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a b s t r a c t

Spatiotemporal chaos in the complex Ginzburg–Landau equation is known to be associated with a
rapid increase in the density of defects, which are isolated points at which the solution amplitude is
zero and the phase is undefined. Recently there have been significant advances in understanding the
details and interactions of defects and other coherent structures, and in the theory of convective and
absolute stability. In this paper, the authors exploit both of these advances to update and clarify the
onset of spatiotemporal chaos in the particular case of the complex Ginzburg–Landau equation with zero
linear dispersion. They show that very slow increases in the coefficient of nonlinear dispersion cause a
shock–hole (defect) pair to develop in the midst of a uniform expanse of plane wave. This is followed by
a cascade of splittings of holes into shock–hole–shock triplets, culminating in spatiotemporal chaos at a
parameter value thatmatches the change in absolute stability of the planewave. The authors demonstrate
a close correspondence between the splitting events and theoretical predictions, based on the theory
of absolute stability. They also use measures based on power spectra and spatial correlations to show
that when the plane wave is convectively unstable, chaos is restricted to localised regions, whereas it is
extensive when the plane wave is absolutely unstable.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Many spatially extended physical systems exhibit chaotic
dynamics. One model in which such spatiotemporal chaos has
been studied in detail is the (cubic) complex Ginzburg–Landau
equation (CGLE), which arises as the amplitude equation near
a standard supercritical Hopf bifurcation, and which has been
applied effectively to a wide range of physical, chemical and
biological systems [1,2]. In one space dimension, two different
regimes of spatiotemporal chaos occur in the CGLE. In ‘‘phase
chaos’’ the solution amplitude is bounded away from zero, so that
there is long-range phase coherence, and the phase difference
across the whole domain is constant [2–5]. By contrast, ‘‘defect
chaos’’ is characterised by large oscillations in amplitude, including
isolated points (‘‘defects’’) at which the amplitude is zero. At such
points the phase is not defined, destroying conservation of the
overall phase difference [6–8]. Changes in parameter values from
the phase chaos to defect chaos regimes are characterised by a
rapid increase in the density of defects [7,9,10]; in some cases there
is an overlap region (‘‘bichaos’’) in which there is hysteresis in the
defect density.
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The last few years have seen two major advances that are
relevant to these considerations. Firstly there has been significant
progress in understanding of the details and interaction of
coherent structures, including defects, in the CGLE and other
spatially extended systems [11–14]. Secondly, the theory of
convective and absolute stability has been placed on a firm and
more accessible footing [15–19]. In this paper we exploit both of
these advances to update and clarify the onset of spatiotemporal
chaos in the particular case of the CGLEwith zero linear dispersion.

The equation that we study is

∂A/∂t = ∂2A/∂x2 + A − (1 + ic)|A|
2A (1)

where the complex field A is a function of space x and time t ,
and c > 0 is the real valued control parameter. Plane waves are
a fundamental solution form for (1), with the general form A =
1 − Q 2eiQx−iωt , where ω = c(1 − Q 2) and −1 < Q < 1.
In this studywe investigated the dynamics emerging in simula-

tions of (1) under the separated boundary conditions

A = 0 at x = 0, ∂xA = 0 at x = L, (2)

for a suitably large domain length L and random initial conditions
other than at the boundaries (detailed below). These conditions
have been used in the past to investigate the generation of plane
waves in real systems such as oscillatory chemical reactions and
ecological systems [20–23]. Under these boundary conditions,
when c < 1.110, perturbations to A ≡ 0 evolve to a solution
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Fig. 1. (a) In this single simulation of (1), a gradual increase in the control parameter c causes a progression from an effectively uniform state in |A| (a plane wave in the real
and imaginary parts of A, as is shown for Re A in (b)) at c = 1.2 to full spatiotemporal chaos at c = 2. This figure combines the spatial profiles of |A| immediately prior to each
increment in c (each increment was 0.001, and increments were made every 3000 time units). Note that values of |A| ≤ 0.5 are shown in the same colour; this aids visual
clarity, since the regions in which |A| < 0.5 are very localised in space. See Fig. 2 for alternative view of this data, for specific values of c. (b) Exactly the same simulation as
in (a) but instead showing Re A. This simulation took 10 days on an Intel Xenon X5560, 1333 MHz processor, with a 64 bit operating system.

that consists of half of a stationary Nozaki–Bekki hole [24,25],
together with a thin boundary layer near x = L. When the
linear dispersion parameter in the CGLE is zero, the (unique)
stationary Nozaki–Bekki hole has a very simple analytical form:
|A| = |A∗

| tanh(x/
√
2), ∂x arg A =


1 − |A∗|2 tanh(x/

√
2), where

|A∗(c)| = ([1 +

1 + (8/9)c2]/2)−1/2 [22,24]. There is very close

agreement between this formula and the numerical solutions of
(1) and (2), for c < 1.110. Thus the solution is approximately
constant in |A∗(c)| and ∂x arg(A∗(c)), other than very close to the
boundaries. In fact, both the real and imaginary parts of A∗(c)
exhibit plane waves:

A∗
= |A∗

| cos(Φ(x, t)) + i|A∗
| sin(Φ(x, t)) (3)

where Φ(x, t) = K ± x

1 − |A∗|2 − c|A∗

|
2t and K is an arbitrary

constant. We refer the reader to [19,22] for details of this mecha-
nism of plane wave generation.

