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In systems with cyclic dynamics, invasions often generate periodic
spatiotemporal oscillations, which undergo a subsequent transi-
tion to chaos. The periodic oscillations have the form of a wave-
train and occur in a band of constant width. In applications, a key
question is whether one expects spatiotemporal data to be domi-
nated by regular or irregular oscillations or to involve a significant
proportion of both. This depends on the width of the wavetrain
band. Here, we present mathematical theory that enables the direct
calculation of this width. Our method synthesizes recent devel-
opments in stability theory and computation. It is developed for
only 1 equation system, but because this is a normal form close
to a Hopf bifurcation, the results can be applied directly to a wide
range of models. We illustrate this by considering a classic exam-
ple from ecology: wavetrains in the wake of the invasion of a prey
population by predators.

periodic travelling wave | absolute stability | reaction-diffusion |
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W avetrains are a fundamental solution type in spatially
extended oscillatory systems. They were observed in the

Belousov–Zhabotinskii reaction >30 years ago (1), and experi-
mental and theoretical demonstrations of their importance are
now widespread, in applications including hydrodynamics (2–4),
solar cycles (5), chemical reactions (6, 7), cell biology (8), and ecol-
ogy (9, 10). Moreover, wavetrains provide the background state
for many more complicated behaviors, including spatiotemporal
chaos. A striking illustration of this is provided by the invasion
of an unstable equilibrium, where a band of wavetrains can occur
between the invasion front and a region of spatiotemporal chaos
(Fig. 1A). This behavior is associated with the wavetrain being
unstable. Intuitively, the wavetrain is generated by the invasion
process, but at the same time, unstable linear modes are excited.
Immediately behind the front, the amplitude of these modes is
negligible, and the wavetrain is visible; further back, the instabili-
ties have grown larger, eventually dominating the solution at some
distance behind the invasion front. Behavior of this type occurs
in a range of model types including reaction–diffusion equations
(11–13), the complex Ginzburg–Landau equation and generaliza-
tions (14, 15), integrodifferential equations (16), integrodifference
equations (17), and cellular automata (18). The best-studied appli-
cation is the invasion of a prey population by predators (9, 19).
Here, the wavetrain would correspond to spatially organised mul-
tiyear population cycles, which have been observed in a number of
field studies (10, 19). Simulations such as Fig. 1B show that after an
initial increase, the width of the wavetrain band remains constant
as the invasion progresses. The key issue of whether wavetrains
will be observed in applications depends on the value of the band
width, which we calculate. We focus on 1 particular equation sys-
tem, but its generic nature enables our results to be applied directly
to a wide range of models spanning many application areas.

Wavetrains Behind Invasion in a Prototype Model
We develop our method for equations of “λ–ω” reaction–diffusion
form:

ut = uxx + (1 − r2)u − (ω0 − ω1r2)v [1a]

vt = vxx + (1 − r2)v + (ω0 − ω1r2)u. [1b]

This is the complex Ginzburg–Landau equation with a real dif-
fusion coefficient (20). Its kinetics are the normal form of any
oscillatory system of differential equations close to a standard
supercritical Hopf bifurcation, making our calculations directly
relevant to many models with low-amplitude cycles. Eqs. 1 are
most conveniently studied in terms of amplitude r = (u2 + v2)1/2

and phase θ = tan−1(v/u); wavetrain solutions have r = R, a
constant, and θ = (ω0 − ω1R2)t ± (1 − R2)1/2x, and exist for
0 ≤ R ≤ 1. The scenario we consider is local perturbation (near
the left-hand boundary) of u = v = 0, on a large finite domain
with zero Neumann boundary conditions. The resulting dynam-
ics depend only on the parameter ω1; ω0 simply determines the
rotation rate of the phase, and does not affect r or θx. For suit-
able values of ω1 (detailed below), the solution has the form of
an invasive transition wave in r, with spatiotemporal irregular-
ities further back (Fig. 1B). Careful numerical studies suggest
that these irregular oscillations are a genuine example of spa-
tiotemporal chaos (21). Substitution of the travelling wave ansatz
r(x, t) = r̃(x − cinvt), θ(x, t) = θ̃(x − cinvt) + ω0t shows that the
constant values of wave amplitude r̃ and phase gradient θ̃′ behind
the front are uniquely determined, with the wavetrain amplitude
R∗ = [((4ω2

