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a b s t r a c t

Density-dependent dispersal occurs throughout the animal kingdom, and has been shown to occur in

some taxa whose populations exhibit multi-year population cycles. However, the importance of

density-dependent dispersal for the spatiotemporal dynamics of cyclic populations is unknown. We

investigated the potential effects of density-dependent dispersal on the properties of periodic travelling

waves predicted by two coupled reaction–diffusion models: a commonly used predator–prey model,

and a general model of cyclic trophic interactions. We compared the effects of varying the gradient of

both positive and negative density-dependent dispersal rates, to varying the ratio of the (constant)

dispersal rates of the two interacting populations. Our comparison focussed on the possible range of

wave properties, and on the waves generated by landscape obstacles and invasions. In all scenarios that

we studied, varying the gradient of density-dependent dispersal has small quantitative effects on the

travelling wave properties, relative to the effects of varying the ratio of the diffusion coefficients.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Periodic travelling waves of abundance have been recorded in
ecological systems exhibiting cyclic multi-year dynamics, for a
wide range of taxonomic groups (Bjørnstad et al., 2002;
Giraudoux et al., 1997; Lambin et al., 1998; Mackinnon et al.,
2001; Moss et al., 2000; Murray et al., 1986; Ranta and Kaitala,
1997; Russell et al., 2005; Tenow et al., 2007; Sherratt and Smith,
2008). A commonly used method for mathematically modelling
such systems is to start with a non-spatial model of a cyclic
ecological system, and then to add random dispersal to each of the
component equations. This assumes that individuals in these
populations move, or diffuse, throughout their environment in
random directions at a specified rate; obviously a major
simplification of dispersal in nature. Such ‘‘reaction–diffusion’’
models predict a variety of spatiotemporal patterns that have
been observed in ecological systems: spatially homogeneous
oscillations, travelling waves (see Fig. 1 for example), invasive
fronts, and irregular spatiotemporal behaviour (Kopell and

Howard, 1973; Murray, 2003; Petrovskii and Malchow, 1999). This
has led to the theory that the periodic travelling waves observed
in ecological systems may be caused by dispersal acting on cyclic
populations.

Travelling waves in ecological systems are commonly char-
acterised by their wavelength (e.g. in km), amplitude (i.e. the
range of population density), speed (km yr�1) or time period (yr).
Note that by ‘‘time period’’ we are referring to the temporal period
of oscillation that would be recorded at a fixed position in space;
this would typically be of 3–10 yr in populations that exhibit
multi-year cycles (Berryman, 2002). Mathematical analysis of
reaction–diffusion models shows that, for a given model with a
specific set of parameters, there is a spectrum of possible wave
characteristics (Kopell and Howard, 1973; Murray, 2003). Fig. 1(a)
illustrates this ‘‘wave family’’ for a commonly used predator–prey
model with a given set of parameters, plotted as wavelength
against time period. In this case, the wave family shown has a
minimum wavelength, with all wavelengths above this being
possible. Infinite wavelengths correspond to spatially homoge-
neous oscillations: these are simply the cyclic solutions (limit
cycle) of the non-spatial predator–prey model.

Any reaction–diffusion model can be simulated with a variety
of different initial conditions, spatial configurations, and bound-
ary conditions, to represent different ecological scenarios. Such
conditions determine whether periodic travelling waves emerge
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in simulations, and the properties of those waves if they do
emerge. From an ecological perspective, the most commonly
studied environmental scenarios for which periodic travelling
waves have been observed are environments with landscape
obstacles (Auchmuty and Nicolis, 1976; Sherratt et al., 2003) and
invasions (Ashwin et al., 2002; Ermentrout et al., 1997; Garvie,

2007; Pearce et al., 2006; Petrovskii and Malchow, 1999; Sherratt
et al., 1997). These two ‘‘wave selection’’ mechanisms give rise to
different members of the wave family (Sherratt, 2001, 2003); this
is illustrated in Figs. 1(b) and (c).

The assumption that an individual’s dispersal is simply a
random diffusive process is obviously a crude simplification. In
reality, dispersal is not simply a rate of movement, but is a
complex process determining the movement of individuals from
one area to another. Dispersal can be conveniently broken into
three stages: emigration, movement between areas, and immi-
gration. An individual’s propensity to emigrate from, and
immigrate into an area, and its behaviour whilst dispersing, can
depend on a wide variety of ecological factors (Ims and Hjermann,
2001; Sutherland et al., 2002), of which the local density of
individuals is one that has been shown to affect the dispersal
behaviour of a wide range of animal taxa (Bowler and Benton,
2005; Denno and Peterson, 1995; Matthysen, 2005).

In general, there is evidence that dispersal rates in all three
stages of the dispersal process can vary positively, negatively, or
not at all with population density. For example, many mammal,
bird and insect taxa exhibit positive density-dependent emigra-
tion (Denno and Peterson, 1995; Matthysen, 2005). This may arise
for a variety of reasons such as competition for food or mates, and
inbreeding avoidance (Bowler and Benton, 2005; Ims and
Hjermann, 2001; Lambin et al., 2001; Sutherland et al., 2002). In
contrast, negative density-dependent emigration rates may be a
general characteristic of territorial species (Lambin et al., 2001;
Matthysen, 2005). This could arise because increasing population
density could lead to an increase in the likelihood of aggressive
encounters, which in turn could result in reduced movement rates
(Lambin et al., 2001; Matthysen, 2005). For immigration rates,
knowledge is lacking for most species, although it has been
found to be negatively density dependent in some studies
(Kuussaari et al., 1996; Rouquette and Thompson, 2007; Smith
and Batzli, 2006).

For cyclic populations, there is little empirical data on dispersal
rates and dispersal propensity. There is widespread evidence that
trophic interactions such as predator–prey, host–parasite, and
vegetation–grazer are important in the dynamics of cyclic
populations (Berryman, 2002), yet the dispersal properties of
the interacting components in these interactions are poorly
understood. It has been generally suggested that long distance
dispersal by certain species may generate spatial synchrony in the
cycles at the landscape scale, with examples being the nomadic
predators in Fennoscandia (Ydenberg, 1987), the canadian lynx
(Schwartz et al., 2002) and the spruce budworm (Royama et al.,
2005). Density-dependence in dispersal is much less well under-
stood for cyclic populations. However, in several studies of cyclic
rodent species it has been shown that emigration rates and
dispersal distances are negative-density dependent (reviewed by
Matthysen (2005)).