Beyond c = 1.110, the plane waves selected by our boundary
conditions are no longer stable. In a previous studywe showed that
when 1.110 < c < 1.576 the instability is convective [19], mean-
ing that small perturbations to the selected plane wave solution
grow in time only while simultaneously moving. In simulations
this results in bands of plane waves propagating in alternating
directions, separated by localised defects known as ‘‘shocks’’ and
‘‘holes’’. In contrast, when c > 1.576, the selected plane waves are
absolutely unstable [19], meaning that perturbations to the plane
waves grow pointwise. Correspondingly, simulations show irreg-
ular spatiotemporal dynamics throughout the domain, rather than
plane waves.

This study arose because we observed that when simulating (1)
under separated boundary conditions, starting with various initial
conditions, the dynamics emerging in simulations when 1.110 <
c < 1.576 were highly sensitive to the initial conditions, the
domain length, and the value of c (an example is given in Fig. 1 of
[19]). This led us to explore the effects of increasing c only, without
resetting the initial conditions. Initially we increased c in relatively
large increments and again found the appearance of new defect
solutions at unpredictable locations. We then experimented with
changing the increment size, and found that the use of sufficiently
small increments in c , between time windows of sufficient length
to remove transient dynamics, revealed a clear structure to the
onset of spatiotemporal chaos (illustrated in Fig. 1). In this study,
we therefore set out to understand this emergent structure.

Our work here extends our previous research into the spa-
tiotemporal dynamics observed in simulations of (1) under a vari-
ety of initial and boundary conditions [14,19,27,28]. What makes
this study different is that we focus on explaining one specific
detailed transition to spatiotemporal chaos. In [19] we showed
how to calculate the numerical threshold for absolutely unstable
plane wave solutions to (1) under the same boundary conditions
as studied here. In [27,28] we showed how to calculate the width
of the band of plane waves emerging behind propagating fronts, a
different plane wave generating mechanism, prior to their sub-
sequent transition to spatiotemporal chaos. There, the initial
perturbations to the plane wave bands were introduced by the
propagating fronts.

In the scenario studied here, the perturbations to the complete
solution (potentially including bands of plane waves) are intro-
duced by the increment in the control parameter c. However, as in
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Fig. 2. The same spatial profiles as illustrated in Fig. 1a but for selected values of
c. The grey arrows in a–d indicate the direction of travel of growing perturbations;
thesemove away from holes and towards shocks when 1.110 < c < 1.576 [25,26].

our previous studies, we show that important aspects of the spa-
tiotemporal dynamics observed in simulations canbe explained via
analysis of the so-called ‘‘absolute spectrum’’ of the planewave so-
lution A∗(c) in different frames of reference.

A number of previous studies have investigated the transition to
spatiotemporal chaos in the CGLE [3,5,7,9,10,29–32]. Nevertheless
the structured transition to spatiotemporal chaos that we report is
new, to our knowledge. The key ingredients for this result are the
very slow increase in the control parameter c , and the fact that our
initial and boundary conditions generate a single stationary defect
in the early stages of the simulation. These issues will be discussed
further in Section 4.

In the next section we detail the methods we used to simulate,
analyse and explain the transition to spatiotemporal chaos studied
here. We then describe in detail the transition to spatiotemporal
chaos observed in our simulations before extending existing
mathematical theory to explain the observed transition. Finally,
we discuss our results in the context of the existing literature on
spatiotemporal chaos.

2. Numerical and analytical methods

2.1. Numerical simulations

To simulate (1) we converted it into two coupled partial
differential equations for the real and imaginary components of A,
giving

∂u/∂t = ∂u/∂x2 +

1 − |A|

2 u + c|A|
2v (4a)

∂v/∂t = ∂v/∂x2 +

1 − |A|

2 v − c|A|
2u (4b)

where A = u + iv and u, v ∈ (−1, 1). We simulated (4)
with boundary conditions A = 0 at x = 0 and ∂xA = 0
at x = 1000 using a standard semi-implicit finite difference

method with a space resolution of 0.2 and a time step of 0.001.
These resolutions reproduce theoretically predicted values ofA∗(c)
to 99.9% accuracy [19] and further increases do not affect the
positions or behaviour of the holes or shocks.

