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Abstract. In semi-arid regions, infiltration of rain water into the soil is signif-
icantly higher in vegetated areas than for bare ground. However, quantitative
data on the dependence of infiltration capacity on plant biomass is very limited.
In this paper, we use a simple reaction-diffusion-advection model to investigate
the effects of varying the strength of this dependence. We begin by studying
the formation of banded vegetation patterns on gentle slopes (“tiger bush”),
which is a hallmark of semi-deserts. We calculate the range of rainfall pa-
rameter values over which such patterns occur, using numerical continuation
methods. We then consider interfaces between vegetation and bare ground,
showing that the vegetated region either expands or contracts depending on
whether the rainfall parameter is above or below a critical value. We conclude
by discussing the mathematical questions raised by our work.

1. Introduction. Water is the limiting resource for plants in semi-arid environ-
ments. In many such ecosystems there is strong evidence that the infiltration of rain
water into the soil is positively correlated with vegetation biomass [6, 20, 33, 48].
On bare ground, much of the water that falls as rain simply runs off, but higher lev-
els of organic matter in the soil, and the presence of roots, increases the proportion
of rain water infiltrating into the soil. This results in a greater water availability,
and thus increased plant growth, when vegetation biomass is larger. This local
facilitation is widely regarded as a key mechanism underlying the vegetation pat-
terning that is common in semi-arid environments (see [1, 35, 48] for review). Such
patterns are typically mosaics on flat terrain and stripes running parallel to the
contours on slopes, and consist of vegetated regions separated by bare ground. Veg-
etation patterns are widespread in sub-Saharan Africa [7, 28, 49], Australia [4, 13],
and Mexico/South-Western USA [29, 30]. The “water redistribution hypothesis” is
that most rain falling on (almost) bare ground runs off to nearby vegetated regions,
where infiltration rates are higher, promoting further plant growth. However, it
is important to note that there are other hypothesised mechanisms for vegetation
pattern formation in semi-arid environments. Most notably, a number of authors
have stressed the role of non-locality of water uptake due to extended root systems,
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either in conjunction with water redistribution (e.g. [17, 25, 52]) or in combination
with local facilitation due to shading (e.g. [3, 26, 27]).

Mathematical modelling has been used extensively to study the water redistribu-
tion hypothesis. The first partial differential equation model was due to Klausmeier
[24]; see [5, 18, 19, 23, 32, 34, 43, 45, 46, 47, 50] for examples of subsequent models.
Klausmeier’s model is expressed in terms of vegetation biomass U(x, t) and water
W (x, t):

∂U/∂T =

plant
growth︷ ︸︸ ︷

k1UWF (U)−

plant
loss︷︸︸︷
k2U +

dispersal︷ ︸︸ ︷
k3 ∂

2U/∂X2 (1a)

∂W/∂T = k4︸︷︷︸
rainfall

− k5W︸︷︷︸
evaporation

− k6UWF (U)︸ ︷︷ ︸
uptake

by plants

+ k7 (∂W/∂X)︸ ︷︷ ︸
flow

downhill

. (1b)

Here k1, . . . , k7 are positive constants and the function F (U) represents the depen-
dence of infiltration on vegetation biomass. As discussed above, there is a large
body of evidence that F (.) is an increasing function in semi-arid ecosystems, but
quantitative empirical data on which the form of F (.) can be based is extremely
limited. (See Figure 4 of [33] for one example of a relevant data set). Therefore
Klausmeier [24] took F (U) = U , on the basis of mathematical simplicity rather than
ecological data. Our objective is to study how model predictions change with the
strength of the dependence of infiltration on vegetation biomass, and we consider
specifically the one-parameter family of functional forms F (U) = Up−1 with p > 1.

Substituting the rescalings

u = Uk
1/p
6 k

−1/p
5 w = Wk1k

−1/p
5 k

−1+1/p
6 x = Xk

1/2
5 k

−1/2
3 t = Tk5

(2)
A = k4k1k

−1−1/p
5 k

−1+1/p
6 B = k2k

−1
5 ν = k7k

−1/2
3 k

−1/2
5 .

into (1) with F (U) = Up−1 gives the dimensionless system

∂u/∂t = wup −Bu+ ∂2u/∂x2 (3a)

∂w/∂t = A− w − wup + ν∂w/∂x. (3b)

The parameters A, B and ν can be most usefully interpreted as corresponding to
rainfall, plant loss (including herbivory) and slope gradient respectively, remember-
ing that they actually depend on a combination of ecological quantities.

