the β–δ plane giving pat-
terns differs only slightly from that for the unidirectional advec-
tion case: for any value of δ the critical value of β is less than 1%
lower in the bidirectional case. Thus for the parameter estimates
that they use, van de Koppel et al.'s assumption of unidirectional
advection gives a very good approximation to the conditions for
the onset of pattern formation—at least compared to the “square-
tooth” form of bidirectional advection that we have been con-
sidering. In the next section we will show that more realistic forms
Fig. 4. An illustration of the region of the β–δ parameter plane in which ( )a m,s s is
unstable, giving patterns, for a sequence of values of the oscillation period T, when
the advection rate oscillates with a square-tooth form (10). The parameter region
expands with T, approaching the corresponding region for constant advection,
which is shown by the grey circles. The other parameter values are α = 0.6667 and
γ = 0.1333, based on the estimates of Wang et al. (2009).

http://www.tide-forecast.com/countries/Netherlands
http://www.tide-forecast.com/countries/Netherlands
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for the oscillations in advection have a greater affect on the con-
ditions for patterning.
Fig. 6. Illustrations of the region of the β–δ parameter plane in which ( )a m,s s is
unstable, giving patterns, when the advection rate oscillates according to the
function family ( )t , defined in (19). (a,b) The region is shown for a sequence of
values of the parameter ξ, when the period of the oscillations is (a) T¼2000, (b)
T¼80. As discussed in the main text, the parameter estimates of van de Koppel
et al. (2005) imply that a dimensional period of about 2000 is appropriate for tidal
flow. The parameter region giving patterns shrinks as ξ increases from 0 to 1; these
extreme cases correspond respectively to square-tooth and sinusoidal oscillations
(see Fig. 5). The grey circles indicate the parameter region giving patterns in the
case of constant advection. The values of ξ used are …0, 0.2, 0.4, , 1. (c) For ξ = 1
(sinusoidal oscillations) the parameter region giving patterns expands as T in-
creases, except for small oscillations for larger values of T. The limiting form is
significantly different (smaller) than the region for constant advection, which is
again shown by grey circles. Note that the parameter region is close to its limiting
form even for relatively small values of T: the approach is much more rapid than
that for square-tooth forcing (shown in Fig. 4). The other parameter values are
α = 0.6667 and γ = 0.1333, based on the estimates of Wang et al. (2009).
4. Pattern formation for other forms of bidirectional
advection

A major caveat to the results in the previous section is that they
are restricted to the “square-tooth” functional form for the forcing
function ( ). . For general ( ). the Floquet multipliers cannot be
calculated analytically. However numerical calculation is possible
and we will use this approach to extend our analytical results for
the square-tooth case to more realistic forcing functions.

Tidal flows are approximately sinusoidal. However, rather than
simply use π( ) ∝ ( )t t Tsin 2 / we consider a family of forcing
functions, which enables a gradual progression from the analytical
results of the previous section to the more realistic sinusoidal
case:

∫

( ) ( )

( )

π π

πτ τ

( ) = · ·

( )

ξ

τ

τ ξ

=

=

⎡⎣ ⎤⎦t T t T t T

T d

sign sin 2 / sin 2 /

sin 2 / 19
T

0

(illustrated in Fig. 5). Here the denominator is chosen so that (3) is
satisfied. This family is parameterised by ξ ∈ [ ]0, 1 . When ξ = 0
(19) gives the square-tooth form (10), while ξ = 1 gives a simple
sinusoidal oscillation.

As in Section 3 we linearised (2) about ( )a m,s s and looked for
solutions of the form ( ) = ( ) + ( ( ) ( ))a m a m a t m t e, , ,s s

ikx. We then
solved the resulting ODEs for ( )a m, numerically over one period T,
first using initial conditions ( ) = ( )a m, 1, 0 and then ( ) = ( )a m, 0, 1 .
This gives two linearly independent solutions, and we constructed
a matrix with columns given by these two solutions evaluated at
t¼T. The Floquet multipliers are the eigenvalues of this matrix,
which can be calculated by standard numerical linear algebra
programs. We repeated this procedure over a grid of k values,
giving an approximation to the Floquet multiplier with largest
absolute value; as in Section 3 we refined this using quadratic
interpolation. Again as in Section 3, we applied this method on a
grid of β values, using linear interpolation between grid points to
determine the critical value of β at which the largest amplitude of
a Floquet multiplier crosses 1. This enables calculation of the curve
in the β–δ plane on which ( )a m,s s loses stability, heralding pattern
formation.