Theoretical studies have explored the significance of density-
dependent dispersal for the dynamics of single populations
(Lutscher, 2008), metapopulations (Best et al., 2007; Saether
et al., 1999), trophic interactions (Huu et al., 2008), the stability of
local population dynamics (Amarasekare, 1998; Johst and Brandl,
1997), and the degree of synchrony between populations
connected by dispersal (Ims and Andreassen, 2005; Ylikarjula
et al., 2000). In most cases, these have shown that density-
dependent dispersal can affect the dynamics predicted by such
models, although Ylikarjula et al. (2000) found that the effects of
density-dependent dispersal on population synchrony was largely
dependent on other details included in the model. Similar studies
for cyclic populations are lacking.

In this paper we investigate the effects of density-dependent
dispersal on the properties of periodic travelling waves in cyclic
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Fig. 1. (a) An example of a travelling wave family predicted by a predator–prey

reaction–diffusion model (Eqs. (1a) and (1b) with reaction kinetics (2) and

density-dependent dispersal function (4)). The parameter values are s ¼ 0.15,

m ¼ 0.05, and k ¼ 0.2, Du,max ¼ 100.5, Du,min ¼ 10�0.5 (implying Dv ¼ 1) and

m ¼ �100 (these parameter values are defined in the text). (b) and (c) show

periodic travelling waves arising from two different selection mechanisms in

simulations of the same model as in (a) and, hence, they are selected from the

same wave family; marked with labelled crosses in (a). A landscape obstacle is

assumed in (b), with (u, v) ¼ (0, 0) at the left boundary (simulating an inhospitable

habitat at xo0) and du/dx ¼ dv/dx ¼ 0 at the right boundary. This simulation

started with random initial predator and prey densities. (c) Simulates predators

invading a prey population, with du/dx ¼ dv/dx ¼ 0 assumed at both boundaries.

This simulation started with the prey-only steady state, (u, v) ¼ (1, 0), throughout

the domain except the left boundary, which started with (u, v) ¼ (1, 1). Note that

the invasion front (where prey density sharply declines from (u ¼ 1)) has travelled

to the right of the domain in this scenario. Animations of the dynamics in this

figure, and other figures in this paper, can be generated and explored using the

custom made software tool that is downloadable from http://research.microsoft.

com/ero/biosciences/software.aspx.
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populations. We study a reaction–diffusion model of the popula-
tion dynamics of two interacting populations, of the form

qu

qt
¼

q
qx

DuðuÞ
qu

qx

� �zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{Dens:dep: dispersal

þ f ðu; vÞ
zfflffl}|fflffl{Birth and death

, (1a)

qv

qt
¼ Dv

q2v

qx2|fflfflffl{zfflfflffl}
Dispersal

þ gðu; vÞ|fflfflffl{zfflfflffl}
Birth and death

, (1b)

where t is time, x is space, u and v are the component population
densities, and Du, Dv are the dispersal rates. We assume that one
population (v) disperses randomly at a constant rate and the other
(u) disperses at a potentially density-dependent rate. In this study,
therefore, dispersal is simply an individual’s rate of movement in a
uniform habitat. We do not model emigration or immigration as
independent processes, nor do we model patchy environments.
The use of diffusion as a model for biological dispersal was
recently reviewed by Codling et al. (2008). We also assume that, in
the absence of dispersal, Eqs. (1a) and (1b) predict population
cycles.

Current mathematical theory does not enable us to determine
analytically the precise member of the wave family selected by
wave selection mechanisms, except in a few special cases (Drover
and Ermentrout, 2003; Ermentrout et al., 1997; Sherratt, 1994,
2003). In view of this, we addressed our question using two basic
approaches. We first studied the effects of density-dependent
dispersal on the shape of the whole travelling wave family (such
as shown in Fig. 1(a)), since any wave must be selected from this.
This is important because, for example, the incorporation of
density-dependent dispersal could cause waves of a given time
period, for example 9 yr in the cyclic larch budmoth populations
in Switzerland (Turchin, 2003), to have much shorter or longer
wavelengths than is the case for density independent dispersal.
Such differences may determine whether periodic travelling
waves can be detected in the field; for example wavelengths
comparable with or greater than the size of the area being
sampled would be detected as environmentally homogeneous
oscillations. Secondly, we studied waves that arise in simulations
of our reaction–diffusion model, as a result of two different
wave selection mechanisms: a landscape obstacle and predator-
invasion (Fig. 1(b, c)).

Our key variable of interest will be the gradient with which
dispersal rate changes as a function of population density. To
obtain a measure of the relative effects of the gradient of density-
dependent dispersal, we compare our results to the effects of
assuming constant dispersal rates and varying their ratio. This
ratio is likely to vary considerably among different ecological
interactions predicting multi-year cycles. If, for example, we
assume that Eqs. (1a) and (1b) model consumer-resource inter-
actions (e.g. predator–prey, host–parasite), where u is the
resource (e.g. prey) and v is the consumer (e.g. predator), then
the dispersal ratio Du/Dv could be quite different depending on the
interaction being modelled. For mammalian predator–prey inter-
actions, for example, terrestrial predators are likely to move at
least one or two orders of magnitude faster than their prey
(Brandt and Lambin, 2007), corresponding to dispersal ratios
(Du/Dv) of much less than 1. One extreme is a plant–herbivore
interaction (Massey et al., 2008), for which the dispersal ratio is
zero. Dispersal rates are typically more similar to each other in
aquatic systems (Hauzy et al., 2007), and in host–parasite
interactions (Moss et al., 2000). An example of a cyclic population
in which the resource (prey) moves faster than the consumer
(predator) occurs in the larch budmoth–parasitoid interaction in
the European Alps (Baltensweiler et al., 1977; Peltonen et al.,

2002); here the dispersal ratio is greater than 1. A mathematical
investigation into the effects of varying the dispersal ratio (Du/Dv)
on periodic travelling wave properties was recently conducted by
Smith and Sherratt (2007), who found that this ratio can have
considerable effects on the travelling wave properties. These
provide a natural comparison for our study of the effects of
varying the gradient of density-dependent dispersal.