We will investigate the way in which the parameter p affects two different types
of solution of (3): spatial patterns corresponding to banded vegetation on slopes
(§2) and interfaces between homogeneous vegetation and bare ground on flat terrain
(§3). In both cases, we will consider how the parameter p affects critical levels of
rainfall at which there are qualitative changes in model solutions, namely the rainfall
levels between which patterns occur, and the rainfall level at which the movement of
interfaces changes direction. Before embarking on these studies, we draw attention
to an important point regarding the parameters of the dimensional model (1): it is
impossible to vary the parameter p while keeping the other dimensional parameters
fixed. This is because when p changes, the values of k1 and k6 must also change, since
their dimensions will change. Therefore it is not meaningful to ask how changing p
affects a critical value of the (dimensional) rainfall parameter k4, since one would
also have to specify how k1 and k6 vary. In the nondimensional model (3), one can of
course investigate how changes in p affect a critical value of A, but the results have
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no direct interpretation in terms of rainfall due to the presence of p in the formula
for A in (2). In view of these considerations, all of our results will be presented
in terms of the changes with p of ratios of two critical values of A. These are the
same as the ratios of the corresponding critical values of the dimensional rainfall
parameter k4.

2. Vegetation patterns on slopes. For all parameter values, (3) has a “desert”
steady state (u,w) = (0, A) that is stable. Steady states with u 6= 0 must satisfy

h(u) ≡ u+ u1−p = A/B (4)

with w = Bu1−p. Now h(u) → ∞ as u → 0 and ∞, with a unique local minimum
at u = umin ≡ (p − 1)1/p. Therefore there are zero or two solutions of (4) when
A is < or > Acrit = Bh (umin) = Bp(p − 1)−1+1/p. Standard linear stability
analysis shows that stability to homogeneous perturbations requires u > umin and
B < (1 + up)/(p − 1). The plant loss parameter B will vary between ecosystems
but estimated values are all less than 1 [24, 34], and we will assume henceforth that
B < 1. Then

u > umin ⇒
1 + up

p− 1
>

1 + up
min

p− 1
=

p

p− 1
> 1 > B.

Thus the steady state with u > umin is stable to homogeneous perturbations, while
that with u < umin is unstable.

We denote the first of these steady states by (us, ws), so that us > umin and
ws = Bu1−p

s . Patterns arise via (us, ws) becoming unstable to inhomogeneous
perturbations; an example of such a pattern is illustrated in Figure 1.

A natural approach to studying the conditions for pattern formation is to linearise
(3) about (us, ws) and then look for solutions proportional to eikx+λt; patterns are
expected when Reλ > 0 for some k ∈ R. This method was used in [38] for the
original Klausmeier model (p = 2), but for general p the dispersion relation Reλ(k)
is intractable. Therefore we must rely on a numerical study, for which we consider
the full nonlinear equations (3).

The advection term in (3b) causes pattern solutions to move in the positive
x direction (uphill). Ecologically, this migration has been the subject of a long
controversy (see pp. 24-26 of [44] for a detailed discussion), but a large body of
field data now supports the uphill migration of vegetation bands [8, 48], resulting
from greater water availability near the upslope edge of a vegetation band than at
the downslope edge. In view of this migration, the appropriate solution ansatz for

patterns is (u(x, t), w(x, t)) = (Ũ(z), W̃ (z)), where z = x− ct with c > 0 being the
wave speed. Substituting this solution form into (3) gives

d2Ũ/dz2 + c dŨ/dz + W̃ Ũp −BŨ = 0 (5a)

(ν + c)dW̃/dz +A− W̃ − W̃ Ũp = 0 . (5b)