All of our numerical simulations began with pseudo-random
initial values of u and v between 0 and 1 at each point in space
(except u = v = 0 at x = 0), and c = 1.1. Simulations
were then run until a stable plane wave solution had filled the
domain (other than close to the boundaries). We then conducted a
series of numerical experiments, starting with this solution as an
initial condition, in which we repeatedly incremented c between
sufficiently long intervals of simulation time for the transient
dynamics to disappear. The length of time required for transients
to disappear is dependent on c and the domain length, and can be
estimated via linear stability analysis of A∗(c) (described below).

The final simulation we chose for subsequent analysis was
conducted on a domain length of 1000 space units in which we
incremented c by 0.001 every 3000 time units. We chose this
domain length as a compromise between being sufficiently large
for spatiotemporal structure to emerge in the simulations and
being sufficiently small to allow simulations to be completed
within reasonable time frames. However, our findings are not
affected by further increases in the domain size, nor by increments
in c below 0.001, with one exception: the formation of the initial
hole–shock pair in the interior of the domain (see details below).

2.2. Characterising spatiotemporal chaos

We used three measures to statistically characterise the
spatiotemporal dynamics observed in Fig. 1: Lyapunov exponents,
Fourier analysis of the time series at each space point, and
the correlation between the dynamics of nearby space points.
Lyapunov exponents indicate whether initially very similar spatial
profiles converge or diverge through time. Divergent trajectories
of initially similar states are one indicator of spatiotemporal
chaos. We did not use Lyapunov exponents to characterise the
spatiotemporal nature of diverging trajectories, as can be done
using ‘‘convective Lyapunov exponents’’ [33–35]; instead we used
the absolute spectrum of A∗(c) for this purpose, as discussed in the
next section.

To calculate Lyapunov exponents we employed the same
methodology as described in [33]; solving Eq. (4) alongside the first
order terms of its Taylor series expansion

δut = δuxx + δu(1 − 3u2
− v2

+ 2cuv)

+ δv(−2uv + cu2
+ 3cv2) (5a)

δvt = δvxx + δv(1 − 3v2
− u2

− 2cuv)

+ δu(−2uv − 3cu2
− cv2) (5b)

where δu and δv are the perturbations to u and v respectively, and
δA = δu + iδv. We selected solutions from Fig. 1 just prior to each
increment in c and used them as initial conditions for simulating
(4) and (5) in parallel, for fixed c. The largest Lyapunov exponent
for Awas then calculated as limt→∞ Λ(A) where

Λ(A) = ln
∥δA(x, t)∥
∥δA(x, 0)∥

and

∥δA(x, t)∥ =

 x=L

x=0
|δA(x, t)|2dx

1/2

(6)

with L = 1000. We chose δu = δv = 10−4ζ (x) as initial perturba-
tions for all points in space, where ζ (x) is a pseudorandomnumber
between 1 and 0, other than at x = 0 where δu = δv = 0.

We used Fourier analysis to characterise the nature of auto-
correlation in time series data at each space point. A wide range
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Fig. 3. An example of the essential and absolute spectra of a plane wave solution
of (1). The example shown is for c = 1.4, with the plane wave being the asymptotic
plane wave of a stationary Nozaki–Bekki hole. In this case the plane wave is
unstable, but absolutely stable: the essential spectrum crosses the imaginary axis,
but the absolute spectrum is confined to the left-hand half of the complex plane.
The spectra were calculated using numerical continuation, following the approach
described in [15,19].

of temporal frequencies is one characteristic of chaotic dynamics,
and the spatial synchrony of these complex temporal dynamics can
provide insight into the spatial component of the disorder. To ob-
tain data for analysis we selected solutions from Fig. 1 just prior
to each increment in c as initial conditions and simulated (4) for
a further 1000 units of simulated time. We also used this data to
analyse the degree of correlation between the time series of dif-
ferent points in space. We characterised the degree of synchrony
using the Pearson product-moment correlation coefficient

ρ =

t=T
t=0


|A|(x1, t) −

A (x1) 
|A| (x2, t) −

A (x2)
T
A(x1)A(x2) (7)

(−1 < ρ < 1) where
A and A are themean and standard devia-

tions of |A| at space point x over T sampled time points (at intervals
of 1 time point), respectively. Here x1 ∈ (100, 900) and x2 ∈ (x1 −

100, x1 + 100). We used T = 1000 for our analysis. A low degree
of synchrony (ρ close to zero) between the time series of nearby
points in space can be an indicator of spatiotemporal chaos. Note
that correlation coefficients such as that defined in (7) have been
used in many previous studies of spatiotemporal chaos (e.g. [7,9]).