2. Methods

2.1. The specific population models

The functions f and g in Eqs. (1a) and (1b) are commonly
referred to as the ‘reaction kinetics’. These could be taken from
any two-taxon continuous time population model that predicts
population cycles (see Turchin, 2003 for several examples). We
consider two commonly used forms of these functions. The first is
a predator–prey model (Rosenzweig and MacArthur, 1963;
Turchin, 2003), with

f ðu; vÞ ¼ uð1� uÞ �
uv

uþ k
, (2a)

gðu; vÞ ¼
suv

uþ k
� mv, (2b)

where u and v are the densities of prey and predators, respectively,
m is the predator death rate, s is the prey to predator conversion
rate, and k is the half-saturation constant in the rate of prey
consumption by predators. These equations have been non-
dimensionalised so that their parameters have no units; see
Appendix A for the equations in dimensional form. In these re-
scaled equations, prey population density can vary between 0 and
1. Throughout this study we fix s ¼ 0.15, m ¼ 0.05, and k ¼ 0.2.
These parameter values were not derived from any specific
ecological system. With these kinetics and parameter values,
Eqs. (1a) and (1b) have three unstable spatially uniform steady
states: one is where both populations are zero ((u, v) ¼ (0, 0)), one
is prey-only ((u, v) ¼ (1, 0)), and one is predator–prey coexistence
((u, v) ¼ (us, vs) ¼ (0.1, 0.27)). For these equations, we assume that
it is the prey population that could potentially move at a density-
dependent rate. This assumption is most relevant to scenarios in
which predators are prey-limited, so that their populations never
reach densities where crowding would affect their dispersal
behaviour. This assumption is also commonly made to justify
the lack of density-dependence in the rate of change of the
predator population (Turchin, 2003).

The second set of reaction kinetics we consider are

f ðu; vÞ ¼ ð1� r2Þu� ðw0 �w1r2Þv, (3a)

gðu; vÞ ¼ ð1� r2Þvþ ðw0 �w1r2Þu, (3b)

where r ¼ (u2+v2)1/2, o0 ¼ 1.5 and o1 ¼ 0.5. Eqs. (1a) and (1b)
with these kinetics are commonly referred to as being of
‘lambda–omega’ type (Kopell and Howard, 1973). We chose the
lambda–omega equations because they are the most general
representation of two-taxon interactions that generate population
cycles. In fact, they predict the dynamics of all systems modelled
by Eqs. (1a) and (1b) when the population cycles are of low
amplitude relative to their mean; mathematically, the kinetics are
the normal form of a standard Hopf bifurcation (Hagan, 1982).
The predictions from these equations are therefore a ‘‘control’’
with which to compare the results of scenario-specific equations,
such as the predator–prey equations studied here. The lambda–
omega equations have an unstable spatially uniform steady state
at (u, v) ¼ (us, vs) ¼ (0, 0), and when the dispersal rates are
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constant and equal they predict identical (but out of phase) spatial
and temporal dynamics for both population components.

2.2. The density-dependent dispersal function

We use a logistic form for the shape of the density-dependent
dispersal function, Du(u):

DuðuÞ ¼ 10^
log10ðDu;maxÞ � log10ðDu;minÞ

1þ expðmðus � uÞÞ
þ log10ðDu;minÞ

� �
(4)

where Du,max and Du,min are the maximum and minimum dispersal
rates, respectively. We assume that the population density at the
inflexion point of the logistic relationship is us, the unstable
equilibrium value of prey in the presence of predators (us ¼ 0.1) in
the case of reaction kinetics (2), or simply the unstable
equilibrium value of u (us ¼ 0) in Eqs. (3a) and (3b). Fig. 2 gives
plots of Eq. (4) for the two different sets of reaction kinetics and
for different values of m. Note that m ¼ 0 corresponds to constant
dispersal rates, m40 corresponds to positive density-dependent
dispersal, and mo0 corresponds to negative density-dependent
dispersal. Note also that at highly positive or negative values of m,
the density-dependent dispersal relationship becomes similar to a
step function.

2.3. Parameter ranges

In this study, we are interested in the effects of increasing or
decreasing the gradient of density-dependence in the dispersal
rate (parameter m in Eq. (4)) from m ¼ 0 (constant dispersal rate),
on the predictions of Eqs. (1a) and (1b). We studied m in the range
shown in Fig. 2 (�100pmp100), whilst fixing Du(us) ¼ Dv ¼ 1,
Du,max ¼ 10^(0.5), and Du,min ¼ 10^(�0.5). This means that the
dispersal rate of u can potentially fluctuate above and below that
of v. We made this decision for parsimony but we have also
performed investigations in which Du is always less than, or
always greater than, Dv, as is likely to be the case in certain
ecological systems, and found the same general results as those
reported here. Note that the ratio Du(u)/Dv cannot vary by more
than one order of magnitude. This represents extreme variation in
the dispersal rates as a function of density, based on the literature
cited in Bowler and Benton (2005), Denno and Peterson (1995)
and Matthysen (2005).

To obtain a relative measure of the effects of varying m, we
compare our results to the effects of assuming constant dispersal
rates (m ¼ 0) and varying their ratio, a ¼ Du(us)/Dv between 0.01

and 100. For the predator–prey equations, this would therefore
translate as the prey moving a hundred times slower or faster
than the predator, respectively. Whilst more extreme ratios may
exist for some ecological systems, as detailed in the Introduction,
we restricted ourselves to this range as it captures the general
effects of varying a in our chosen equations, and is certainly
sufficient to enable an effective comparison between variations in
a and m. Note that for the lambda–omega kinetics, since the
equations are symmetric about u ¼ 0 and there are no differences
in the dynamics of u and v, any effects of varying m or a will be
symmetrical about m ¼ 0 or a ¼ 1, respectively. These parameter
choices mean that we are comparing variation of Du(u)/Dv by up to
one order of magnitude (centred on Du(us)/Dv ¼ 1) with variation
in a ¼ Du(us)/Dv of four orders of magnitude (when m ¼ 0). We
made this choice in order to focus on biologically plausible
parameter ranges.

