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Many natural populations undergomulti-year cycles, and field studies have shown that these
can be organized into periodic travelling waves (PTWs). Mathematical studies have shown
that large-scale landscape obstacles represent a natural mechanism for wave generation.
Here, we investigate how the amplitude and wavelength of the selected waves depend on the
obstacle size.We firstly consider a large circular obstacle in an infinite domain for a reaction–
diffusion system of ‘l–u’ type. We use perturbation theory to derive a leading order
approximation to the wave generated by the obstacle. This shows the dependence of the
wave properties on both parameter values and obstacle size.We find that the limiting values
of the amplitude and wavelength are approached algebraically with distance from the
obstacle edge, rather than exponentially in the case of a flat boundary.We use our results to
predict the properties of waves generated by a large circular obstacle for an oscillatory
predator–prey system, via a reduction of the predator–prey model to normal form close to
Hopf bifurcation. Our predictions compare well with numerical simulations.We also discuss
the implications of these results for wave stability and briefly investigate the effects of
obstacles with elliptical geometries.
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1. Introduction

Many natural populations are cyclic with multi-year oscillations in population
density. In recent years, attention has focused on the possibility of a spatial
component to these oscillations, and a number of spatio-temporal field studies
have shown that they are organized into periodic travelling waves (PTWs).
Examples include field voles in Northern UK (Lambin et al. 1998; MacKinnon
et al. 2001) and in Fennoscandia (Ranta & Kaitala 1997), red grouse in
Northeast Scotland (Moss et al. 2000) and larch budmoth outbreaks in the
European Alps (Bjørnstad et al. 2002; Johnson et al. 2004). PTWs are a generic
solution type in self-oscillatory systems, and in the case of oscillatory reaction–
diffusion equations, there is a large body of literature spanning the last three
decades (e.g. Kopell & Howard 1973; Ermentrout 1981; Ermentrout et al. 1997;
Romero et al. 2000; Blowey & Garvie 2005; Garvie 2007). In particular, any
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oscillatory reaction–diffusion system has a one-parameter family of PTWs, with
wave speed, wavelength or amplitude being possible parameters. In the context
of the PTWs seen in ecological field data, there are two central questions to be
addressed by mathematical models. Firstly, what is the underlying mechanism
that drives the system to PTWs rather than, say, spatially homogeneous
oscillations? And secondly, which member of the PTW family is selected by this
mechanism?

Sherratt et al. (2002, 2003) have shown that a natural potential mechanism for
PTW generation is the presence of large-scale landscape features for which the
appropriate boundary conditions are of Dirichlet type. For PTWs generated in
this way in real ecological systems, a critical issue is the effect of obstacle size on
wave selection. Sherratt et al. (2003) performed a numerical study of this for one
particular cyclic predator–prey model, showing that wavelength decreased with
obstacle size, approaching a limiting value as the size tended to infinity. Our
objective in this paper is a systematic study of this size dependence. We consider
the following reaction–diffusion system of ‘l–u’ type

vu=vt ZV2uCð1Kr2ÞuKðu0Ku1r
2Þv; ð1:1aÞ

vv=vt ZV2vCðu0Ku1r
2ÞuCð1Kr2Þv; ð1:1bÞ

with u0 and u0Ku1 having the same sign. The amplitude rZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2Cv2

p
. These

equations are the normal form of an oscillatory reaction–diffusion system with
scalar diffusion near a supercritical Hopf bifurcation, and as such our results can
be expected to generalize to a wide range of oscillatory reaction–diffusion
systems. In ecological applications, the variables u and v reflect the deviation of
population densities from a coexistence steady state; hence u and v can be
positive or negative. PTW solutions of (1.1a) and (1.1b) have been studied
extensively since their first description by Kopell & Howard (1973). The wave
family has the simple form

u Z r� cos q0G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kr�2

p
xCðu0Ku1r

�2Þt
h i

; ð1:2aÞ

v Z r� sin q0G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kr�2

p
xCðu0Ku1r

�2Þt
h i

; ð1:2bÞ

where the amplitude r � lies between 0 and 1.
The simplest context in which to consider the effect of obstacle size on PTW

generation is a circular obstacle in an infinite domain. Provided that the initial
conditions have circular symmetry, the whole solution will do too, and will
satisfy

vu=vt Z v2u=vx2Cð1=xÞvu=vxCð1Kr2ÞuKðu0Ku1r
2Þv; ð1:3aÞ

vv=vt Z v2v=vx2 Cð1=xÞvv=vxCðu0Ku1r
2ÞuCð1Kr2Þv; ð1:3bÞ

where x (R0) is the distance from the centre of the obstacle. The two terms with
spatial derivatives in (1.3a) and (1.3b) come from converting the spatial diffusion
terms in (1.1a) and (1.1b) to polar coordinates.
Proc. R. Soc. A (2008)
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Figure 1. A space–time plot of the solutions of the l–u equations (1.1a) and (1.1b) for a circular
obstacle. We plot u as a function of distance from the centre of the obstacle, with the vertical
separation of the solutions proportional to the time intervals. The parameter values are u0Z2 and
u1Z0.8 and the obstacle radius XZ20. Details of the numerical method are given in appendix C.