Pattern solutions of (3) correspond to limit cycles of (5). We investigated these
solutions using numerical continuation, implemented via the software package auto
[10, 11, 12]. Fixing B, ν and c, we increased A from Acrit until (us, ws) underwent
a Hopf bifurcation in (5). We then followed the resulting limit cycle branch as A
was varied; in all cases, the branch terminates at a homoclinic solution. The results
are most conveniently illustrated by plotting the region within the A–c plane in
which pattern solutions exist, which is bounded by loci of Hopf bifurcation points
and homoclinic solutions. The latter boundary is actually the union of loci of two
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Figure 1. An illustration of a pattern solution of (3), showing
repeated peaks of vegetation biomass u separated by regions of
almost bare ground. There is a corresponding pattern of water
w. The pattern moves in the positive x direction (uphill) at a
constant speed of about 0.9. The equations were solved numerically
on the domain 0 < x < 125 with periodic boundary conditions,
using a semi-implicit finite difference scheme with upwinding for
the convective term. The initial conditions (t = 0) were small
randomly generated perturbations to (us, ws), and the solution is
plotted at t = 8000. The parameter values are A = 2.5, B = 0.45,
ν = 182.5 and p = 2.2.

different homoclinic solutions, which are homoclinic to (0, A) in one case and to
the vegetated steady state with u < umin in the other. Figure 2 shows the pattern
regions for four different values of p, with B = 0.45 and ν = 200 in each case. They
have a characteristic shape, with a wide area topped by a thin “tusk-shaped” part;
a detailed analytical description of the latter, for p = 2, is given in [40, 41, 42].

From the viewpoint of applications, the most significant aspect of Figure 2 is
that the range of values of A over which patterns exist decreases markedly as p
increases. The maximum value of A for which there are patterns corresponds to a
fold in the Hopf bifurcation locus, while the minimum value corresponds to a fold in
the locus of solutions homoclinic to (0, A). We tracked these folds numerically as A,
c and p were varied simultaneously. As discussed in §1, to obtain results that can be
interpreted directly in terms of rainfall variation, it is necessary to calculate ratios
of critical values of A. Therefore in Figure 3 we plot, against p, the values of A on
these two folds divided by the reference value Acrit; recall that this is the minimum
value of A for which (us, ws) exists. Patterns occur for ratios of these critical
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Figure 2. Examples of regions in the A (rainfall) – c (wave speed)
parameter plane in which (5) has limit cycle solutions, which corre-
spond to pattern solutions of (3). The thick curves are loci of Hopf
bifurcations of (us, ws), and the thin curves are loci of homoclinic
solutions. In fact we do not calculate actual homoclinic loci; rather,
the curves are the loci of solutions with a fixed, large period (2000).
The vertical dashed lines show the values of Acrit; for A < Acrit

the steady state (us, ws) does not exist. Limit cycles (patterns)
exist between the thick and thin curves. In fact the pattern region
is slightly larger than this in the “tusk-shaped” part of the pattern
region. Here the thin and thick curves cross; this is visible in the
p = 1.2 case, but is outside the plot region in the other three cases.
In the vicinity of this crossing, the pattern region is bounded on
one side by the locus of a fold in the limit cycle branch; details
of this for the case p = 2 are given in [41]. Computations were
done using the software package auto [10, 11, 12]. The parameter
values are B = 0.45 and ν = 200; the values of p are shown in the
four panels.

rainfall levels lying between the two curves in Figure 3. Intuitively, smaller rainfall
levels are not sufficient to support vegetation, resulting in a full-blown desert, while
sufficiently high rainfall permits spatially homogeneous vegetation. Note that the
rainfall range giving patterns shrinks to zero as p decreases to 1; this is as expected
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Figure 3. An illustration of the rainfall range within which (3)
has pattern solutions, for plant loss B = 0.45. The upper curve is
the locus of folds in the Hopf bifurcation locus, and the lower curve
is the locus of folds in the homoclinic solution locus (see Figure 2).
In both cases we plot the value of A divided by Acrit, which is the
minimum value of A for which steady states with u 6= 0 exist. These
ratios are the same as the ratios of the corresponding critical values
of the dimensional rainfall parameter k4. Computations were done
using the software package auto [10, 11, 12].

intuitively, since a biomass-dependent infiltration rate is an essential ingredient for
pattern formation.