2.4. Numerical analysis of travelling wave families, and spatial

simulations

We used the software package AUTO (Doedel, 1981) to analyse
the travelling wave families predicted by Eqs. (1a) and (1b) for our
different reaction kinetics and parameter ranges. One of the
specific purposes of this software is to analyse families of periodic
solutions to ordinary differential equations, into which Eqs. (1a)
and (1b) can be converted. The methodology we used is standard
and we refer the reader to Appendix B for more details of this
analysis.

To conduct the spatial simulations of Eqs. (1a) and (1b), we
assume one-dimensional space throughout, and use standard
numerical techniques to solve the equations. The important
differences between the scenarios are in the initial and boundary
conditions.

In the landscape obstacle scenario we started with random
initial values of u and v, drawn from a uniform distribution
between 1 and 0. For each simulation, we fixed (u, v) ¼ (0, 0) at
the left boundary and du/dx ¼ dv/dx ¼ 0 at the right boundary.
This ‘‘pins’’ the population densities to zero at the left boundary,
simulating an uninhabitable obstacle in the environment or a
habitat boundary with a hostile environment (Cantrell et al.,
1998), as illustrated in Fig. 1(b).

For the predator invasion scenario, it only makes sense to use
the predator–prey reaction kinetics (2) as there is no analogue of
the prey-only state in the lambda–omega equations. In this
scenario we started with the prey-only steady state, (u, v) ¼ (1, 0),
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throughout the domain except at the left boundary, which started
with (u, v) ¼ (1, 1). We assumed du/dx ¼ dv/dx ¼ 0 at both
boundaries. These conditions result in an invasion by the predator
population into the (unstable) prey-only steady state. This can
result in periodic travelling waves behind the invasion front, as
illustrated in Fig. 1(c). Animations of the numerical dynamics
illustrated in this paper can be generated and explored using the
custom made software tool that is downloadable from http://
research.microsoft.com/ero/biosciences/software.aspx.

3. Results

Throughout this section we will focus on the wave properties
of wavelength and time period as these are typically the easiest
solution measures to obtain from empirical data. We rescaled
these quantities to aid comparison between the results, and with
other systems. We set the minimum predicted wavelength, in the
absence of density-dependent dispersal and when the dispersal
rates are equal, to one, and scaled all other measured wavelengths
relative to this. We also set the time period predicted by the non-
spatial models (or spatially homogeneous oscillations) equal to
one and scaled all measured time periods relative to this.

Fig. 3 contrasts the effects of varying the gradient of density-
dependent dispersal (m) and the ratio of the constant dispersal
rates (a), on the shape of the family of travelling wave solutions.

The simplest case to interpret is when gradient of density-
dependent dispersal (m) is varied in the lambda–omega scenario
(Fig. 3(a)). Here the wave families appear very similar for all
values of m. The range of possible time periods for all three wave
families varies from a maximum of one, corresponding to the limit
cycle of the non-spatial model, down to about 65% of the limit
cycle value. So, for example, if the unscaled non-spatial model
predicted 10-yr cycles, then the spatial model could predict cycle
periods down to 6.5 yr.

In comparison to varying the gradient of density-dependent
dispersal in Eqs. (1a) and (1b) with the lambda–omega kinetics
(3), varying the ratio of the diffusion coefficients (a) has a larger
effect (Fig. 3(b)). Generally, varying a alters the point at which the
wave family starts, and the range of possible time periods. When
a ¼ 100 (with m ¼ 0), for example, the minimum time period is
about 88% that which would be predicted by the non-spatial
equations, rather than about 65% when a ¼ 1. As a further
example, the wavelength associated with a time period of 0.95
when a ¼ 100 is double that when a ¼ 1 (wavelength ¼ 6 versus
wavelength ¼ 3, respectively).

When the underlying kinetics are the predator–prey equations,
we observe larger effects of varying both the gradient of density-
dependent dispersal (m) (Fig. 3(c)) and the ratio of the dispersal
rates (a) (Fig. 3(d)), than in the lambda–omega equations. In
general, the range of possible time periods for the predator–prey
equations is larger than in the lambda–omega equations, with the
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and k ¼ 0.2. a ¼ 1 in (a) and (c). m ¼ 0 in (b) and (d). Dispersal parameter values are Du,max ¼ 100.5 and Du,min ¼ 10�0.5, implying that Dv ¼ 1. To aid interpretation we have

rescaled both wavelength and time period, which simply relabelled the axes. We divided the time period by the time period predicted by the non-spatial models

(corresponding to infinite dispersal rates in Eqs. (1a) and (1b)), and we divided the wavelength by that at the origin of the wave family when m ¼ 0 and a ¼ 1.
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minimum time period sometimes being less than 50% that of the
non-spatial model. Increasing m above zero (positive density-
dependence) alters both the minimum time period of the wave
family and the time periods associated with given wavelengths.
Therefore, for a given cyclic predator–prey system exhibiting
periodic travelling waves, the measured period of oscillation could
depend on the degree of density-dependent dispersal in the prey
population. However, the effects of varying the gradient of
density-dependent dispersal are small compared to the effects
of varying a (Fig. 3(d)). For example, with no density-dependent
dispersal (m ¼ 0), and equal dispersal rates (a ¼ 1), a time period
of 0.8 corresponds to a wavelength of almost 6. With strong
negative density-dependent dispersal (m ¼ �100) and equal
dispersal rates the same time period corresponds to a wavelength
of around 9, a 50% increase (Fig. 3(c)). In contrast, with no density-
dependent dispersal and a ¼ 100 such a time period corresponds
to a wavelength of about 17, a 183% increase (Fig. 3(d)). The
general result from these analyses is that the gradient of density-
dependent dispersal (m) does affect the travelling wave families,
but that these effects appear to be small compared to the effects of
assuming constant dispersal rates and varying their ratio (a).

Fig. 4 contrasts the effects of varying the gradient of density-
dependent dispersal (m) and the ratio of the diffusion coefficients
(a), on the wavelengths of waves picked out in simulations of
Eqs. (1a) and (1b), for our two wave generation mechanisms.