367Effects of obstacle size on PTWs
Defining the obstacle radius as X, we consider the boundary condition uZvZ0
at xZX. In ecological applications, this would correspond to populations being
fixed at a coexistence steady state. Such a condition can be appropriate
in situations where there is an abrupt change in habitat; a full discussion of this is
given in §3. For numerical solutions, we also need a boundary condition at
xZxN, a suitably large domain radius, and we use uxZvxZ0. Numerical
solutions of (1.3a) and (1.3b) subject to these boundary conditions show ‘target
pattern’ waves throughout the domain, except for a thin region close to the
xZxN boundary (figure 1); the waves can move either towards or away from the
obstacle, depending on the parameters u0 and u1. Close to the obstacle, the wave
properties are influenced by their curvature, but at large values of x the waves
are essentially linear, and thus the amplitude at large x represents a simple
means of comparing solutions for different values of the obstacle radius X. Our
numerical solutions show that the wave amplitude decreases as a function of X
(figure 2). As X/0 the amplitude approaches 1, corresponding to spatially
homogeneous oscillations (the wavelength/N); this is the behaviour that would
develop when there is no obstacle. Conversely as X/N, the amplitude
approaches a limiting value that we denote by a. Note that the generation of
PTWs in solutions such as that illustrated in figure 1 depends crucially on the
Dirichlet boundary condition at the obstacle edge. Altering this to a Robin
condition, for example, leads to a different PTW being selected (Sherratt
submitted), while for a zero-flux (Neumann) condition, the long-term behaviour
is spatially uniform oscillations.

The results illustrated in figure 2 mirror those reported by Sherratt et al.
(2003) for a cyclic predator–prey model, suggesting that this variation in wave
properties with obstacle size may be a general feature of oscillatory reaction–
diffusion systems. In practice, the waves generated by small obstacles are not of
interest in applications, since their wavelengths would be large compared with
typical ecological domain sizes. For example, parameter estimates for the
interaction between field voles (Microtus agrestis) and weasels (Mustela nivalis)
suggest that linear obstacles generate a periodic wave of wavelength
Proc. R. Soc. A (2008)
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Figure 2. An illustration of the variation in PTW amplitude with obstacle size for the l–u
equations (1.1a) and (1.1b). We have solved (1.3a) and (1.3b) numerically on a large domain. The
long-term behaviour consists of target pattern waves moving away from the obstacle (illustrated in
figure 1). Far away from the obstacle these waves are essentially linear, i.e. PTWs. In the figure, we
plot the amplitude of these PTWs as a function of obstacle radius. This shows that small obstacles
generate waves of high amplitude, with the amplitude decreasing with radius and approaching a
limiting value as the radius tends to infinity. This limiting value corresponds to the waves
produced by a linear obstacle. The parameter values are u0Z2 and u1Z0.8, and we solved the
equations from tZ0 to 4000 on a circular domain, for obstacle radius varying between 0.25 and 100.
Details of the numerical method are given in appendix C.
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approximately 16 km (Sherratt et al. 2003), while an obstacle of radius 1 km
generates a wave of wavelength approximately 25 km. In comparison, the largest
field vole–weasel habitat in the UK (Kielder Forest) is approximately 30 km
across. This illustrates the general conclusion that a PTW will be undetectable in
practice unless the obstacle generating it is large.

In this paper, we study the case of large obstacle radius in detail for the lKu
system (1.1a) and (1.1b). Rewriting (1.3a) and (1.3b) in terms of polar
coordinates rKq in the uKv plane gives

rt Z rxx Cð1=xÞrxKrq2x Crð1Kr2Þ; ð1:4aÞ

qt Z qxx Cð1=xÞqx C
2rxqx
r

Cu0Ku1r
2: ð1:4bÞ

In terms of these new variables, the PTW solutions (1.2a) and (1.2b) are simply

r Z r� and qZ q0G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kr�2

p
xCðu0Ku1r

�2Þt: ð1:5Þ

The simplicity of this new formulation means that the l–u system can be
studied much more easily than most oscillatory reaction–diffusion equations. In
particular, Sherratt (2003) derived a form for the PTW amplitude generated by
Proc. R. Soc. A (2008)
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the zero-Dirichlet boundary condition in the limiting case of XZN (i.e. a linear
obstacle). In §2, we will extend this to derive the rate at which the wave
amplitude approaches this limiting value when X is large but finite.
2. Wave selection for large obstacle radius in the l–u equations

Detailed investigation of the numerical solutions of (1.1a) and (1.1b) subject to
uZvZ0 at xZX shows that at large times, r and qx approach steady-state
solution profiles. Therefore, we look for solutions of (1.4a) and (1.4b) in which r
and qx are functions of x only. The latter implies that qZjðxÞCkt, where k is a
constant of integration. Substituting this solution form and rZR(x) into (1.4a)
and (1.4b) give a third-order system of ODEs. Since we are focusing on large
values of the obstacle radius X, we define eZ1/X. We also make two other
notational changes that simplify subsequent algebra: xZXCy

ffiffiffi
2

p
and

fZKsignðu1Þj0. The equations for the steady-state solution profiles then
become

d2R=dy2CeðdR=dyÞ=ðeyC1=
ffiffiffi
2

p
ÞC2Rð1KR2Kf2ÞZ 0; ð2:1aÞ

df=dyC2ðf=RÞdR=dyCef=ðeyC1=
ffiffiffi
2

p
ÞK k̂C

ffiffiffi
2

p
ju1jR2 Z 0; ð2:1bÞ

where k̂Z
ffiffiffi
2

p
ðu0KkÞsignðu1Þ, with the boundary condition at the obstacle edge

RZ 0 at y Z 0: ð2:2aÞ
Since we are looking for solutions that approach a PTW far from the obstacle, we
also require