1/c2
inv + 1)1/2 − 1)c2

inv/(2ω2
1)]1/2 (4, 14, 22, 23). When

Eq. 1 is linearized about u = v = 0, r decouples from θ to give
rt = rxx + r, and standard theory suggests that a localized initial
perturbation of u = v = 0 leads to the invasion speed cinv = 2
(4, 22, 24); this is confirmed by numerical simulations. Our objec-
tive is to calculate the width of the region in which r ≈ R∗.
Numerical simulations indicate that once the solution form is
established, this width remains constant as the invasion progresses
(Fig. 1). Some previous studies on the complex Ginzburg–Landau
equation have reported solutions in which a propagating front is
followed by a wavetrain band whose width increases over time
(4, 14). However, this is in fact a transient phenomenon, and
longer-term simulations reveal that once the band width reaches
a certain size, it then remains constant, as for Eqs. 1. Note that
we restrict attention to solution times that are short enough that
the invasion front remains far from the right-hand boundary (for
details of longer term behavior, see ref. 25).

Stability in Moving Frames of Reference
The key to understanding the width of the wavetrain band is to
consider absolute stability (26) when viewed in a frame of refer-
ence moving with a fixed, arbitrary velocity V . That is, we consider
whether perturbations to the wavetrain grow or decay over time
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Fig. 1. A numerical simulation of invasion in Eqs. 1, for ω0 = 3.1, ω1 = 3.0.
At time t = 0, a small perturbation is applied near x = 0 to the unstable
steady state u = v = 0. An invasive wave front spreads across the domain
(at speed cinv = 2), behind which is a wavetrain band of constant width, fol-
lowed by spatiotemporal disorder. (A) u vs x at t = 385. (B) A space–time plot
of amplitude r (darker shading indicates smaller r, 0 < r < 1). The boundary
conditions are ux = vx = 0 at x = 0, 900. Our numerical method is semiimplicit
finite difference, with grid spacing of 0.18 and a time step of 10−3.

when viewed at a fixed point traveling with velocity V . Perturba-
tions that grow but simultaneously propagate at other velocities
may contribute to convective instability in this frame of reference,
but these are not relevant to our calculation. We denote by λmax(V )
the growth rate λ of the most unstable linear mode, with νmax(V )
being the corresponding spatial eigenvalue. Using general theory
of absolute stability (26, 27), we reduce the calculation of these
quantities to the numerical tracking of solutions of a quartic poly-
nomial as parameters in the coefficients vary (see Methods). Fig.
2A illustrates the typical form of λmax(V ). There is a range of veloc-
ities (VL, VR) for which λmax > 0; all perturbations decay in frames
of reference moving with velocities below VL or above VR. Note
that in this figure, VR < cinv, so that all growing perturbations
move away from the invasion front, resulting in a nonzero band
width. One advantage of our method of calculation is that it is
straightforward to monitor VL and VR while varying ω1 (Fig. 2B).
VL = VR at the onset of wave instability, which can be shown ana-
lytically to occur at ω1 = ωstab

1 = 1.0714 (for cinv = 2) (23, 28). As
ω1 increases through ωstab

1 , the behavior behind invasion changes
from an uninterrupted expanse of wavetrain, to spatiotemporal
irregularity behind a wavetrain band. The change in sign of VR
corresponds to the onset of absolute instability in a stationary
frame of reference; we compute this point as ω1 = 1.512658 (for
cinv = 2).