Fig. 6a,b shows the change in this critical curve as ξ is increased
between 0 and 1, for two values of the forcing period T. As ξ in-
creases, the parameter region giving patterns shrinks, so that for
any given value δ a larger value of the advection rate β is required
Fig. 5. An illustration of the function family (19) that we use for the oscillations in
algal advection. As the parameter ξ increases from 0 to 1, the function gradually
changes from square-tooth to sinusoidal form. The plots show the cases
ξ = …0, 0.2, 0.4, , 1.
for patterning. In these figures we superimpose the critical curve
for unidirectional advection (grey circles). As commented pre-
viously, this curve is almost indistinguishable from that for bidir-
ectional advection when ξ = 0 (square-tooth forcing) and T is
large. However as ξ decreases the curves for the two cases sepa-
rate, and further increase in T does not change this: increasing T
above 2000 causes no visible change in the results plotted in
Fig. 6a. Therefore for the realistic case of sinusoidal advection
ξ( = )1 the parameter region for patterns is significantly smaller
than that given by a unidirectional advection term.

One notable aspect of the comparison between parts a and b of
Fig. 6 is that although there is a significant difference between the
curves for T¼2000 and T¼80 when ξ = 0 (square-tooth forcing),
there is very little difference when ξ = 1 (sinusoidal forcing).
Further investigation revealed that for ξ = 1 the critical curve ap-
proaches its large T limit very rapidly: for T greater than about 20
there is almost no change in form (Fig. 6c). Since this is two orders
of magnitude lower than van de Koppel et al.'s (2005) estimate of
T¼2000, it follows that for the realistic case of sinusoidal advec-
tion the parameter region giving patterns is effectively in-
dependent of the period T.
5. Discussion

The model of van de Koppel et al. (2005) for pattern formation
in mussel beds assumes a constant inshore advection of algae, for
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reasons of mathematical simplicity. In reality, the direction of
advection oscillates with the tide, and the objective of our study
has been to investigate the way in which these oscillations affect
the potential for pattern formation. We have shown that the as-
sumption of unidirectional advection over-estimates the para-
meter region giving patterns. We considered first the case in
which the advection parameter alternates between two constant
values of equal magnitude but opposite sign—again in the inter-
ests of mathematical simplicity. Then the parameter region giving
patterns shrinks as the period of the oscillations decreases, but
when the period corresponds to the actual tidal oscillations in the
Wadden Sea (about 13 h) there is only a slight difference relative
to unidirectional advection. However for the more realistic case of
sinusoidal oscillations in the advection parameter, the parameter
region giving patterns is significantly smaller than for unidirec-
tional advection, even at very large periods. In addition, uni-
directional advection causes a constant migration of the patterns
away from the shore, which is not seen in reality, whereas oscil-
lating advection implies small scale oscillations in the band loca-
tions, but no net migration.

There are two different reasons for the reduced propensity for
pattern formation in the model with oscillatory advection, com-
pared to the unidirectional case. The first is that the effects of
advection in one direction are somewhat “cancelled out” by ad-
vection occurring in the opposite direction. This is most significant
when the period of the oscillations in advection is small: indeed as
the period approaches zero the advection has no effect at all. Even
at very long oscillation periods there is a degree of “cancelling out”,
but for the case of square-tooth advection considered in Section 3
shows that this is very slight. The second effect of oscillations in
advection is that for a proportion of the time, the advection rate is
quite small. This does not apply for square-tooth advection but it
becomes more important as the parameter ξ is increased in the
forcing function family (19). For constant (unidirectional) advec-
tion, there is a critical level of the advection parameter that must
be exceeded for patterns to form (van de Kopell et al., 2005; Wang
et al., 2009). When the advection parameter oscillates, its absolute
value is below this critical level for part of each time period. Pat-
terns are therefore suppressed during this part of the time period,
with active pattern formation being restricted to other parts of the
period. This is mitigated by the fact that the absolute value of the
advection parameter is larger than in the unidirectional advection
case for part of each time period (see Fig. 5): this is required to
maintain a constant average value as specified by (3). However our
results show that this mitigating effect is insufficient to prevent
greater restrictions on the parameter values giving patterns, and
comparison of the square-tooth and sinusoidal cases shows that
this second effect of oscillatory advection is much more significant
than the first.