To aid in the interpretation of the data, we have added lines
corresponding to the minimum wavelength of the wave family
(thick lines), and the wavelengths of waves of fixed time period
(thin lines). These lines present information already given in
Fig. 3, but in Fig. 4 they are shown for continuously varying m or a.

Again we observe in Fig. 4 that the effects of the gradient of
density-dependent dispersal (m) are less than the effects of
varying the ratio of the dispersal rates (a). The first thing to notice
for the lambda–omega scenarios is that all of the waves selected
by landscape obstacles (indicated by filled circles) have time
periods that are close to that of the limit cycle of the non-spatial
model (as indicated by the contour lines in Fig. 4(a, b)). In
contrast, there is more variation in the wavelengths of the
selected waves (Fig. 4(a, b)). Therefore, if these equations
modelled two field systems that differed in the ratio of their
dispersal rates (a) or the degree of density-dependent dispersal
(m) only, then differences in the dynamics would be more
apparent in the spatial data than from non-spatial time series.
The wavelengths of waves picked out by landscape obstacles are
smallest (wavelength ¼ 4) when there is no density-dependent
dispersal (m ¼ 0) and the dispersal rates are equal (a ¼ 1).
Increasing or decreasing m increases the wavelength but this
variation visibly saturates, at around |m| ¼ 20, and at a wave-
length of about 7 (a 75% increase). In contrast, increasing or
decreasing a from 1 causes the predicted wavelength to
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Fig. 4. Comparison of varying the gradient of density-dependent dispersal m, between �100 (strong negative density-dependence) and 100 (strong positive density-

dependence) with varying the ratio of constant diffusion coefficients a ¼ Du/Dv (m ¼ 0) between 0.01 and 100, on the wavelengths of periodic travelling waves (symbols)

picked out by simulations of Eqs. (1a) and (1b). Note that a determines Du and Dv, because our non-dimensionalization implies that DuDv ¼ 1. (a) and (b) have

lambda–omega kinetics (3) and (c) and (d) have predator–prey kinetics (2). a ¼ 1 in (a) and (c). m ¼ 0 in (b) and (d). Parameter values are the same as those detailed in the

legend to Fig. 3. Filled circles denote the wavelengths of periodic travelling waves resulting from simulations with a landscape obstacle. In all of these cases the waves travel

away from the obstacle edge (as demonstrated in Fig. 1(b)). Triangles denote the wavelengths of periodic travelling waves resulting from predator invasion into a prey

population. Upwards pointing triangles denote waves moving to the left, in the opposite direction to the invasion front, and downwards pointing triangles denote waves

moving to the right. Superimposed on the graphs are contour lines of fixed time period (thin lines), and the minimum wavelength (thick lines) from the analysis of the

travelling wave families. To aid interpretation we have rescaled both wavelength and time period, which simply relabelled the axes, as detailed in the legend to Fig. 3.
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continually increase, with the highest recorded wavelengths
(wavelength ¼ 20, a 400% increase) occurring at the smallest
and largest values of a (|a| ¼ 100).

In the predator–prey equations, the wavelength and time
period of waves picked out by simulations vary more than in the
lambda–omega equations (circles and triangles in Figs. 4(c)
and (d)). Furthermore, for some parameter values, waves are
picked out with time periods that are considerably less than
those predicted by the non-spatial model (some less than 50%,
as indicated by the time period contour lines). As for the
lambda–omega equations, we observe that for both mechanisms,
as the gradient of density-dependent dispersal (m) is varied
from zero, the effects on the properties of the selected waves
visibly saturates at around |m|E20. Again for both selection
mechanisms reducing m from zero increases the wavelength of
selected waves from around 3 and 7 at m ¼ 0, to around 4 and 8 at
m ¼ �100, in the landscape obstacle (circles) and predator
invasion (triangles) scenarios, respectively. Increasing m from
zero has the opposite effect; with wavelength decreasing to 2 and
4 at m ¼ 100. Note that waves selected by predator invasion
(triangles) always produce higher wavelength and time period
waves than those produced by zero-boundary conditions (circles;
Fig. 4(c, d)). This illustrates that variation in travelling wave
properties may be due to a different wave selection mechanism, as
well as differences in the ratio and density-dependence of the
dispersal rates.

As in the lambda–omega equations, the wavelengths of
waves selected by the landscape obstacle in the predator–prey
equations increase with variation in the ratio of the dispersal rates
(a) away from one (other than a small dip near a ¼ 0.1; circles in
Fig. 4(d)). In this case, however, variation in wavelength is
accompanied by appreciable changes in the predicted time period.
For example, when there are equal dispersal rates (a ¼ 1) the
landscape obstacle selects a wave with a wavelength of just
over 2, with a time period of 60% that of the non-spatial model,
whereas when the prey moves 100 times faster than the predator
(a ¼ 100), the predicted wavelength is about an order of
magnitude larger (over 20) and the time period is closer to the
limit cycle of the non-spatial model (87%). For the predator
invasion scenario, varying a affects both wavelength and wave
direction (upwards and downwards pointing triangles in Fig. 4(d)
correspond to waves travelling to the left and right, respectively);
note that in all of our landscape obstacle simulations (circles),
the predicted waves travel to the right, away from the landscape
obstacle. When ao0.8, invasions generate low wavelength
waves, moving in the direction of the invasion front (downwards
pointing triangles), whereas when a41 invasions generate higher
wavelength waves moving in the opposite direction to the
invasion front (upwards pointing triangles). This illustrates two
key points: that the ratio of the dispersal rates (a) can also
affect the wave direction, and that in some regions of parameter
space the wave properties can be very sensitive to changes in the
ratio of the dispersal rates. For example changing a from 1 to 0.5
changes the waves generated by predator invasion from having a
wavelength of about 7, moving away from the invasion front,
to a wavelength of about 2 moving towards the invasion front
(Fig. 4(d)).

4. Discussion

The key message from our results is that incorporating density-
dependent dispersal does did not dramatically affect the predicted
spatiotemporal dynamics of our model cyclic populations: it has
only a limited effect on both the shape of the wave family and the
waves arising from two specific wave selection mechanisms.

In particular, the effects are generally much less than those arising
from variation in the ratio of the diffusion coefficients. However,
these conclusions do not imply that density-dependent dispersal
will not have an important role on the spatiotemporal dynamics
observed in biological systems. For example, if the observed
wavelength is at the limit of what it is possible to detect in the
field then density-dependent dispersal may be the difference
between detection or not.