A Formula for the Band Width
Having calculated λmax(V ), we can address the width of the wave-
train band. For this, we require a precise definition of its left-hand
edge, which we take as the first point at which the perturbations
to the wavetrain that are present immediately behind the invasion

front become amplified by a factor F. The value of F is arbitrary,
but we will show that the dependence of the wavetrain band width
on F and ω1 decouples, having the form log(F)W(ω1). We refer
to W(ω1) as the “band width coefficient.” Let (x∗, t∗) be a point on
the invasion front. We make the generic assumption that the most
unstable linear modes are present in the perturbation given to the
wavetrain at such a point. As t increases above t∗, these perturba-
tions will spread out in space and time, growing along all rays x =
x∗+(t−t∗)V with V ∈ (VL, VR) (a selection of such rays is sketched
in Fig. 3). On any such ray, the initial perturbation becomes ampli-
fied by the factor F at time tcrit(V ) = t∗ + log(F)/Re[λmax(V )],
at location xcrit(V ) = x∗ + V log(F)/Re[λmax(V )]. The curve
(xcrit(V ), tcrit(V )) (VL < V < VR) is indicated by the thick solid
line in Fig. 3. The left-hand edge of the wavetrain band occurs
at the point on this curve that is closest to the invasion front
x = x∗ + (t − t∗)cinv, which occurs at V = Vband, where

(Vband − cinv)Re
[
λmax

′(Vband)
] = Re[λmax(Vband)]. [2]

The width itself is given by

x∗ + cinv[tcrit(Vband) − t∗] − xcrit(Vband)

= − log(F)/Re
[
λmax

′(Vband)
]
.

We show in Methods that λmax
′(V ) = νmax(V ), so that Eq. 2 is

(Vband − cinv)Re[νmax(Vband)] = Re[λmax(Vband)] [3]

with the band width coefficient W = 1/Re[νmax(Vband)].

Fig. 2. (A) A typical plot of Re[λmax(V )], the maximum growth rate of per-
turbations to the wavetrain in a frame of reference moving with velocity
V (ω1 = 2, cinv = 2). (B) Plots of VL, VR, and Vband vs ω1. The wavetrain
becomes unstable at ω1 = ωstab

1 ; here VL = VR = Vband. As ω1 is increased,
the range of frame velocities for which the wavetrain is unstable grows, and
Vband increases. At ω1 = ωmax

1 , the Vband curve folds, at Vband = VR = 2,
which is the invasion speed cinv. The “kink” that is visible in the VL curve at
ω1 = 2.20 corresponds to a triple point (see Methods). For ω1 > 2.2, νmax(VL)
has a nonzero imaginary part, whereas for ω1 < 2.2 it is real.
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Fig. 3. A schematic illustration of the argument underlying our calculation
of the width of the wavetrain band. The band width is defined by the point
at which (xcrit(V ), tcrit(V )) is closest to the invasion front, which occurs when
V = Vband.

It is of course entirely expected that W is the reciprocal of the
real part of the spatial eigenvalue; our key result is Eq. 3 for the
frame velocity Vband at which this eigenvalue should be calculated.
The form of Vband(ω1) is plotted in Fig. 2B, and the correspond-
ing width coefficient W is shown in Fig. 4A for a limited range of
ω1. At the onset of instability (ω1 = 1.0714), Vband = VL = VR
and W = ∞. The width decreases with ω1, through the onset of
absolute stability (ω1 = 1.512658). This transition has no particu-
lar implications for the width of the wavetrain band, though it does
alter the behavior behind the band, from a pattern of sources and
sinks to more comprehensive spatiotemporal disorder (29, 30).
Finally, at ω1 = ωmax

1 = 18.72751, Vband reaches the invasion
speed cinv = 2. At this point, VR = 2 also, and the Vband(ω1) curve
folds; there is another branch of solutions of Eq. 3 with values
greater than VR, which has no practical relevance. For ω1 > ωmax

1 ,
perturbations to the wavetrain can actually outrun the invasion,
so that there is no wavetrain band.