2.3. Overview of mathematical theory on the way in which perturba-
tions to the solution A∗(c) grow in space and time

Denote by


L the spectrum of the linearisation of (1) with
separated boundary conditions such as (2) about a plane wave
solution. Then the ‘‘absolute spectrum’’


abs is the set of

accumulation points of


L as L → ∞. The planewave is described
as ‘‘absolutely stable’’ if the absolute spectrum is confined to
the left-hand half of the eigenvalue complex plane; this implies
that there are no perturbations that grow pointwise [16]. The
absolute spectrum differs from the essential spectrum because the
latter corresponds to both perturbations that grow pointwise and
perturbations that only grow while simultaneously moving. Thus
the absolute spectrum lies to the left of the essential spectrum
in the eigenvalue complex plane; this is proved formally in [36].
Fig. 3 shows an example of the two spectra. Plane waves that
are unstable but absolutely stable are known as ‘‘convectively
unstable’’. Detailed discussions of the absolute spectrum are given
in [15,16,19], and examples of other approaches to determining
absolute stability are described in [2,18,37].

We conducted an analysis of the absolute stability of the
solution A∗(c) in moving frames because it has been used

previously to explain the spatiotemporal dynamics observed in
simulations of (1) [19,27,38]. Our analysis here is based upon
linearisation of (1) about the theoretical plane wave A∗(c). This
contrasts with the Lyapunov exponent, which describes the long
term dynamics of small perturbations to (1) via the linearisation of
the entire spatiotemporal solution to (1). Note that in the case of
unstable plane waves, this spatiotemporal solution is typically not
a plane wave: rather it consists either of a series of bands of plane
waves separated by defects, or of spatiotemporal disorder.

Our goal is to calculate the rate of growth of small perturbations
to A∗(c) as a function of their velocity. We begin by rewriting
(1) as two real equations for the amplitude and phase of A,
and replacing the spatial coordinate x with a velocity-dependent
spatial coordinate z = x − Vt , where V is an arbitrary reference
frame velocity. This gives

rt = rzz + Vrz + r(1 − r2) − rθ2
z (8a)

θt = θzz + Vθz − cr2 + 2rzθz/r (8b)

where r = |A| and θ = arg(A). We then linearise these equations
about the plane wave solution A∗(c) (as given by (3)), which has
the form r = |A∗

| and θ = −c|A∗
|
2t ±x


1 − |A∗|2 (0 ≤ |A∗

| ≤ 1).
To leading order, linear perturbations δr(x, t) and δθ(x, t) of this
solution satisfy

δrt = δrzz + Vδrz − 2|A∗
|
2δr − 2|A∗

|δθz

1 − |A∗|2

δθt = δθzz + Vδθz − 2c|A∗
|δr + 2δrz


1 − |A∗|2/|A∗

|.

In the standard way, we look for solutions of the form (δr, δθ) =

(r, θ)eλt+ikz , where r and θ are constants, giving

λr = −k2r + Vikr − 2|A∗
|
2r − 2ik|A∗

|θ

1 − |A∗|2 (9a)

λθ = −k2θ + Vikθ − 2c|A∗
|r + 2ikr


1 − |A∗|2/|A∗

|. (9b)

The dispersion relation for non-trivial solutions of these linear
equations is quadratic in the temporal eigenvalue λ and quartic
in the spatial frequency k. Therefore, for each λ there are four
associated values of kwhich we denote by k1, . . . , k4 with Im k1 ≤

Im k2 ≤ Im k3 ≤ Im k4. To calculate absolute stability for a
given reference frame velocity V we then need to calculate the λ
values associated with so-called ‘‘branch points’’ in the absolute
spectrum [15,19], which are values of λ for which k2 = k3. These
points give the maximum growth rates of perturbations to A∗(c)
moving with velocity V [27], and we denote the corresponding
values of λ and k2 = k3 by λmax(V ) and kmax(V ).

In summary, in order to calculate the maximum growth rates
of perturbations to A∗(c) we solved (9) for a given c , for a
range of reference frame velocities V , allowing us to calculate
the spatiotemporal dynamics of perturbations in the plane wave.
We used these calculations of the growth rates and velocities
of small perturbations to A∗(c) to investigate the widths of the
bands of plane waves between the shock and hole solutions when
1.110 < c < 1.576. In the next section we give an overview of the
computational methods we used to perform these calculations.

2.4. Numerical continuation of the absolute spectrum of A∗(c)

Calculation of the entire absolute spectrum can be done by
numerical continuation of (9). An initial solution is required for
this continuation, and this can be obtained by numerical solution
of the dispersion relation for fixed c and V . Full details of the
calculation are given in [19]. In fact, for our purposes it is sufficient
to determine the most unstable points in the absolute spectrum,
which for (1) are branch points [19]. To calculate these, one
eliminates λ from the dispersion relation and its derivative with
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a b

c d

Fig. 4. Key components of our analysis of the growth rate of perturbations to A∗(c).
(a) A typical example of the relationship between co-moving frame velocity, V and
the real part of the growth rate of perturbations to the plane wave A∗(c), Re λmax;
here c = 1.4. (b) Relationship between c and significant points on the V − Re λmax
curve indicated in (a). Note that the Vdbl and VR curves intersect at c = 1.576, which
is the onset of absolute stability; at that pointVdbl = VR = 0. (c) The black line shows
the relationship between c and the ‘‘doubling distance’’. The grey crosses are our
measured widths of plane wave bands in Fig. 1, rescaled using the grey regression
line in Fig. 8. (d)Maximumgrowth rate of travelling perturbations to the planewave
|A∗

| for different values of c: this is the maximum value of Re λmax for VL < V < VR .