To our knowledge, this paper is the first to investigate the ef-
fects of time-varying advection on spatial pattern formation in
reaction–diffusion–advection systems. However a number of pre-
vious papers have considered patterning in reaction–diffusion
systems with time-varying diffusivity. This problem was first stu-
died by Timm and Okubo (1992) in the context of plankton
patchiness. Zooplankton often exhibit an oscillating diurnal ver-
tical migration, spending nights near the surface and days in
deeper water. The traditional explanation for this is that the ascent
facilitates feeding while the descent gives greater protection from
predators (e.g. Ringelberg, 2010), although alternative trade-offs
have been suggested, for example, between water temperature
and ultraviolet radiation damage (Leach et al., 2015). Because
horizontal ocean currents vary with depth, the oscillation in ver-
tical migration can lead to a corresponding oscillation in hor-
izontal dispersal. Timm and Okubo (1992) investigated the effects
of this on the pattern-forming potential of zooplankton–
phytoplankton systems using a predator–prey model in which the
predator diffusion coefficient varied periodically in time. Using
perturbation theory, they showed that a small temporal variation
in dispersal rate reduces the tendency for pattern formation, and
this result was extended to general predator–prey models by
Gourley et al., 1996. Both papers presented numerical simulations
demonstrating a similar stabilising effect of higher amplitude os-
cillations in predator diffusion. However this is not a general re-
sult: analytical work by Sherratt (1995a,b) and Bhattacharyya and
Mukhopadhyay (2011) shows that oscillatory diffusion rates can
promote pattern formation in some cases. These various ecology-
based studies concern systems in which there are patterns of
standard Turing type in the absence of time-varying diffusion. In
their work on the Gray–Scott chemical reaction, Wang et al. (2011)
show that oscillatory diffusion can also induce complex spatio-
temporal patterns, especially when combined with additive noise.

Mussel beds are a rich source of pattern formation problems. As
well as the large-scale banded patterns considered in this paper,
which have a wavelength of about 6 m, mussels also form net-
shaped clusters with a length-scale of 10–20 cm (Liu et al., 2014b).
This smaller scale patterning is thought to arise from a quite dif-
ferent mechanism, namely phase separation based on density-
dependent movement (Liu et al., 2013). Many questions remain
unanswered concerning both of these patterning processes and in
particular about their interaction, which is predicted to increase
mussel bed resilience in the model of Liu et al. (2014b).

Understanding the dynamics of mussel beds is an important
practical question. Mussel beds are an active research system
within restoration ecology; this includes work specifically on the
Wadden Sea (de Paoli et al., 2015; van der Molen et al., 2015).
Moreover, mussels are an economically important resource in
many parts of the world: for example within the European Union
the combined annual value of the mussel fishing and aquaculture
industries is about 400 million euros (2009 figure).1 In the Wad-
den Sea alone, annual blue mussel landings exceeded 20 000 tons
(wet weight) in every year between 1965 and 2007 (Nehls et al.,
2009). Spatial patterning may affect both the resilience and pro-
ductivity of mussel beds (Liu et al., 2012, 2014b) and may therefore
have important implications for both restoration programs and
mussel fisheries. Detailed and realistic models are required to
clarify these implications. The starting point for such modelling is
simple models such as that of van de Koppel et al. (2005), which
play a key role because comprehensive studies of pattern forma-
tion are possible. The next step is a gradual increase in model
realism, which necessitates an increase in complexity. It is in this
spirit that we have incorporated bidirectional advection into the
model of van de Koppel et al. (2005). Our prediction that this has a
significant effect on the pattern forming potential of the model
suggests that a more realistic representation of tidal flow will be
an important component of future, more detailed models.
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Appendix

In this Appendix we discuss the conditions for the homo-
geneous steady state (4) to be positive and stable to spatially

http://ec.europa.eu/fisheries/documentation/publications/factsheets-aquaculture-species/mussels_en.pdf
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homogeneous perturbations. Our aim is to explain the basis for the
condition (5) that we assume to be satisfied by the model para-
meters. Although there have been a number of previous studies of
the model (1) (van de Koppel et al., 2005; Wang et al., 2009; Liu
et al., 2012; Sherratt, 2013; Ghazaryan and Manukian, 2015; Can-
gelosi et al., 2015), none of these papers includes a detailed dis-
cussion of the stability conditions for (4).