To test our predictions, we performed numerical simulations of
Eqs. 1, defining the wavetrain band by the condition that |∂r/∂x| is
below a small, arbitrary threshold. The comparison with our the-
oretical prediction W is extremely good (Fig. 4). Moreover, the
slope of the regression line in this figure is a suitable value for
log(F), which can be used to convert predictions of band width
coefficient to actual band widths in applications. As a further test,
we repeated this comparison using initial conditions in which u and
v decay slowly to zero, rather than being exactly zero away from
the left-hand boundary. This can generate a “pushed” rather than
“pulled” invasive wave (4) with speed cinv > 2, which changes both
the wavetrain amplitude and the band width. Fig. 4 shows that for
cinv = 4 the comparison between theory and simulations is again
extremely good.

Example of Application: Predator–Prey Invasion
The wider significance of our results hinges on the fact that the
kinetics of the λ–ω system (Eqs. 1) are not only the standard proto-
type oscillator but also the normal form of any oscillatory system
near a standard supercritical Hopf bifurcation. This makes our
results applicable to a wide range of models with low-amplitude
cycles across many disciplines. To illustrate this, we consider a
classic ecological example: the invasion of a prey population by
predators, using the standard Rosenzweig–MacArthur model (see
Methods). We do not attempt a detailed ecological investigation—
rather, our objective is to illustrate the ease with which our method

can be applied. To simulate invasion, we use initial conditions in
which a small, localized predator density is introduced into a prey
population at its carrying capacity. This generates an advancing
front of predators, and a corresponding receding front of prey. A
large body of theoretical work has shown that in the case of cyclic
population dynamics, the behavior behind the invasion front con-
sists of spatiotemporal oscillations (13, 31, 32). In some cases,
these are a stable wavetrain; when the appropriate wavetrain is
unstable, more complicated dynamics occur, with a typical exam-
ple shown in Fig. 5. Immediately behind the invasion front, the
population densities are almost constant, at their (unstable) coex-
istence steady state. Behind this, there is a wavetrain band whose

Fig. 4. Comparison of the band width coefficient W with the width of the
wavetrain band in numerical simulations of invasion in Eqs. 1, as ω1 varies.
(A) The crosses and error bars show the mean and standard deviation of the
observed band width at 100 solution times, spaced 1 time unit apart. Black:
initial conditions as in Fig. 1, which give an invasion speed cinv = 2. Grey:
u(x, 0) = v(x, 0) = exp[−(2−√

3)x], which gives cinv = 4. We superimpose the
best-fit regression lines, which are 25.55 W–24.08 (cinv = 2) and 25.18 W–
31.20 (cinv = 4), with regression coefficients 0.9999 and 0.9994, respectively
(n = 1, 000). We expect the slopes of the regression lines to be independent
of cinv, and indeed the error bars show that the slight difference is within the
variation intrinsic to our method of measuring the band width. This method
measures the width of a central region of the wavetrain band but excludes
regions at the edges of the band, giving rise to the nonzero intercepts in the
regression lines. In both cases the values of ω1 are chosen to give (approx-
imately) equally spaced band widths: cinv = 2: 1.39 ≤ ω1 ≤ 2.77; cinv = 4:
2.21 ≤ ω1 ≤ 5.94. These ranges of ω1 provide an effective coverage of the
variation in band width, as illustrated in B, where lines show the predicted
band width coefficients, and crosses show the mean band widths observed
in simulations, rescaled to give equivalent band width coefficients using the
slopes of the regression lines in A. In simulations ω0 = 3, and we define the
observed band width via the condition |∂r/∂x| < 5 × 10−7. This condition
gives a robust measure of band width; the small size of the threshold means
that the resulting values are significantly smaller than (but directly correlated
with) estimates suggested by visual inspection of space–time plots such as Fig.
1B. We estimated the derivative numerically after applying a smoothing algo-
rithm followed by a polynomial fit over a moving window of 9 grid points.
The equations were solved by using a semiimplicit finite difference method,
with a grid spacing of 0.2 and a time step of 10−3. The domain length and
run time were set to ensure that our measured band width data showed no
temporal trends (the initial growth phase of the wavetrain band was omitted
from the band width measurements).