respect to k, giving a fourth order polynomial in k. One then back-
substitutes each of the roots for k to find the associated values
of λ and hence the other two (non-repeated) roots for k of the
dispersion relation. From this, one can determine whether it is k2
and k3 that are the repeated roots, as required for a branch point
(see above). A fuller discussion of this approach is given in [19]. As
an aside, we mention that the fact that the most unstable points
in the absolute spectrum are branch points is a special property of
the CGLE with zero linear dispersion, and does not hold for some
non-zero linear dispersion coefficients (see [15] for an example).

2.5. Definition and calculation of the ‘‘doubling distance’’

For all c ∈ (1.110, 1.576), we find that Re λmax(V ) has a unique
maximum at which it is positive, and roots VL and VR, where
VL < VR < 0 (illustrated in Fig. 4a, b). (A negative velocity
corresponds to a direction of travel from the holes towards the
shocks in our simulations.) This implies that for any velocity V
between VL and VR, there is a linear mode that travels with velocity
V whilst growing, but there are no growing modes for V < VL or
V > VR. At c = 1.576, which is the onset of absolute instability,
VR = 0; this corresponds to the onset of stationary growing linear
modes.

We make the reasonable assumption that an increment in c
applies a perturbation containing all unstable linear modes at all
points in the interior of the domain. For c ∈ (1.110, 1.576),
these modes travel while simultaneously growing. For any given
velocity of travel V , a mode will first double in size after travelling
a distance log(2)V/Re λmax(V ); here ‘‘size’’ refers to the amplitude
of the perturbation in A. We have shown previously [27] that the
velocity V = Vdbl at which this distance is minimised is given
by Vdbl[Im (kmax(Vdbl))] + Re [λmax(Vdbl)] = 0. Note that Vdbl is
different from Vmax (Fig. 4a), the reference frame velocity that
maximises Re λmax(V ); Vmax itself has no particular significance for
our calculations.

We define the ‘‘doubling distance’’ as the shortest distance
travelled by a perturbation to A∗(c) before it doubles in size. This
is given by | log(2)Vdbl/Re λ(Vdbl)| = | log(2)/Im (kmax(Vdbl))| [27]
(see Fig. 4b for an example of Vdbl plotted against c and Fig. 4c
for the relationship between c and the doubling distance that
was used in Fig. 8). Shifts in the positions of shock solutions,
and the formation of new shock–hole–shock triplets, both occur
in response to the perturbations arising from incrementing c .
Specifically, both behaviours occur when linear modes in these
perturbations grow to (different) critical sizes, and hence in both
cases the wider of the two adjacent regions of plane waves is
proportional to the doubling distance.

3. Results

3.1. Dynamics observed in numerical simulations

The transition we studied to spatiotemporal chaos is illustrated
in Fig. 1. At sufficiently low values of c the spatial profile of |A| is
approximately constant away from the boundaries (Fig. 1a), with
the real and imaginary parts of A exhibiting plane waves (Fig. 1b).
This corresponds to the solution A = A∗(c), as described above.
However, at c = 1.255, two defects form within the domain, a
‘‘shock’’ and a ‘‘hole’’, in which |A| is noticeably higher and lower
than the surrounding solution, respectively [2]. Further numerical
experiments with smaller increments in c revealed that the value
of c at which this initial shock–hole formation event occurs is
sensitive to the size of the increment in c.

After the initiation of the first shock–hole pair we observe
a progression of diverging neighbouring shocks and holes,
interspersed with the splitting of shock solutions into new
shock–hole–shock triplets. At around c = 1.576, the shocks are
replaced by regions exhibiting irregular spatiotemporal dynamics,
although the holes persist in roughly evenly spaced locations until
approximately c = 1.9, after which recognisable spatial structures
disappear (Figs. 1 and 5a, b).

Our analyses of the spatiotemporal dynamics at each c value
confirmed that the appearance of spatiotemporal chaos coincides
with the onset of absolute instability of the plane wave solutions
at c = 1.576. When c < 1.255, prior to the onset of hole–shock
pairs in the domain, the largest Lyapunov exponent is zero (Fig. 6b).
Further analysis reveals that the perturbations are ultimately
all convected towards the right hand boundary where they are
absorbed, although this leaves a permanent phase shift in A such
that ∥δA(x, t)∥ asymptotically approaches a constant through time
(Fig. 6a). When 1.255 < c < 1.576 the largest Lyapunov
exponents are also zero (Fig. 6b). Again the perturbations lead to
a permanent change in the phase of A (Fig. 6a). However, in these
cases the perturbations are convected towards their neighbouring
hole solutions before eventually being absorbed. When c > 1.576
the largest Lyapunov exponent is positive (Fig. 6b). In these cases
the initial perturbations increase in size through time at all points
in space (Fig. 6a, b).