Readers with a particular system in mind should assess
whether the magnitudes of the effects shown in our study would
be significant for their own study system. First of all though, it is
important to bear in mind that the results presented here only
apply to the kinetic equations studied and the results may well be
quite different for another system. However, taking as a specific
example the cyclic larch budmoth–parasitoid interaction (Turchin,
2003), if this could be modelled using our predator–prey
equations (with or without accounting for likely changes in plant
quality; see Turchin, 2003) then we would expect the ratio of
their dispersal rates to be especially important in the observed
wave properties, and although we have no knowledge of
density-dependence in the dispersal rates, we would expect
density-dependence in the dispersal rates to be less important
(Fig. 3(c, d)). In this example, one would have to be careful in
interpreting a non-spatial model that predicted cycles of the same
period as those observed in the field (9-yr cycles in this case,
(Turchin, 2003)). This is because our results on wave families
predict that in a spatial context, periods as low as 4 yr are possible.
However, the difference between the spatial and non-spatial
scenarios may be much less than this, depending on the ratio of
the dispersal coefficients and on the wave selection mechanism.
For example, if the dispersal rate of the larch budmoth was 100
times more than that of its parasitoid (a ¼ 100), and the waves
were generated by a landscape obstacle, then the selected wave
would have a time period closer to the limit cycle of the kinetics
(Fig. 4(d)). Effects of differing dispersal rates on the spatiotempor-
al dynamics of larch budmoth populations were indeed found by
Bjørnstad et al. (2002) and Johnson et al. (2006) in their spatial
tri-trophic models of the larch budmoth, parasitoid, and habitat
quality interactions. In particular, Johnson et al. (2006) found that
the dispersal rates of the larch budmoth and their parasitoid
influenced the dominant period of the population cycles. From
their results, it is clear that both the ratio and the product of
the dispersal rates affect the predicted time period (see their
Fig. 2(b)). In reaction–diffusion models such the one we studied
here, changing the product of the dispersal rates is simply
equivalent to rescaling the spatial coordinate, resulting in no
qualitative changes to the predicted dynamics. However, in the
discrete space and time model studied by Johnson et al. (2006)
this is no longer true, and they find an effect of changing both the
ratio and the product of the dispersal rates. Our study highlights
that different wave selection mechanisms can also influence how
the dispersal rates affect the resulting wave properties (compare
Fig. 2(b) in Johnson et al. (2006) with our Fig. 4(d), for example). It
would therefore be informative to know whether there are
plausible alternative wave selection mechanisms operating in
the larch budmoth system, and whether modelling them would
alter the predictions of the Johnson et al. (2006) model. As a
general point for future modelling studies, it would be instructive
for those modelling periodic travelling waves in cyclic populations
to note how the time period in their simulations is affected by
adding space to their models, as done here and by Johnson et al.
(2006).

Many previous models of population dynamics have assumed
discrete, rather than continuous, units for space or time. In the
larch budmoth system discussed above, for example, the non-
spatial dynamics are typically modelled using discrete time
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equations (Turchin, 2003), and some studies have represented
space using a coupled-map lattice (Bjørnstad et al., 2002; Johnson
et al., 2004, 2006). Using such a modelling framework, Bjørnstad
et al. (2002) found that different spatiotemporal behaviours
emerged for different ratios and magnitudes of the larch budmoth
dispersal rates when there was a gradient in habitat quality. It is
therefore important to question the effects of the modelling
framework used (discrete space and time versus continuous space
and time) relative to the differences in the biological details.
Would the results reported in our study differ significantly if we
modelled space and time as discrete units? We do not know the
answer but, based on previous comparisons of modelling frame-
works (Sherratt et al., 1997), we predict that, whilst such changes
would probably quantitatively affect our findings, our overall
conclusions would remain unchanged. One advantage of discrete
time is that it implicitly incorporates annual forcing. When
interpreting time period predictions from continuous time
models, it should be remembered that annual forcing will
typically constrain time period to be a whole number of years;
mathematically, the population cycles are entrained with the
annual forcing. Explicit inclusion of such forcing is a natural area
for future study (see preliminary work by Webb and Sherratt,
2004).

One omission from our results is how wave stability changes
along the wave family. Unstable waves typically develop into
irregular spatiotemporal oscillations, whereas stable waves
persist over large domains and long times. We have performed a
detailed stability analysis to determine how wave stability varies
along the travelling wave families and this showed that the
boundary between stable and unstable travelling waves (on
infinite domain lengths) is affected by both the gradient of
density-dependent dispersal (m) and the ratio of the diffusion
coefficients (a). This analysis also confirmed that a few of
the waves selected in our simulations are in fact unstable.
However, in these simulations the instabilities only became
apparent on very large domains, behind a large region (at least
ten wavelengths) of apparently stable waves (see Fig. C.2 in
Appendix C for an example). It seems unlikely that ecological
systems exist with habitats that are sufficiently large and
unbroken to allow the detection of wave break up after, say, 10
wavelengths have been generated (behind the invasion front or
the landscape obstacle). Therefore, although the stability informa-
tion is of mathematical interest, its ecological implications are
limited. It is conceivable however that the effects of density-
dependent dispersal on travelling wave stability may be more
important if we had modelled different ecological interactions
(host–parasite, vegetation–grazer) or used different parameters,
and we provide the results of our stability analysis in Appendix C
for information.