10892 www.pnas.org / cgi / doi / 10.1073 / pnas.0900161106 Sherratt et al.
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Fig. 5. Wavetrain generation in a simulated invasion of a prey population
by predators. We plot prey density as a function of space and time. There is a
receding invasive wave front, behind which the solution settles at the (unsta-
ble) coexistence steady state. A wavetrain band then develops; the wavetrain
is unstable, and destabilises to give irregular spatiotemporal oscillations. As
for the λ–ω Eqs. 1, careful numerical studies suggest that these oscillations are
a genuine example of spatiotemporal chaos (12, 32). The predator dynamics
are directly analogous, with the oscillations of the 2 populations being out
of phase. The initial conditions correspond to a prey-only state everywhere,
except for a small nonzero predator density at the left hand boundary. By
appropriate rescaling (35), Eqs. 4 can be specified by 3 dimensionless parame-
ter ratios, which for this simulation are a/b = 1.3, r/a = 1.2, kh0 = 10.0. The
domain length for the dimensionless spatial coordinate x(r/δ)1/2 is 1,000, and
the solution is plotted for dimensionless times rt between 1,186 and 1,318.
The equations were solved using a semiimplicit finite difference method, with
a grid spacing of 0.5 and a time step of 3 × 10−5.

width remains constant as the invasion progresses, and which is
followed by spatiotemporal chaos (31, 32).

The predator–prey invasion process is different from that stud-
ied for the λ–ω equations; in particular, the prey-only state has no
analogue in Eqs. 1, with u = v = 0 corresponding to a constant
coexistence of predators and prey. However, detailed calculations
show that the behavior behind the initial invasion front corre-
sponds exactly to the λ–ω invasion scenario (33). This is a general
result, not restricted to the particular case of Eqs. 4; effectively, the
leading invasion front leaves the system at the coexistence steady
state and also initiates an invasion of that state in the opposite
direction. This means that close to Hopf bifurcation in the kinet-
ics, the width of the wavetrain band is given by our calculations
for the λ–ω system (Eqs. 1).

The key step in applying our results, both to predator–prey inva-
sion and more generally, is thus to determine ω1 as a function of
the model parameters. This is done by the standard method of
reduction to normal form (34); detailed presentations of this cal-
culation for the Rosenzweig–MacArthur equations are given in
refs. 35 and 36. By combining this with our previous calculation of
the band width coefficient as a function of ω1, we can calculate the
dependency of the width of the wavetrain band on the underlying
ecological parameters. For example, Fig. 6 shows contours of band
width (with exponential spacing) in a key parameter plane. Note
that because they are based on a normal form reduction, predic-
tions such as those in Fig. 6 are valid only as approximations close
to Hopf bifurcation in the local dynamics.

One natural population in which wavetrains have been widely
reported is the field vole (Microtus agrestis) (10, 37, 38). Possi-
ble causes of the cyclic dynamics of this population include their
predation by weasels (Mustela nivalis) (39, 40). The Rosenzweig–
MacArthur model omits a number of factors that are likely to
influence the behavior of any real weasel/field vole interaction,
but nevertheless it represents a useful caricature model, and typ-
ical parameter estimates (35) yield a band width coefficient of
156. It is convenient to express this as the number of wavelengths
in the wavetrain band, which is given by multiplying by our esti-
mate for log(F) and dividing by the wavelength = 2π/(1−R∗)1/2.
This predicts 295 wavelengths in the band, which is much longer