Our other statistical analyses of the time series data indicate
that spatiotemporal chaos is initially spatially localised at c =

1.576, eventually becoming spatially delocalised for sufficiently
large values of c. For example, Fig. 5 illustrates spatially localised
chaos when c = 1.6 (at around x = 750 and x = 850),
and spatially delocalised chaos when c = 1.9. Fourier analysis
of the temporal data indicates that when c = 1.9, a wide
spectra of multiple frequencies occurs throughout space—this is
one characteristic of chaotic dynamics (Fig. 5d). However it only
occurs in localised regions when c = 1.6 (Fig. 5c); elsewhere
the temporal dynamics are periodic, with a dominant frequency of
around 0.1. Another characteristic of spatiotemporal chaos is the
rapid loss of correlation in the temporal dynamics of neighbouring
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Fig. 5. Spatiotemporal chaos in |A| changes from spatially localised to global as the
control parameter c is increased from c = 1.6 to c = 1.9. (a) and (b), respectively,
illustrate the contrasting dynamics at these extremes. For clarity we only show a
sub-region of space (500 < x < 900). (c), (d) Log power spectrum (Power) of the
discrete Fourier transform of the time series of |A| for each space point. (e), (f) The
correlation (Pearson correlation coefficient: Corr) between the dynamics in |A| at
each point in space (horizontal axis) and that of neighbouring points within 100
space units proximity (vertical axis).

a

b

Fig. 6. Details of our analysis of the largest Lyapunov exponents for the dynamics
in Fig. 1. (a) Integrals of the perturbation sizes δA, ∥δA(x, t)∥, defined in Eq. (6),
across space through time (black lines) for c = 1.1, c = 1.5 and c = 1.6 (bottom,
middle and top lines, respectively). The grey line indicates ∥δA(x, t)∥ at t = 0when
c = 1.1 (∥δA(x, t)∥ is similar for the other values of c at t = 0). (b) Estimation of
Λ(A) through time (black lines) for c = 1.1, c = 1.5 and c = 1.6 (bottom, middle
and top lines, respectively), according to Eq. (6). The largest Lyapunov exponent is
limt→∞ Λ(A).

space points with increasing separation.When c = 1.9, this occurs
at every point in space; this is indicated by the homogeneous grey
(green online) shading away from ‘‘Distance from x’’ = 0 in Fig. 5f.
(Fig. 5f). However,when c = 1.6, it only occurs in localised regions,
namely the wide grey (green online) vertical lines centred on x ≈

740 and x ≈ 840 in Fig. 5e. Elsewhere the correlation oscillates
between high positive and high negative values as separation is

Fig. 7. The formation of shock–hole solutions is subcritical. (a) If we repeat the
study illustrated in Fig. 1 but instead start at c = 2 and decrease c by 0.001 every
3000 time units then shock and hole solutions persist down to c = 1.2. Note that
the direction of increasing time is down the page in this figure and up the page in
Fig. 1. For clarity we only show a sub-region of space. (b)We took the solution from
Fig. 1 immediately after the first shock–hole–shock triplet had formed at c = 1.324,
located around x = 300 in Fig. 1. We ran this for a further 3000 time units, then
decreased c by 0.001, ran for a further 3000 time units, then decreased c by 0.001
again. The shock–hole–shock triplet persists throughout the simulation. Again, for
clarity we only show a sub-region of space. In both (a) and (b), values of |A| ≤ 0.5
are shown in the same colour; this aids visual clarity, since the regions in which
|A| < 0.5 are very localised in space.

increased, other thanwhen the neighbouring point lies in a chaotic
band (the wide grey (green online) diagonals in Fig. 5e).

3.2. Details of the transition to spatiotemporal chaos

When 1.110 < c < 1.576 the solution A = A∗(c) is
convectively unstable [19], meaning that small perturbations to
the plane wave A∗(c), introduced by the small increment in c ,
grow in time only while simultaneously moving. When c < 1.255,
these perturbations all travel from left to right and are eventually
absorbed by the right-hand boundary. Our results suggest that the
defect solutions form at c = 1.255 because the perturbations
caused by the increment in c become large enough to induce
the formation of a shock–hole pair in the interior of the domain.
Further simulations reveal that this transition is subcritical: if
we terminate the increase in c after initial defect formation
and instead begin to gradually decrease c then the shock–hole
pairs persist. Similar studies show that, beyond c = 1.255,
the branching of shocks into shock–hole–shock triplets is also
subcritical (Fig. 7).