3. Vegetation boundaries on flat ground. We continue our investigation into
the effects of changing the parameter p by considering a second solution type: in-
terfaces between vegetation and bare ground (“desert”) on flat terrain. Therefore
we set ν = 0 and consider solutions of (3) satisfying (u,w) → (0, A) and (us, ws) as
x → ±∞; note that (us, ws) is always stable when ν = 0. Interface solutions of this
type are relevant to desertification [31]. This is a multi-factorial process, but water
redistribution is thought to be a significant contributor [22, 37, 53]. Therefore (3)
is a relevant model, focussing on one specific aspect of a highly complex problem;
for more comprehensive models see for example [16, 22, 36, 54].

Figure 4 shows the solution of (3) for initial conditions consisting of (u,w) =
(us, ws) in one half of a large domain, and (u,w) = (0, A) in the other half. The
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Figure 4. Two examples of moving interfaces between vegeta-
tion and bare ground in the model (3). We plot vegetation
biomass u and water w as a function of space x at times t =
0, 12, 24, 36, . . . , 120 for two values of A, both above Acrit. At t = 0
we impose (u,w) = (0, A) for x ≤ 60 and (u,w) = (us, ws) for
x > 60. In both cases these initial conditions rapidly evolve to-
wards a wave front moving with constant shape and speed. For
A = 1.16 wave moves in the positive x direction, so that the vege-
tated region expands; for A = 0.88 the opposite applies. The other
parameter values are B = 0.45, ν = 200 and p = 3.1, which imply
Acrit ≈ 0.844. The equations were solved using a semi-implicit
Crank-Nicolson scheme, and we applied the Dirichlet boundary
conditions (u,w) = (0, A) at x = 0 and (u,w) = (us, ws) at x =
120.

abrupt initial interface smooths out, and then propagates in either the positive
or negative x direction, depending on the rainfall parameter A; these behaviours
correspond in a very crude way to the expansion and contraction of a desert.

Numerical simulations such as those illustrated in Figure 4 move with constant
shape and speed, after initial transients have disappeared. Therefore we consider

again travelling wave solutions (u(x, t), w(x, t)) = (Ũ (z), W̃ (z)) with z = x − ct.
Our objective is to determine values of the rainfall parameter A for which there
is a transition between travelling wave solutions with c > 0 and c < 0. Such a
critical value of A is characterised by the existence of a stationary interface solution.
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Therefore we set c = 0 (and ν = 0) in the travelling wave equations (5), giving

d2Ũ/dz2 + W̃ Ũp −BŨ = 0

A− W̃ − W̃ Ũp = 0 (6)

from which W̃ can be elimiated:

d2Ũ/dz2 +AŨp/(1 + Ũp)−BŨ = 0 (7)

Multiplying (7) by dŨ/dz and integrating gives
(
dŨ

dz

)2

+ 2A

∫ ξ=Ũ

ξ=0

ξp

1 + ξp
dξ −BŨ2 = K (8)

where K is a constant of integration. We require dŨ/dz = 0 when Ũ = 0 and

Ũ = us, so that K = 0 and

A/B = 1
2u

2
s

[∫ ξ=us

ξ=0

ξp

1 + ξp
dξ

]
−1

. (9)

Since (us, ws) is a homogeneous steady state of (3) with u 6= 0, us satisfies (4), i.e.

us + u1−p
s = A/B . (10)

Equations (9) and (10) together determine values of A for which there is a stationary
interface solution of (3). In practice it is most convenient to combine (9) and (10)
into a single equation for us:

Φ(us) ≡ 2

∫ ξ=us

ξ=0

1

1 + ξp
dξ −

[
us(2 + up

s)

1 + up
s

]
= 0 . (11)

Then

Φ′(us) =
up
s (p− 1− up

s)

(1 + up
s)

2

so that Φ is strictly increasing on (0, umin) and strictly decreasing on (umin,∞).
(Recall that umin = (p − 1)1/p). Moreover Φ(0) = 0, so that Φ(umin) > 0. As
us → ∞, the integral in (11) remains finite, while the term in square brackets
→ ∞, implying that Φ(us) < 0 for sufficiently large us. Therefore (11) has exactly
one solution for us on (umin,∞), and (10) implies that there is exactly one value of
A corresponding to this solution. For this value of A, (6) and (8, with K = 0) then
imply existence and uniqueness of a stationary interface solution, up to orientation
reversal and translation. Figure 5 shows the value of A giving this stationary
interface as a function of p. As discussed in §1, we plot A/Acrit on the vertical axis;
this can be directly interpreted as the ratio of the corresponding critical values of
the dimensional rainfall parameter k4.