than any practical ecological habitat, suggesting that even though
the appropriate wavetrain is unstable, spatiotemporal disorder
will not be observed after invasion. This conclusion is valid even
after the whole domain has been invaded, for typical (zero flux)
boundary conditions, because wavetrain solutions then undergo
a gradual transition to spatially uniform oscillations. In contrast,
systems in which the prey birth rate is smaller relative to that of
the predator would have a smaller band width, or in extreme cases,
no wavetrain band at all (Fig. 6). Irregular oscillations would then
develop more quickly after invasion, and would persist after the
whole domain had been invaded (25). This illustrates one impor-
tant practical benefit of band width calculations for conducting
experiments and surveys: estimating whether or not the domain
is sufficiently large for irregular spatiotemporal dynamics to be
observed. It is important to note that our results only apply to the
behavior after the invasion of prey by predators. Other scenarios
may generate different behaviors, including spatiotemporal dis-
order, in the model Eqs. 4—for instance, landscape obstacles can
also generate chaos via unstable wavetrains (41). Moreover, some
alternative predator–prey models predict an even wider range of
spatiotemporal phenomena, including “patchy invasion” in which
the invasion process and the transition to chaos are simultane-
ous (9, 42). For the specific case of field voles, field data reveal a
variety of population dynamics, including both regular cycles and
quasichaos (40). A natural extension to our study is to apply the
methods to more realistic models, potentially including the sto-
chasticity that is implicit in both the underlying biology and the
process of data collection.

An important implication of the contours in Fig. 6 is that the
width of the wavetrain band is much more sensitive to variations
in some parameters than others. For instance, in the field vole–

Fig. 6. A contour plot of wavetrain band width as a function of para-
meters for the Rosenzweig–MacArthur predator–prey model (Eqs. 4). The
contour levels have a power law spacing, with band width coefficient W =
2, 4, 6, 16, . . . , 8192. The light shaded region corresponds to stable wavetrains
behind invasion, and there is no wavetrain band for parameters in the
shaded region immediately above the horizontal axis; in such cases, irreg-
ular oscillations develop immediately behind the invasion front. Two specific
predator–prey systems are discussed in Example of Application: Predator–Prey
Invasion, and the corresponding parameters are indicated in the figure by the
square [weasels/field voles: a/b = 1.8, r/a = 1.2 (35)] and circle [zooplank-
ton/phytoplankton: a/b = 3.6, r/a = 2.0 (43)]. The band width coefficients
are calculated for cinv = 2, because it is the “pulled” invasive front that is
relevant in applications such as this (4, 33).
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weasel case, a 5% increase in predator mortality reduces the band
width by just 0.5%, whereas a corresponding increase in prey birth
rate increases the band width by 22%. An even more striking exam-
ple of this nonlinearity is provided by the interaction between
the zooplankton Daphnia pulex and the phytoplankton Chlamy-
domonas reinhardii. To the best of our knowledge, there are no
spatiotemporal data from which wavetrains could be inferred in
this case. However, using estimates of the relevant parameters
(43), we predict that the width of a wavetrain band behind inva-
sion would be extremely sensitive to the estimate of zooplankton
birth rate, with a reduction of only 5.2% sufficient to double the
band width. Such sensitivity has an important general implica-
tion: Major differences in spatiotemporal dynamics may result
from even slight changes in parameter values. For example, a
large body of evidence now indicates that as well as increasing
the frequency of ecological invasions (44), climate change is hav-
ing a significant effect on the demographic parameters underlying
oscillatory ecological systems (45, 46). Our results suggest that
the consequent changes in some spatiotemporal behaviors may
be even more dramatic.

Methods
Calculation of λmax(V ). The key quantity in our calculation of wavetrain
band width is λmax(V ), the maximum growth rate of a linear mode in a
frame of reference moving with velocity V . To determine this, we replace
x by the moving coordinate x − Vt, and then compute “branch points”
in the absolute spectrum (26). We do this via the numerical continuation
approach of Rademacher et al. (27). Briefly, we linearize the equations satis-
fied by r(x, t) and θ(x, t) about the wavetrain, and denote by D(λ, ν; V ) = 0
the dispersion relation for linear modes with temporal and spatial eigen-
values λ and ν, respectively. For given λ, D is a quartic polynomial in ν,
and we label the roots ν1, . . . , ν4 so that Reνi ≥ Reνi+1. The absolute spec-
trum defined in ref. 26 is the set of λ for which Reν2 = Reν3, and the
branch points are the 4 values of λ for which D has repeated roots for
ν. Note that for a branch point, the condition ν2 = ν3 corresponds to the
“pinching condition” of refs. 47, 48, and its instability implies pointwise
growth of perturbations in the comoving frame. In the language of ref. 4,
absolute instability corresponds to a positive value of the linear spreading
speed.