R/A and f/G
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1KA2

p
as y/N; ð2:2bÞ

for some value of the wave amplitude A. Substituting this behaviour at infinity
into (2.1a) and (2.1b) implies that the wave amplitude A is related to the

constant k̂ via k̂Z ju1j
ffiffiffi
2

p
A2, and for convenience we use A rather than k̂

henceforth.
In the case of a linear obstacle (eZ0), Sherratt (2003) has shown that the

large-time solutions for R and f have the simple forms

RZ a tanh y and fZ
ffiffiffiffiffiffiffiffiffiffiffiffi
1Ka2

p
tanh y; ð2:3Þ

where

a Z
1

2
1C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C

8

9
u2
1

r" #( )K1=2

:

We will use this solution as the basis for a perturbation theory study of (2.1a)
and (2.1b). For algebraic convenience, we will use a rather than u1 as a
parameter in subsequent calculations. Equation (2.3) implies that 0!a%1. In
the remainder of the paper, we will assume that a!1, excluding the special case
aZ1, which corresponds to u1Z0. This case can be dealt with separately in a
Proc. R. Soc. A (2008)
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straightforward manner. When u1Z0 ð0k̂Z0Þ, (2.1b) implies that

R2f0 C2RfR0C
eR2f

eyC1=
ffiffiffi
2

p Z 0 0R2fZ
m

eyC1=
ffiffiffi
2

p ;

where m is a constant of integration. The boundary condition (2.2a) then implies
that mZ0, i.e. R2fZ0. From (2.2b), it then follows that either AZ0 or 1. The
former would mean that Rh0, the spatially uniform equilibrium, which is
unstable and thus not a potential large-time solution. Hence AZ1, independent
of e. Therefore when u1Z0, the PTW has the degenerate form of a spatially
uniform oscillation for any obstacle radius.

Our aim in the remainder of this section is to calculate the wave amplitude to
first order in es0 when a!1, in the form AZaCeA1COðe2Þ. We require
different expansions of (2.1a) and (2.1b) depending on whether ey/1 or
1ZO(ey), and we refer to these as the near-field and far-field solutions,
respectively. The expansion of the far-field solution will allow us to determine
appropriate end conditions for the near-field solution. We will then use the near-
field solution to determine the leading order correction, A1, to the wave
amplitude.
(a ) Perturbation analysis of far-field solution

We begin by considering (2.1a) and (2.1b) when 1ZO(ey); this scaling enables
us to track the effect of boundary curvature at yZ0 forward to yZN. We
substitute the rescaling �yZey into (2.1a) and (2.1b), and also
ju1jZ3

ffiffiffiffiffiffiffiffiffiffiffiffi
1Ka2

p
=ða2

ffiffiffi
2

p
Þ, which follows from (2.3). This gives

e2d2 �R=d�y2Ce2ðd �R=d�yÞ=ð�yC1=
ffiffiffi
2

p
ÞC2 �Rð1K �R

2
K�f2ÞZ 0; ð2:4aÞ

ed�f=d�yC2eð�f= �RÞd �R=d�yCe�f=ð�yC1=
ffiffiffi
2

p
ÞCð3

ffiffiffiffiffiffiffiffiffiffiffiffi
1Ka2

p
=a2Þð �R2

KA2ÞZ 0;

ð2:4bÞ
where we use bars to distinguish the far-field solution variables from the near-
field solution. We now expand �R, �f and A as power series in e as follows:

�RZ �R0 Ce �R1Ce2 �R2 C/; ð2:5aÞ
�fZ �f0 Ce�f1 Ce2 �f2C/; ð2:5bÞ

AZ aCeA1 Ce2A2C/: ð2:5cÞ
Substituting the expansions (2.5a), (2.5b) and (2.5c) into (2.4a) and (2.4b) gives

�R0 Z a and �f0 Z
ffiffiffiffiffiffiffiffiffiffiffiffi
1Ka2

p
;

for the O(1) terms, and

�R1 ZA1K
a
ffiffiffi
2

p

6ð�y
ffiffiffi
2

p
C1Þ

and �f1 ZKa �R1=
ffiffiffiffiffiffiffiffiffiffiffiffi
1Ka2

p
;

for the O(e) terms. (Recall that we are assuming a!1.) These solutions satisfy

the required conditions (2.2b) as y/N with fZC
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1KA2

p
, as demanded by the

leading order solution (2.3).
Proc. R. Soc. A (2008)
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Figure 3. Comparison of the solutions of the l–u equations (1.1a) and (1.1b) for linear (eZ0; thick
line, radiusZN) and circular (es0; thin line, radiusZ100) obstacles. We deliberately use a very
large spatial domain to highlight the very different rates at which the amplitude converges to its
limiting (PTW) value in the two cases. As discussed in the main text, the approach is exponential
in space when eZ0, but algebraic when es0. The parameter values are u0Z2 and u1Z0.8, with
XZ100 for the circular obstacle, and we solved the equations from tZ0 to 4000. We use a domain
size 0!xKX!1000, but restrict plotting to 0!xKX!950. Close to xZXC1000, the amplitude
becomes oscillatory in time due to the zero-flux condition on u and v; this behaviour is localized to
a thin region near the right-hand boundary. Details of the numerical method are given in appendix
C. For the parameters we use, the domain size of 1000 is approximately 50 wavelengths of the
periodic wave.