Positive values for as and ms requires

δ γ δα> > ( )either A.1

δ γ δα< < ( )or . A.2

Stability to homogeneous perturbations requires >ps qr and
+ <p s 0, where p, q, r and s are the entries in the Jacobian matrix

of the kinetics of (1) at ( )a m,s s , and are given in (7). The first of
these holds if (A.1) applies, but not if (A.2) applies. However (A.1)
is not sufficient for stability because +p s may have either sign.
Fig. A1. (a) A plot of δcrit against α; as explained in the main text of the Appendix, δ δ= cr
σ( )1 (dashed line) and σ( )2 (solid line) against s, for δ either side of δcrit. The insets both

the axes ranges are [ ]0, 1.1 on the horizontal axis, and [ ]0, 0.03 on the vertical axis.
unstable (○); unmarked regions are those not satisfying (A.1). Therefore the regions mark
homogeneous perturbations. Note that for all values of α, the open circles (○) all lie to
Using (7), + <p s 0 if and only if

γδ α δ γ γ δα( − ) > ( − )( − )1 .3 2

We rewrite this inequality as σ σ( ) > ( )1 2 where σ γ δ= / , and

σ δ σ σ α α= = ( − )( − ) ( − ) ( )/ and 1 1 . A.31 2
2 3

There is a (unique) critical value δ α( )crit at which the linear function
σ( )1 touches the cubic σ( )2 . The two insets in Fig. A1a show ex-

ample plots of 1 and 2 when δ is above and below δcrit. The al-
gebraic form of δcrit is very complicated but numerical calculation is
straightforward, and its variation with α is shown in Fig. A1a. When
δ δ α< ( )crit , 1 will be greater than 2 for all α and γ satisfying (A.1).

Fig. A1a suggests that δcrit is an increasing function of α. To
prove this, we first note that (A.1) corresponds to σ α∈ ( ), 1 . On this
interval, σ( )2 has a unique local maximum, at σ α= ( + )2 /3.
Therefore the value s at which 1 and 2 touch when δ δ= crit must
lie between α and α( + )2 /3. But
it is the condition for σ( )1 and σ( )2 to touch. The two insets show example plots of
use α = 1

2
, with δ = 7 (upper left inset) and δ = 4 (lower right inset). For both insets

(b–d) Parameter planes showing the regions in which ( )a m,s s is stable (�) and
ed with filled circles (�) are those in which ( )a m,s s is positive and stable to spatially
the right of δ = 4.
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( )α σ α σ σ α α= ( − − )( − ) − ( − )d d/ 3 2 1 / 12
4

which is <0 for σ α α∈ ( ( + ) ), 2 /3 . Therefore the slope of the linear
function 1 at which it touches 2 must decrease as α increases,
i.e. δ α >d d/ 0crit . It follows that for all α satisfying (A.1),
δ α δ( ) > ( )0crit crit . But when α = 0, σ σ= ( − )12

2 implying that
δ ( ) =0 4crit . Therefore if δ < 4 and (A.1) both hold, then ( )a m,s s is
positive and also stable to spatially homogeneous perturbations.

As a final comment we emphasise that ( )a m,s s may be stable
when δ > 4, but that this requires additional restrictions on α and
γ, beyond (A.1). Fig. 4b–d shows δ–γ parameter planes for three
values of α, with the regions of stability and instability indicated
by solid and open circles respectively; regions not marked by cir-
cles are those in which (A.1) is not satisfied. At the interface be-
tween the closed and open circles, the kinetics of (1) undergo a
Hopf bifurcation, implying temporal oscillations that are not ob-
served in real mussel beds—this is consistent with the fact that
realistic parameter estimates comfortably satisfy (5) (van de
Koppel et al., 2005; Wang et al., 2009).
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