More generally, the absolute spectrum is the accumulation set of eigen-
values in the limit of large domain length under generic separated boundary
conditions. Branch points typically form endpoints of curves of the absolute
spectrum, which can therefore contain λs with a larger real part than any
branch point in the absolute spectrum. However, these would lead to “rem-
nant instabilities,” associated with perturbations reflecting repeatedly off the
domain boundaries (26). Hence, we expect that such an instability would be
irrelevant in the present context. In fact, computations of the full absolute
spectrum (via continuation from branch points, as in ref. 27), for a wide range
of ω1 and V , indicate that for our system, the most unstable point in the
absolute spectrum is always a branch point.

Therefore λmax(V ) can be found simply by calculating the four branch
points, which are the solutions of D(λ, ν; V ) = Dν(λ, ν; V ) = 0, and iden-
tifying which of these are in the absolute spectrum. We numerically continue
these solutions in V , giving λmax and the corresponding spatial eigenvalue
νmax as functions of V . A complication is that the appropriate branch point

can change at “triple points,” when 3 roots of D(λ, ν) have equal real parts;
therefore, and to check Reν2 = Reν3, it is necessary to continue all 4 branch
points and monitor their ν values. We calculate Vband simply by monitoring
the 2 sides of Eq. 3 during the continuation. Moreover, having found Vband

for one value of ω1, continuation in ω1 is straightforward, enabling the plot
in Fig. 2B.

The above procedure is significantly simpler, and more portable, than that
used in the few previous articles we are aware of that compute λmax(V ) for
other systems (49–51); these studies involve continuation of a saddle point of
λ(ν) − Vν in the complex ν plane.

Calculation of λ′
max(V ). The derivative λmax

′(V ) is required for calcu-
lation of the band width, and this can be found very easily. We have
D(λmax, νmax; V ) = 0 for all V , so that at λ = λmax and ν = νmax

Dλλmax
′(V ) + Dνν

′
max(V ) + DV = 0

(subscripts denote partial derivatives). But since λmax and νmax occur at a
branch point, Dν = 0. Therefore λmax

′(V ) = −DV /Dλ. For any reaction–
diffusion system, the dispersion relation satisfies

D(λ, ν; V ) = D(λ − Vν, ν; 0), ⇒ DV = −νDλ.

Therefore λmax
′(V ) = νmax(V ),

Predator–Prey Example. The application of our results to predator–prey
invasion uses the Rosenzweig–MacArthur model

predators
∂p
∂t

=

dispersal
︷ ︸︸ ︷

δ
∂2p
∂x2 +

benefit from predation
︷ ︸︸ ︷
ap · kh/(1 + kh) −

death
︷︸︸︷
bp [4a]

prey
∂h
∂t

= δ
∂2h
∂x2

︸ ︷︷ ︸
dispersal

+ rh(1 − h/h0)
︸ ︷︷ ︸

intrinsic birth & death

− cp · kh
1 + kh︸ ︷︷ ︸
predation

[4b]

(52–54). Here p and h denote predator and prey densities, which depend on
space x and time t. The populations are assumed to have the same disper-
sal coefficient, δ; however, we have shown previously that the “band width
phenomenon” also occurs in this model when the dispersal coefficients are
different (41) or even density-dependent (55). The local population dynamics
depend on the positive parameters a, b, c, r, h0, and k. The prey consumption
rate per predator is an increasing saturating function of the prey density: c
represents the maximal consumption rate, and k reflects how quickly the con-
sumption rate saturates as prey density increases. Parameters a and r denote
maximal per-capita predator and prey birth rates; for predators, this is the
birth rate when the prey density is very high, whereas for prey it is the birth
rate at very low prey density. The per-capita predator death rate is denoted by
b, and h0 is the prey-carrying capacity. For suitable parameter values, the local
dynamics of Eqs. 4 are oscillatory: specifically, there is a standard supercritical
Hopf bifurcation as kh0(a − b) − a − b increases through zero.
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