371Effects of obstacle size on PTWs
One immediate consequence of the form of the leading order correction �R1, �f1

to the solution in the far field is that the amplitude R approaches its limiting value
A very slowly as y/N. For fixed e (note that we have not yet determined A1),

RKðaCeA1ÞwKa=ð6yÞ as y/N: ð2:6Þ

This algebraic rate of approach is in marked contrast to the case of a linear
obstacle (eZ0), for which (2.3) implies an exponential approach to the periodic
wave amplitude: RKawK2a eK2y as y/N. This difference is clearly visible in
the numerical solutions of (1.3a) and (1.3b) on sufficiently large domains, as
illustrated in figure 3.
(b ) Perturbation analysis of near-field solution

We now consider (2.1a) and (2.1b) when y/1=e. Again we expand R and f as
power series in e, and in this case the leading order solution is known from
Sherratt (2003), which are as follows:

RZ a tanh yCeR1 Ce2R2C/; ð2:7aÞ

fZ
ffiffiffiffiffiffiffiffiffiffiffiffi
1Ka2

p
tanh yCef1 Ce2f2C/: ð2:7bÞ
Proc. R. Soc. A (2008)
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Substituting the expansions (2.7a), (2.7b) and (2.5c) into (2.1a) and (2.1b) gives

d2R1=dy
2 C2R1½1Kð1C2a2Þtanh2y�K4a

ffiffiffiffiffiffiffiffiffiffiffiffi
1Ka2

p
tanh2yf1 C

ffiffiffi
2

p
a sech2y Z 0;

ð2:8aÞ

a tanhy df1=dyC2a sech2yf1C2
ffiffiffiffiffiffiffiffiffiffiffiffi
1Ka2

p
tanhy dR1=dyC2

ffiffiffiffiffiffiffiffiffiffiffiffi
1Ka2

p
ð4 tanh2yK1ÞR1

Ca
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffi
1Ka2

p
tanh2yK6

ffiffiffiffiffiffiffiffiffiffiffiffi
1Ka2

p
A1 tanhyZ0; ð2:8bÞ

for the O(e) terms. These equations have similarities to those studied by Sherratt
(submitted), who used perturbation theory to investigate a variant on the
boundary condition at the edge of a linear obstacle. Following Sherratt
(submitted), we convert (2.8a) and (2.8b) into a single third-order equation for
R1 by differentiating (2.8a) with respect to y and eliminating f1, giving

d3R1=dy
3C2ðdR1=dyÞ½1K3ð2a2K1Þtanh2y�

K12R1½tanh y sech2yK2ð1Ka2Þtanh3y�Z gðyÞ ð2:9Þ

where

gðyÞZ 24ð1Ka2ÞA1 tanh
2yK4

ffiffiffi
2

p
að1Ka2Þtanh3yC2

ffiffiffi
2

p
a sech2y tanh y: ð2:10Þ

The third-order equation (2.9) can be reduced to second order using the
derivative of the leading order solution. Substituting R1ðyÞZsech2yYðyÞ gives

d3Y=dy3K6 tanh y d2Y=dy2 C ½12ð2Ka2Þtanh2yK4�dY=dy Z gðyÞcosh2y: ð2:11Þ

In appendix A, we show that the corresponding homogeneous equation

d2Y=dy2K6 tanh y dY=dyC ½12ð2Ka2Þtanh2yK4�Y Z 0 ð2:12Þ

has linearly independent solutions

YGðyÞZRe sechpy Fða; b;g; ð1Gtanh yÞ=2Þ½ �: ð2:13Þ

Here a, b and g are functions of a given in equations (A 2a), (A 2b) and (A 2c) in
appendix A, and F is the hypergeometric function. (For a review of this special
function, see ch. 15 of Abramowitz & Stegun (1970).) A general solution of (2.9)
is therefore given by

R1ðyÞZ
sech2y

KwðaÞ

ðy1Zy

y1Z0
YKðy1Þ

ðy 2ZN

y 2Zy1

YCðy2Þgðy2Þ
cosh4y2

dy2 dy1

�

K

ðy1Zy

y1Z0
YCðy1Þ

ðy 2ZN

y 2Zy1

YKðy2Þgðy2Þ
cosh4y2

dy2 dy1

�

CC1 sech
2y

ðy1Zy

y1Z0
YCðy1Þdy1

CC2 sech
2y

ðy1Zy

y1Z0
YKðy1Þdy1CC3 sech

2y: ð2:14Þ
Proc. R. Soc. A (2008)



373Effects of obstacle size on PTWs
Here, Kw(a) is defined by YKðyÞYC0 ðyÞKYCðyÞYK0 ðyÞZKwðaÞcosh6y; it is given
explicitly as a function of a in equation (A 4) in appendix A.