This study adds to the body of theoretical results on the
potential consequences of density-dependent dispersal on
population, and metapopulation, dynamics, and provides a
theoretical underpinning for future studies investigating more
realistic scenarios. Taken together, the findings from these
studies and our own could support the exclusion of density-
dependent dispersal from general modelling studies of population
dynamics unless quantitative precision for specific systems is
important. However, it is plausible that density-dependent
dispersal, even in the way we have modelled it here, could
still dramatically affect the model predictions for other sets of
reaction kinetics. Our findings argue for conducting more studies
into the importance of different dispersal properties on the
spatiotemporal dynamics of populations, and argue strongly
against using non-spatial models to predict the temporal
dynamics of populations where there is evidence of periodic
travelling waves in abundance.
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Appendix A. Non-dimensionalization of the predator–prey
model

The predator–prey model we use was introduced by Rosenz-
weig and MacArthur (1963) and is commonly used as a standard
predator–prey model in theoretical ecology (Turchin, 2003). In
fully dimensional form the spatial version of these equations can
be written as

qN

qT
¼

q
qX

DNðNÞ
qN

qX

� �
þ k1N 1�

N

k2

� �
�

k3NP

N þ k4
, (A.1a)

qP

qT
¼ DP

q2P

qX2
þ

k5k3NP

N þ k4
� k6P, (A.1b)

where N and P are the prey and predator population sizes (units:
individuals), respectively, DN and DP are the prey and predator
dispersal rates (km2 yr�1), respectively, k1 is the maximum prey
per-capita growth rate (yr�1), k2 is the prey carrying capacity
(individuals), k3 is the maximum per capita killing rate (yr�1) of
prey by predators, k4 is the half-saturation constant in the rate of
prey consumption by predators (individuals), k5 is the conversion
efficiency of prey eaten to predators (a proportion), and k6 is the
predator death rate (yr�1). We then use the rescalings

N ¼ uk2; T ¼ t=k1; X ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D0=k1

q
,

DNðNÞ ¼ DuðuÞD0,

DP ¼ DvD0; P ¼ vk1k2=k3; k4 ¼ kk2,

k5 ¼ sk1=k3; k6 ¼ mk1.

These give the spatial predator–prey equations used in our
study. For the dispersal rate scaling D0 (km2 yr�1),
D0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DPDNðNSÞ

p
, where NS is the value of N at the coexistence

steady state; this implies Dv ¼ 1/Du(us).

Appendix B. Numerical analysis of travelling wave families

We first re-write Eqs. (1a) and (1b) as

qu

qt
¼ DuðuÞ

q2u

qx2
þ
qDuðuÞ

qu

qu

qx

� �2

þ f ðu; vÞ, (B.1a)

qv

qt
¼ Dv

q2v

qx2
þ gðu; vÞ (B.1b)

with the same definitions as in the main text. The standard way of
analysing travelling wave solutions of Eqs. (B.1a) and (B.1b) is to
replace space and time by one coordinate that moves along with
the periodic travelling wave. Mathematically, the appropriate
conversion is to use the travelling wave coordinate z ¼ (x/c)�t,
where c is the wave speed. This gives

ðDuðUÞ=c2ÞU00 þ D0uðUÞðU
0=cÞ2 þ U0 þ f ðU;VÞ ¼ 0, (B.2a)

ðDv=c2ÞV 00 þ V 0 þ gðU;VÞ ¼ 0, (B.2b)
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where U(z) ¼ u(x, t), V(z) ¼ v(x, t), and prime denotes d/dz. This
fourth-order system of ordinary differential equations predicts
stationary wave forms in the co-moving frame. Eqs. (B.2a) and
(B.2b) can then be written as a system of four first-order ordinary
differential equations in the standard way

U0 ¼ A, (B.3a)

A0 ¼ ð�c2=DuðUÞÞðAþ D0uðUÞðA=cÞ2 þ f ðU;VÞÞ, (B.3b)

V 0 ¼ B, (B.3c)

B0 ¼ ð�c2=DvÞðBþ gðU;VÞÞ. (B.3d)

Steady-state solutions to this system are of the form (U, A, V, B) ¼
(us, 0, vs, 0), with (us, vs) being the spatially uniform steady-state
solutions of Eqs. (B.1a) and (B.1b) that give rise to stable limit
cycles through a Hopf bifurcation. Standard linear analysis of Eqs.
(B.3a)–(B.3d) about these steady states reveals that the local
stability of these steady states changes at a Hopf bifurcation wave
speed cHopf. These steady-state solutions are generally stable for
speeds below cHopf but unstable for speeds greater than cHopf. This
Hopf bifurcation point corresponds to the origin of the travelling
wave families and can be calculated analytically (we omit the
calculation here for brevity).

Using the software package AUTO (Doedel et al., 1991a, b;
Doedel, 1981) we can track the family of travelling wave solutions
arising from cHopf in Eqs. (B.3a)–(B.3d) and study changes in the
wave family shape caused by varying parameter values. AUTO is a
software tool partly designed for continuation and bifurcation
problems in ordinary differential equations. In this study, we use
it for continuation. In other words, we use it to locate a periodic
solution (a periodic travelling wave) to Eqs. (B.3a)–(B.3d), and
then track how the properties of that periodic travelling wave vary
as we gradually change the equation parameters. We first use
AUTO to compute the eigenvalues for Eqs. (B.3a)–(B.3d), with a
given set of reaction kinetics and (U, A, V, B) ¼ (us, 0, vs, 0), for
increasing c through cHopf. This allows AUTO to detect cHopf. We
then use AUTO to continue along the wave family arising from
cHopf, for increasing c. We also use AUTO to label solutions of given
time periods along the family. We can then perform continuations
from these labelled points to track how the properties of waves of
a given time period vary with a or m. A detailed example of the
use of AUTO for calculating travelling wave families for pre-
dator–prey reaction–diffusion equations accompanies a recent
review of periodic travelling waves in cyclic populations by
Sherratt and Smith (2008), and is available at http://www.ma.
hw.ac.uk/�jas/supplements/ptwreview/index.html.

Appendix C. Analysis of travelling wave stability

We also used AUTO to calculate the stability of travelling
wave solutions, for which the methodology is considerably
more complicated. Our approach is identical to that used by
Smith and Sherratt (2007) and is described in general terms by
them and in much more detail by (Rademacher et al. (2007);
see also Sandstede (2002)). The recent review of periodic
travelling waves in cyclic populations by Sherratt and Smith
(2008) also includes a detailed example of using AUTO to
calculate wave stability for predator–prey reaction–diffusion
equations (available at http://www.ma.hw.ac.uk/�jas/supplements/
ptwreview/index.html). However we give a broad overview here.