When 1.110 < c < 1.576, perturbations always travel
away from the holes and towards the shocks, as illustrated in
Fig. 2a–d. Our perturbation analyses revealed that shocks move
to a new position when they receive perturbations above a
critical size: smaller perturbations are absorbed. They actually
move via discrete jumps because shock–hole separations are
restricted to a discrete family of possible values [14]. Perturbations
travelling through larger bands of plane waves reach the critical
size at lower values of c than those travelling through smaller
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Fig. 8. The distance between a shock and the furthest adjacent hole (black points)
correlates tightlywith the doubling distance (grey regression line through the black
points; r2 > 0.999). Similarly, the distance between the furthest adjacent hole and
the point at which a shock splits into a shock–hole–shock triplet (black crosses) also
correlates tightlywith the doubling distance (grey regression line through the black
crosses; r2 > 0.999). Our regression analysis excludes explicable outliers (grey
points/crosses). These fall into several categories. (i) A shock is equidistant from
the neighbouring holes (see main text). (ii) A shock and hole solution pair forms
close to the right-hand boundary, which has a stabilising effect on the adjacent
plane wave. (iii) When a shock–hole pair initially forms, the new shock and hole
solutions can interact weakly over relatively short distances [14], causing shocks
to initially prevent the holes moving as far as predicted by our theory. However,
after a few increments in c this interaction loses its relevance [14]. (iv) We also
excluded results for 1.55 < c < 1.576 because we expect our theory, based
on linear stability analysis, to become less accurate close to the absolute stability
boundary at c = 1.576 due to nonlinear effects [27].

bands of plane waves, and the width of the largest neighbouring
region correlates tightly with the ‘‘doubling distance’’ (Fig. 8).
An exception occurs when a shock is equidistant from the
neighbouring holes. The shock is then pushed equally in opposite
directions, and consequently does not move. However, the growth
rate of the perturbations, caused by each increment in c , increases
with c (see Fig. 4) and eventually they grow sufficiently large to
transform the shock into a shock–hole–shock triplet. The values of
c at which new hole solutions form also correlates tightly with the
doubling distance (Fig. 8). These observations suggest that there
are two critical sizes of perturbation: one for the movement of a
shock to a new location, and another (larger) for the transformation
of a shock to a shock–hole–shock triplet.

The value of c at which spatiotemporal irregularities appear
within the solution (c = 1.576) corresponds to the theoretically
predicted value of c at which perturbations to the plane wave
A∗(c) grow pointwise (‘‘absolute instability’’ [15]). Beyond this,
the shocks are replaced by more irregular regions in space,
although holes persist in roughly evenly spaced locations until
approximately c = 1.9, after which recognisable spatial structures
disappear (Figs. 1 and 5a, b). Holes can persist because for c > 1.12
they are known to be ‘‘core stable’’ [39–43]. These references and
other relevant results that we are aware of concern linear stability;
weundertook anumerical study of nonlinear stability. This showed
that for c in the range 1.6–1.9, holes are remarkably robust to
perturbations (Fig. 9). Specifically, we simulated a single hole in
the interior of a relatively small domain with boundary conditions
∂xA = 0 at either end, and subjected it to perturbations of various
sizes. When c < 1.576 we could extract a shock–hole–shock
triplet from the simulation used to produce Fig. 1 and use this
as an initial condition for these simulations. Thus we actually
had half of a shock solution at each domain edge, with a hole
solution in the interior of the domain. For more irregular solutions,
when c > 1.576, we extracted the hole and its adjacent
neighbouring plane wave up to the point in space where the
solution became irregular in time. This judgement was made by

Fig. 9. Hole solutions are very robust to perturbations. Both plots show the
spatiotemporal dynamics of |A| when c = 1.6. In (a) the real and imaginary parts
of A were incremented by 0.1 in the region 20 < x < 25: this has no long term
effect on the hole. In (b) an increment of 0.5 was applied to the same region in the
same way; this was sufficient to move the hole solution. Not included here are the
straightforward analyses we performed to verify that the simulations settled to an
equilibrium state both before and after these perturbations were applied.

Fig. 10. Illustration of ‘‘wobbling’’ hole solutions. We extracted the solution from
Fig. 1 for c = 1.7 and continued simulating (1) for a further 1000 time units. For
clarity we only show a sub-region of space (400 < x < 600).

eye but it was reliable enough to simulate stable individual hole
solutions. Extracting the initial condition in this way and then
simulating under the different boundary conditions introduces a
small initial perturbation. Therefore we initially solved (1) using
these initial and boundary conditions for sufficient time to remove
the resulting transient dynamics. We then perturbed the plane
wave to one side of the hole solution, and observed the subsequent
behaviour (see Fig. 9 for an example). This showed that hole
solutions are very robust to perturbations.

As c increases above 1.576, holes are subjected to a progres-
sively larger onslaught of perturbations following each increment
in c; this results in a ‘‘wobbling’’ of the holes in which individual
hole solutions persist but are visibly mobile (Fig. 10). Eventually
these perturbations become sufficient to engulf the holes. How-
ever, short-lived hole-like structures remain a feature of the result-
ing spatiotemporal chaos [30].