(c ) Matching

To proceed further, we require a boundary condition on the near-field
solutions R1 and f1 as y/N. This is found by matching the near-field and far-
field solutions. We rescale y and �y such that both can be expressed in terms of an
intermediate variable, z,

y Z z=hðeÞ and �y Z ez=hðeÞ; where e/hðeÞ/1: ð2:15Þ
Expanding for small e in the near-field and far-field solutions with zZO(1) gives

a
z}|{R0

CeR1ðz=hÞ
zfflfflfflffl}|fflfflfflffl{R1

COðeÞZ a
z}|{�R0

Ce ðA1K
ffiffiffi
2

p
a=6Þ

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{�R1

COðeÞ; ð2:16aÞffiffiffiffiffiffiffiffiffiffiffiffi
1Ka2

p
|fflfflfflfflffl{zfflfflfflfflffl}

f0

Kef1ðz=hÞ|fflfflfflffl{zfflfflfflffl}
f1

COðeÞZ
ffiffiffiffiffiffiffiffiffiffiffiffi
1Ka2

p
|fflfflfflfflffl{zfflfflfflfflffl}

�f0

CeaðA1K
ffiffiffi
2

p
a=6Þ=

ffiffiffiffiffiffiffiffiffiffiffiffi
1Ka2

p
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�f1

COðeÞ:

ð2:16bÞ
Therefore, matching requires that R1ðyÞ/A1K

ffiffiffi
2

p
a=6 and f1ðyÞ/KaðA1K

ffiffiffi
2

p
a=6Þ=ffiffiffiffiffiffiffiffiffiffiffiffi

1Ka2
p

as y/N. In appendix A, we show that the first of these conditions
is satisfied if and only if C1ZC2Z0 and the second then follows immediately
from (2.8a).

(d ) Behaviour near yZ0

To consider the boundary condition (2.2a) at yZ0, it is necessary to
investigate the behaviour of the solution (2.14) near yZ0. We define

H Z
1

KwðaÞ
YKð0Þ

ð y2ZN

y2Z0

YCðy2Þgðy2Þ
cosh4y2

dy2KYCð0Þ
ð y2ZN

y2Z0

YKðy2Þgðy2Þ
cosh4y2

dy2

� �

Z 24ð1Ka2ÞA1KwðaÞK1Re F a;b;g;
1

2

� �� �

$Re

ðyZN

yZ0
F a; b;g;

1Ctanh y

2

� �
KF a; b;g;

1Ktanh y

2

� �� �
$tanh2y sech4Cpy dy;

I Z
1

KwðaÞ
d

dy1
YKðy1Þ

ðy2ZN

y2Zy1

YCðy2Þgðy2Þ
cosh4y2

dy2

�

KYCðy1Þ
ð y2ZN

y2Zy1

YKðy2Þgðy2Þ
cosh4y2

dy2

�����
y1Z0

ZK
1

2
KwðaÞK1 Re F 0 a;b;g;

1

2

� �� �
$Re J ;
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where

J Z

ðyZN

yZ0
F a;b;g;

1Ctanh y

2

� �
CF a; b;g;

1Ktanh y

2

� �� �
gðyÞsech4Cpy dy:

With this notation, direct differentiation of (2.14) gives the Taylor series
R1ðyÞZC3CHyCðð1=2ÞIKC3Þy2COðy3Þ as y/0. Higher-order terms can
then be found either by further direct differentiation of (2.14) or more easily by
expanding the coefficients of (2.9) as power series in y, giving

R1ðyÞZC3 CHyC
1

2
IKC3

� �
y2K

1

3
Hy3C

2

3
C3K

1

12
I C

ffiffiffi
2

p

12
a

� �
y4 COðy5Þ;

as y/0. The condition R1(0)Z0 requires C3Z0, and equation (2.8a) then
implies that

f1ðyÞZ
I Ca

ffiffiffi
2

p

12a
ffiffiffiffiffiffiffiffiffiffiffiffi
1Ka2

p 3

y2
C2

� �
COðyÞ; ð2:17Þ

as y/0. Although there is no formal boundary condition on f1 at yZ0, we do
require that the coefficient of 1/y2 be zero, otherwise the expansion (2.7b) is
invalid for y/e. Therefore IZKa

ffiffiffi
2

p
; which gives the required expression for A1

A1 Z
a
ffiffiffi
2

p
KwðaÞCRe F 0 a;b;g; 12

� 	
 �
ReðJ2Þ

� 

12ð1Ka2ÞRe F 0 a;b;g; 12

� 	
 �
ReðJ1Þ

; ð2:18aÞ

where

J1 Z

ð1
0

F a; b;g;
1C t

2

� �
CF a; b;g;

1Kt

2

� �� �
t2ð1Kt2Þ1Cp=2 dt; ð2:18bÞ

J2 Z

ð1
0

F a; b;g;
1C t

2

� �
CF a;b;g;

1Kt

2

� �� �
$½ð3K2a2Þt2K1�tð1Kt2Þ1Cp=2 dt:

ð2:18cÞ
This formula can be evaluated numerically using the software package MAPLE

(Monagan et al. 2007); a MAPLE procedure for this is given in appendix B. In
figure 4, we plot the dependence of A1 against both a and the original model
parameter u1; recall that a is the wave amplitude generated by a linear obstacle,
which depends on u1 according to the formula derived by Sherratt (2003), and
given in (2.3). A simple check of the formula (2.18a), (2.18b) and (2.18c) is given
by the limiting value as a/1K. Although we have been unable to evaluate
(2.18a), (2.18b) and (2.18c) analytically in this limit, the limiting value of A1

can be deduced from (2.14), for which all the integrals can be done exactly when
aZ1. This implies the limiting solution form