We wish to study whether small perturbations to periodic
travelling wave solutions of Eqs. (B.1a) and (B.1b) will grow or
decay. If they decay then the wave is locally stable, and if they
grow then the wave is unstable. Strictly, it is ‘‘essential stability’’

that we are determining; other types of stability can be more
relevant on finite domains (see Sandstede and Scheel, 2000). The
standard approach to studying such stability is therefore to
linearise Eqs. (B.2a) and (B.2b) about the periodic travelling wave
solutions and then study their eigenvalues. However, rather than
discrete eigenvalues, we are concerned with unbounded domains,
for which there is an infinite spectrum of eigenvalues (Radema-
cher et al., 2007; Sandstede, 2002). Our intention is therefore to
calculate this spectrum; if any eigenvalues have positive real part
then we infer that the wave is (essentially) unstable. We consider
perturbations of the form

uðz; tÞ ¼ UðzÞ þ elt ūðzÞ, (C.1a)

vðz; tÞ ¼ VðzÞ þ elt v̄ðzÞ, (C.1b)

where jūj5jUj, jv̄j5jV j, l is an eigenvalue and t is time; recall that
(U, V) is the periodic travelling wave solution. Substituting these
solutions into Eqs. (B.1a) and (B.1b) and performing a Taylor
expansion gives the eigenfunction equations

lū ¼ DuðUÞū
00
þ D0uðUÞ½ūU00 þ U0ū0� þ D00uðUÞū

0
ðU0Þ2

þ cū0 þ ūf u þ v̄f v, (C.2a)

lv̄ ¼ Dvv̄00 þ cv̄0 þ ūgu þ v̄gv (C.2b)

with boundary conditions ūð0Þ ¼ ūðLÞeig and v̄ð0Þ ¼ v̄ðLÞeig. Here
the subscripts on f and g denote their first derivatives with respect
to u or v, and L is the wavelength. Boundedness requires that
perturbations do not grow or decay in magnitude over each
wavelength. However, there is no constraint on the phase
change of the perturbation over a wavelength. Thus the appro-
priate boundary conditions are ūð0Þ ¼ ūðLÞeig and v̄ð0Þ ¼ v̄ðLÞeig,
where g can take any value between 0 and 2p (Sandstede,
2002). We need to obtain the eigenvalues for all possible phase
shifts g.

Stability analysis proceeds by first calculating eigenvalues
corresponding to eigenfunctions that are periodic over one
wavelength (g ¼ 0), by discretising in z to give a (large) algebraic
eigenvalue problem; we consider only eigenvalues with an
appropriately large real part. The spectrum is then computed in
AUTO by continuation of the real and imaginary parts of these
eigenvalues as g is increased from 0 to 2p. The continuation must
be done starting separately from each of the eigenvalues
calculated for the g ¼ 0 case.

Using this technique we can identify critical points in the wave
family (such as a critical wavelength) at which the wave stability
changes. In all cases we studied, wave stability changes through
an Eckhaus instability (Rademacher et al., 2007; Tuckerman and
Barkley, 1990). This means that the dominant perturbation grows
monotonically in time, rather than having the form of growing
oscillations. Mathematically, this is convenient as it allows us to
perform numerical continuations in the gradient of density-
dependence (m) and the ratio of the diffusion coefficients (a) to
see how the position of the stability boundary varies. Specifically,
we differentiate Eqs. (C.2a) and (C.2b) twice with respect to g. This
gives a system of coupled differential equations that includes the
second derivative of the real part of the eigenvalue, zeros of which
define Eckhaus points. We numerically continue the locations of
these zeros to trace the stability/instability boundary for periodic
waves. Further details of this procedure are given in Rademacher
et al. (2007).

Using these techniques, we found that both the gradient of
density-dependence (m) and the ratio of the diffusion coefficients
(a) influence the location of the stability boundary. We illustrate
this in Fig. C.1, which is identical to Fig. 4 except that the stability
information is also included. For the lambda–omega equations all
waves picked out by zero-boundary conditions lie in the region of
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stable waves. However, for the predator–prey equations some
selected waves are unstable. In Fig. C.2 we give one example of the
spatiotemporal dynamics of an unstable case. Spatiotemporal
irregularities develop behind a large region of what visually
appears to be stable waves. This behaviour is typical of the
unstable waves that occur in our simulations. As mentioned in the
main text, it seems unlikely that ecological systems exist with

sufficiently large domains (habitats) to allow the detection of
wave break up behind a large region of travelling waves.
Therefore, although the stability information is of mathematical
interest, its ecological implications are limited in these scenarios.
However, the methods described here may be useful in models of
other systems that predict unstable waves, which rapidly decay
into spatiotemporal irregularities.
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Fig. C.1. Comparison of the effects of varying the gradient of density-dependent dispersal m, between �100 (strong negative density-dependence) and 100 (strong positive

density-dependence) with varying the ratio of constant diffusion coefficients a ¼ Du/Dv (m ¼ 0) between 0.01 and 100, on the wavelengths of periodic travelling waves

(symbols) picked out by simulations of Eqs. (1a) and (1b). Note that a determines Du and Dv, because our non-dimensionalization implies that DuDv ¼ 1. The figure is exactly

as in Fig. 4 of the main text except that here the results of the stability analysis are included, with stable waves lying within the grey shaded region and unstable waves lying

within the white region above the thick black line. This line is the boundary of the region in which periodic travelling waves exist. Note that for the predator–prey equations

some selected waves lie in the unstable region. In these cases, spatiotemporal irregularities develop behind a large region of waves, see for example Fig. C.2.
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Fig. C.2. Unstable periodic travelling waves arising from a landscape obstacle (at x ¼ 0) in a simulation of Eqs. (1a) and (1b) with predator–prey reaction kinetics (2). The

boundary conditions are (u, v) ¼ (0, 0) at the left boundary (simulating the edge of an obstacle, or of an inhospitable habitat) and du/dx ¼ dv/dx ¼ 0 at the right boundary.

This simulation started (at t ¼ 0) with predator and prey densities chosen randomly from a uniform distribution between 0 and 1. Parameter values are s ¼ 0.15, m ¼ 0.05,

and k ¼ 0.2, Du,max ¼ 100.5 and Du,min ¼ 10�0.5 (implying Dv ¼ 1). We also assume strong positive density-dependent dispersal, m ¼ 100, corresponding to the right-most

circle in Fig. C.1(c).
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