4. Discussion

Our results show that the development of spatiotemporal chaos
is associated with a change in absolute stability, and with an
increase in the density of defects. Neither of these findings are
new. The onset of absolute instability has long been known to
be linked to spatiotemporal chaos, particularly in the context of
hydrodynamics [44–47], and the rapid increase in defect density
at the transition from phase to defect chaos in the CGLE was
established 20 years ago. The essential new feature of our results
is that the defects are stationary. Because of unusual symmetries,
the CGLE has a one-parameter family of holes [48,49]. This family
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is often parametrised by the hole velocity, which is proportional
to the difference in amplitude of the two asymptotic plane waves
[13,22,50]; this proportionality also applies to coherently moving
shock–hole–shock triples. In our setup, new shock–hole–shock
triples form within a uniform expanse of plane waves, and
thus their velocity is forced to be zero. Although holes and
shocks are generic features of many spatially extended oscillatory
systems [26], they are in general mobile, making the onset of
spatiotemporal chaos less clearly defined. Our findings imply that
new insights might be gained by restricting, or controlling for, the
movement of spatiotemporal solutions, such as defects. Our study
also argues for experimental protocols involving slow changes
in a control parameter without resetting the apparatus, allowing
sufficient time for transient dynamics to elapse before the next
parameter increment.

The combination of stationary defects and a very gradual
change in the control parameter has enabled a detailed predictive
study of shockmovement and shock–hole–shock triplet formation,
based on the theory of absolute and convective stability. Increasing
the control parameter causes the initial background state to
become increasingly unstable. Such instability is initially only
convective, and sufficient convective instability leads to the
formation of defects which stabilise the spatiotemporal dynamics.
Our results suggest that the branching pattern of shocks and
holes then arises from the interplay between convectively growing
perturbations in the plane wave and the ability of shocks to absorb
such perturbations, which often involves a translation in space.
After the plane wave has become absolutely unstable it is then the
holes that have a stabilising effect: they can continue to organise
the spatiotemporal dynamics for a limited range of larger control
parameter values.

The results that we have described and analysed are for
boundary conditions A = 0 and ∂xA = 0 at opposite ends
of the domain. The significance of these conditions is that for
low c they generate a half-hole and half-shock at the boundaries,
separated by a uniform expanse of planewave; this is independent
of initial conditions. The transition to spatiotemporal chaos that
we have described does occur with other boundary conditions,
but it requires the specification of particular initial conditions. For
example, for zero flux conditions ∂xA = 0 at both boundaries,
random initial conditions typically evolve to A = 1, corresponding
to spatially homogeneous oscillations of the real and imaginary
parts. However if one imposes an isolated hole at the centre of the
domain, half a shock at each boundary, and the asymptotic plane
wave of the hole elsewhere, the subsequent evolution as c is slowly
increased mirrors exactly that shown in Fig. 1. The same applies
for periodic boundary conditions, although the initial hole must be
located slightly off-centre in order that Re A and Im A satisfy the
required periodicity.

Spatially intermittent chaotic dynamics such as those observed
in our simulations have been studied in other experimental and
mathematical systems [2,29,31,51–57]. For example, studies of
fluid dynamics in simple experimental systems (plane Couette
flow) have generated intermittent turbulent states between re-
gions of laminar flow for particular values of a control parame-
ter [52,53,58,59]. These dynamics appear to be highly analogous to
the intermittent chaotic regions illustrated in Figs. 5a and 10 (for
example, compare these figures with Fig. 3 of [52]).

Our study raises a number of further questions about the tran-
sition to spatiotemporal chaos observed in our simulations. While
we found that the initial formation of shocks and holes is sensitive
to the size of increment in c , we do not understand fully this de-
pendency, nor the mechanism by which shock–hole pairs are ini-
tiated. Moreover, our understanding of the branching pattern of
shock and hole solutions is primarily based on our understanding
of the spatiotemporal dynamics of small perturbations to the plane

wave solution. Extending this analysis to the stability of shock so-
lutions (and potentially also hole solutions) could enable us to ex-
plainmore preciselywhy certain perturbations are absorbed by the
shock solutions, while others result in shock displacement. More-
over, our characterisation of the growth rate of perturbations to
the plane wave (e.g. Fig. 4a) appears to be highly analogous to the
characterisation of small perturbations to generic spatiotemporal
solutions using ‘‘convective Lyapunov exponents’’ (e.g. [33,35]).
The basic difference between these measures is that convective
Lyapunov exponents are a property of the solution as a whole,
rather than just the plane waves between the shocks and holes; a
natural future research direction would be to investigate in detail
the relationships between the two measures. Finally, our analysis
of the spatiotemporal dynamics in the region of parameter space
in which plane wave solutions are absolutely unstable was limited
for brevity. Further analysis is needed to explain the precise roles
played by defect solutions, particularly holes, in spatially organis-
ing the spatiotemporal chaos in that parameter region.
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