R1ðyÞ/
ffiffiffi
2

p
ð1Ktanh yÞ 1

4
yð1Ctanh yÞC tanh yð5C4 tanh yÞ

12ð1Ctanh yÞ

� �
;

as a/1K, so that R1(N)/0. Therefore A1/
ffiffiffi
2

p
=6 as a/1K, in agreement

with the numerical results illustrated in figure 4.
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Figure 4. The dependence of A1 on a and u1. Here, a is the wave amplitude generated by a linear
obstacle, and A1/X is the leading order correction to this amplitude when the obstacle is circular
with a large radius X. The amplitude a depends on the model parameter u1, according to the
formula (2.3). We evaluated this formula numerically using the MAPLE procedure listed in appendix
B. The dashed line indicates

ffiffiffi
2

p
=6, which is the limiting value of A1 as a/1K (i.e. as u1/0C).

The inserts show detail of the approach to this limiting value. Note that as u1/N, A1/0 (this
corresponds to a/0C).
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3. Application to a predator–prey model

In §2, we calculated the leading order correction to the PTW form generated by a
Dirichlet condition on a boundary that is circular, with a large radius. This
calculation is for the particular case of a reaction–diffusion system of l–u form,
and exploits the simplicity of the l–u kinetics when expressed in terms of
amplitude and phase gradient. Consequently, an analogous calculation is not
possible for more general reaction–diffusion systems. However, our results can be
applied to any reaction–diffusion system with scalar diffusion close to a
supercritical Hopf bifurcation in the kinetics, since the l–u equations are the
normal form for such a system.

As a specific example of this, we consider a standard model for the interaction
of a predator population and its prey. Reaction–diffusion models have been
widely used to study spatio-temporal patterns in predator–prey systems (Gurney
et al. 1998; Medvinsky et al. 2002; Sherratt et al. 2003; Morozov et al. 2006;
Pearce et al. 2006; Garvie 2007). The model we consider has the dimensionless
form

predators vP=vt Z V2P
zffl}|ffl{dispersal

C dPQ=cð1CdQÞ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{benefit from predation

KP=bc
zffl}|ffl{death

; ð3:1aÞ

prey vQ=vt Z V2Q|ffl{zffl}
dispersal

CQð1KQÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
intrinsic

birth & death

K dPQ=ð1CdQÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
predation

: ð3:1bÞ

This model is presented in many mathematical biology papers and textbooks
(see, e.g. Murray 2002; Britton 2003; Turchin 2003). P and Q denote
predator and prey densities, respectively. The dimensionless parameters b
and c have simple ecological interpretations: b is the ratio of predator birth
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and death rates and c is the ratio of prey and predator birth rates. The
parameter d reflects the rate at which prey consumption per predator
saturates as prey density increases. There are three uniform steady states
when bO(1Cd )/d: QZPZ0 (trivial); QZ1, PZ0 (prey only); and
QZQs h1=ðdðbK1ÞÞ, PZPs hbQsð1KQsÞ (coexistence). The coexistence
steady state is unstable when dOðbC1Þ=ðbK1Þ, and the kinetics then have a
stable limit cycle.

Low values of the parameter d would typically correspond to a generalist
predator, which has a number of alternative prey species in addition to Q, while
high d would correspond to a specialist predator. Spatial variation in predation
type is well documented in a number of systems. For example, in Fennoscandia,
small rodents have both specialist mammalian predators (stoats and weasels)
and a range of generalist predators (foxes, common buzzards, cats, etc.). The
latter increase greatly in number from North to South, and this has been
proposed as the cause of the well-known latitudinal gradient in population cycle
period (Hanski et al. 1991). Below 608 N, there are no clear multi-year cycles in
small rodent populations, and the hypothesis is that the parameter d (with P
being stoats/weasels) decreases below the critical value (bC1)/(bK1) at this
latitude. A more sudden change in d could occur when there is an abrupt change
in habitat, such as the edge of a wood, or a boundary between moorland and
farmland. Such a change could result in specialist predators dominating in the
study domain (the wood or moorland), with primarily generalist predation in
the surrounding environment. The model would then apply in both regions of
space, but with a relatively large value of d in the study domain and a much
smaller value in the surroundings. The latter would typically imply stability of
the coexistence steady state, and it would then be natural to consider the
behaviour only in the study domain, subject to the boundary condition QZQs,
PZPs. This is directly analogous to the boundary condition uZvZ0 used in §2
for the l–u equations. Again, we consider this boundary condition at the edge of
a circular obstacle in an infinite domain; we denote the radial space coordinate
by x, with the obstacle edge at xZx0. Numerical simulations show PTWs
moving away from the boundary at xZx0, in a manner very similar to that
illustrated in figure 1. As in the l–u case, the periodic wave amplitude and
wavelength at large values of x depend on the boundary radius x0, and this is
illustrated in figure 5.