4. Discussion. In semi-arid environments, the infiltration capacity of soil is de-
pendent on vegetation biomass. In this paper we have studied the way in which
the strength of this dependence affects the formation of banded vegetation patterns
on slopes, and the movement of boundaries between vegetation and bare ground on
flat terrain. Our key results are Figures 3 and 5; respectively, these figures show
how changes in the strength of the dependence of infiltration capacity on biomass
alter the rainfall range over which patterns occur, and the rainfall level above which
vegetated regions expand into adjacent desert.
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Figure 5. An illustration of the rainfall level at which interfaces
between vegetation and bare ground change their direction of move-
ment (solid curve), calculated by solving (11) for us and then using
(10) to obtain the corresponding value of A. We plot the value of A
divided by Acrit, which is the minimum value of A for which steady
states with u 6= 0 exist. This ratio is the same as the ratio of the
corresponding critical values of the dimensional rainfall parameter
k4. The dashed line is simply A = Acrit.

Our work raises a number of mathematical issues that are natural targets for
future research, amongst which we regard two as being of particular importance.

1. Pattern selection: We have shown that, for a given value of A within the
pattern forming range, patterns exist for a range of values of the wave speed
c. Therefore a key question is: what wave speed is selected by given initial and
boundary conditions? A previous numerical study for the Klausmeier model
(p = 2) suggests that wave selection is history dependent [39] and a detailed
analytical investigation of this is an important challenge for future work. This
issue is closely associated with wave stability; no analytical results on this are
available, but an approximate numerical study is presented in [39].

2. Existence and uniqueness of wave fronts: Numerical simulations of (3) sug-
gest that for any given values of B, p and A > Acrit, with ν = 0, there is
exactly one travelling wave front solution connecting the stable steady states
(u,w) = (0, A) and (u,w) = (us, ws). Figure 6 illustrates the variation with
A of the numerically calculated wave speed, for one pair of B and p val-
ues. Existence and uniqueness of travelling waves in scalar reaction-diffusion
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Figure 6. The variation with the rainfall parameterA of the speed
of interfaces between vegetation and bare ground. Two examples
of such moving interfaces are shown in Figure 4, and the other
parameter values are the same as in that figure. The vertical dashed
line indicates the value of Acrit ≈ 0.844. We solved up to t = 108
on the domain 0 < x < 840, with initial conditions (t = 0) (u,w) =
(0, A) for x ≤ 420 and (u,w) = (us, ws) for x > 420. We applied
the Dirichlet boundary conditions (u,w) = (0, A) at x = 0 and
(u,w) = (us, ws) at x = 840. The wave speed was calculated
via the distance travelling by the front during 60 ≤ t ≤ 108. The
equations were solved using a semi-implicit Crank-Nicolson scheme,
with grid spacing 0.12 and time step 0.002. Detailed numerical
convergence tests show that these give an error in the wave speed
of 1.4 × 10−4 ≈ 0.04% for A = 0.88, and 5.4 × 10−3 ≈ 0.3% for
A = 2.2.

equations with bistable kinetics was proved more than 30 years ago [15]. For
systems, a corresponding general result applies when the diffusion matrix is
diagonal with strictly positive diagonal entries, and when the kinetics are lo-
cally monotone [51, Theorem 1.1 of Chapter 3]. However there are only a very
few results (e.g. [9]) for non-monotone systems. For “degenerate” monotone
systems, in which one diffusion coefficient is zero, there are a number of re-
cent results (e.g. [2, 14, 21]), but no general theory. Our system (3) is both
non-monotone and degenerate, so that proving existence and uniqueness of
travelling waves is a major but important challenge for the future.

Acknowledgments. JAS thanks Yaping Wu (Capital Normal University, Beijing)
for discussions that initiated the work in §3 of this paper.
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