When d is close to the Hopf bifurcation value (bC1)/(bK1), we can use our
results from the previous section to predict the variation in wave properties with
x0, when this is large. The first step in this calculation is to determine the
appropriate values of u0 and u1, via a reduction of (3.1a) and (3.1b) to normal
form, close to the Hopf bifurcation point. This calculation is described in detail
by Sherratt et al. (2003) and gives

u0 Z
2ðbK1Þ

dðbK1ÞKðbC1Þ
bðbC1Þ
ðbK1Þc

� �1=2
C

bK1

bðbC1Þc

� �1=2
; ð3:2aÞ

u1 Z
4b2c2 Cðb2K1Þðb2C5ÞbcCðb2K1Þ2

6b5=2ðb2K1Þ1=2c3=2
: ð3:2bÞ
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Figure 5. An illustration of the wavelength of PTWs generated by circular obstacles for the
predator–prey model (3.1a) and (3.1b). We compare (a) the wavelengths calculated from numerical
simulations of (3.1a) and (3.1b) with the prediction (3.4). The parameter values are bZ3,
cZ6.6667 and dZ2.0450 (cross, simulations; thick line, prediction) and 2.0408 (circle, simulations;
thin line, prediction); for this value of b, the kinetics have a Hopf bifurcation at dZ2. Note the
rapid decrease in wavelength as d increases above 2 (at the Hopf bifurcation point, the wavelength
is infinite). In (b), we show the difference between the prediction of (3.4) and the numerical result,
as a percentage of the numerical result. The parameter values are dZ2.0450 (cross) and 2.0408
(circle). Note that the numerical results are accurate to within approximately 0.8% (see appendix
C). Details of the numerical method are given in appendix C. Readers considering reproducing this
figure should note that the simulations are very time consuming (see appendix C).

377Effects of obstacle size on PTWs
Substituting (3.2b) into (2.3) gives a formula for the wave amplitude a generated
by a linear boundary in terms of the ecological parameters b and c. This can then
be used to calculate the appropriate value of A1. The reduction to normal form
involves a rescaling of space (Sherratt et al. 2003), which implies that the
appropriate radius of curvature to substitute into our previous calculation is

RZ
dðbK1ÞKðbC1Þ

2bðbC1Þ

� �1=2
x0: ð3:3Þ

With these values of a, A1 and R, the first-order approximation to the wave
amplitude is then given by aCA1/R.

In practice, it is wavelength rather than wave amplitude that is usually
reported in ecological studies of populations exhibiting PTWs (Bjørnstad et al.
1999; Liebhold et al. 2004). Again, we must take into account the rescaling of
space that is required for the reduction to Hopf normal form, and this implies
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that our prediction of the wavelength at large values of x0 is given by

2pffiffiffiffiffiffiffiffiffiffiffiffi
1Ka2

p 2bðbC1Þ
dðbK1ÞKðbC1Þ

� �1=2
1C

aA1

ð1Ka2ÞR

� �
;

where R is related to x0 via (3.3). Owing to the algebraic approach of the solution
amplitude (and hence wavelength) to this limiting value, it is impractical to solve
(3.1a) and (3.1b) numerically on a domain large enough for effective convergence.
However, the far-field solution for the l–u equations, derived in §1, can be used
to derive the appropriate correction. If x� is the position at which the wavelength
is being calculated, then (2.6) implies that the appropriate correction to the wave
amplitude is

Ka=ð6yÞ; where y Z
dðbK1ÞKðbC1Þ

2bðbC1Þ

� �1=2 ðx�K x0Þffiffiffi
2

p :

This in turn implies the approximation

2pffiffiffiffiffiffiffiffiffiffiffiffi
1Ka2

p 2bðbC1Þ
dðbK1ÞKðbC1Þ

� �1=2
1C

a

1Ka2
2bðbC1Þ

dðbK1ÞKðbC1Þ

� �1=2 A1

x0
K

a
ffiffiffi
2

p

6ðx�Kx0Þ

� � !
;

ð3:4Þ
for the wavelength at xZx�. Here, a is given by substituting (3.2b) into (2.3), and
A1 is then given by (2.18a), (2.18b) and (2.18c).

In figure 5, we compare this formula with numerical results from simulations of
the model equations (3.1a) and (3.1b). The formula provides a good
approximation to the numerical results provided that both x0 is large and d is
close to the Hopf bifurcation point (bC1)/(bK1). In appendix C, we give
estimates for the errors due to various aspects of the numerical scheme; these
imply an error of at most 0.8% in our numerical calculation of the wavelength.
Therefore, the formula (3.4) and the numerical results agree to within a
numerical error for values of the obstacle radius x0 greater than approximately
900 for both values of d. For smaller obstacle radii, the main source of error in
(3.4) comes from neglecting the O(e2) terms in the solutions of the l–u equations.
Note that x0Z900 corresponds to ez0.02.
4. Discussion

Our objective in this paper has been to generalize previous results on the
generation of PTWs by Dirichlet boundary conditions on linear boundaries. In
the case of the l–u system of equations, we have derived the leading order effect
on wave selection of the boundary being circular with a large radius. We have
then shown how this result can be applied to a specific ecological model close to
Hopf bifurcation in the kinetics.

One interesting consequence of the variation in wave amplitude with obstacle
radius is its implications for wave stability. In the family of PTW solutions
of an oscillatory reaction–diffusion equation, some members are stable as
reaction–diffusion solutions, while others are unstable. Here and in the
following, we are referring to ‘essential stability’ that determines stability on
Proc. R. Soc. A (2008)
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an infinite domain (Sandstede & Scheel 2000; Sandstede 2002; Rademacher
et al. 2007). In general, there is no analytical expression for the division of the
wave family into stable and unstable cases, but for l–u systems, Kopell &
Howard (1973) showed that the PTW (1.2a) and (1.2b) is stable if and only if
r � satisfies

r�Orstabh
2C2u2

1

3C2u2
1

� �1=2

: ð3:5Þ

If the wave amplitude a generated by a linear obstacle is greater than rstab, then
an obstacle of any radius will generate a stable wave. However, if a!rstab, a
linear boundary will generate an unstable wave, while obstacles of sufficiently
low radius will generate a stable wave. (Recall that as obstacle radius /0C,
the wave amplitude /1K, which corresponds to the limit cycle of the kinetics,
which is stable as a reaction–diffusion solution for scalar diffusion (Kopell &
Howard 1973).) Numerical simulations indicate that when the obstacle radius is
such that a stable wave is predicted, the whole solution (not just the behaviour
far from the obstacle) is stable. However, when an unstable wave is predicted,
the long-term behaviour is irregular spatio-temporal oscillations, with a band of
PTWs visible close to the boundary in some cases. The natural interpretation of
this is that the boundary selects a wave, which then destabilizes, giving spatio-
temporal irregularities. In figure 6, we illustrate the transition from regular to
irregular long-term dynamics as obstacle radius is increased.

Note that for this figure, we have deliberately used initial conditions without
circular (or other) symmetry. When a stable wave is selected, these initial
asymmetries rapidly disappear, but in the unstable case they persist in the
irregular oscillations.

We have shown that Dirichlet boundary conditions, on a circular obstacle,
generate PTWs in equations (1.1a) and (1.1b), with wave amplitude decreasing
as a function of obstacle radius. A natural extension to this study is to consider
obstacles with other geometries. This is a significantly more difficult problem,
because it is fundamentally two dimensional in space. A limited exploration of
this problem was performed by Sherratt et al. (2003), who simulated equations
(3.1a) and (3.1b) in two dimensions, with a rectangular obstacle in the centre of
a large domain. Their results suggested that wave selection depended primarily
on the largest obstacle dimension. We performed a similar, but more
systematic, study to that of Sherratt et al. (2003), for elliptical obstacles,
with major and minor axes of half-length Lmajor and Lminor, respectively
(figure 7).

As in the case of a circular obstacle, we found that the long-term behaviour far
from the obstacle was an essentially linear PTW; thus the solution amplitude
and phase gradient approach limiting values as the distance from the obstacle
tends to infinity. Fixing LminorZ1 and increasing Lmajor from 1 to 100 resulted in
a decrease in amplitude that mirrors the effects of varying the radius of a circular
obstacle. However, when Lmajor is greater than approximately 10, the resulting
PTW amplitude is less than for a circular obstacle of radius Lmajor. These results
suggest that the sizes of both the major and minor obstacle dimensions play a
role in determining the PTW properties. To illustrate this, we fixed LmajorZ20
and varied Lminor from 1 to 40 (figure 7). Amplitude initially increases with Lminor

up to a maximum near where LmajorZLminor and then declines again. This
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Figure 6. Numerical simulations of periodic wave generation in two dimensions, illustrating the
transition from stable PTWs (a) to irregular spatio-temporal oscillations (b) as obstacle radius is
increased. We solved the l–u system (1.1a) and (1.1b) for parameter values u0Z2 and u1ZK1.6.
These imply that a linear boundary will generate a wave of amplitude az0.84 (given by (2.3)),
which is less than the stability threshold rstabz0.94 (defined in (3.5)). The small obstacle (radius 2)
used in (a) generates a periodic wave of sufficiently high amplitude that it is stable, but the larger
obstacle (radius 20) used in (b) generates an unstable wave. Note that about two wavelengths of
this wave are visible close to the obstacle edge. Initially (at tZ0), u and v values are chosen
randomly at each numerical grid point from a uniform distribution between 0 and 1. We fix uZvZ0
at the obstacle edge, and use zero-flux conditions at the edge of the (square) domain. The equations
were solved using an alternating direction semi-implicit Crank–Nicolson scheme, with a grid spacing
of 0.5 and a time step of 5!10K4. The solutions are shown at tZ900. Each simulation took about
2.5 days to run on a Sun V20z computer with a 2.2 GHz AMD Opteron processor.
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indicates a significantly more complex dependence of amplitude on obstacle
geometry than that suggested by the limited study of Sherratt et al. (2003), and
a detailed analytical and numerical investigation of this is a natural area for
future work.

Traditionally, ecological field studies have focused on temporal rather than
spatial dynamics. However, the last decade has seen the publication of results
from a number of long-term spatio-temporal field studies. Several of these
studies demonstrate PTWs (Ranta & Kaitala 1997; Lambin et al. 1998; Moss
et al. 2000; MacKinnon et al. 2001; Bjørnstad et al. 2002; Johnson et al. 2004;
Bierman et al. 2006), suggesting that this may be a widespread spatio-
temporal structure in ecological systems. A mathematical understanding of
PTW generation is a crucial accompaniment to this fieldwork, in view of the
enormous time and expense required for each field study. Our work represents
one step in improving this understanding, showing that the curvature of
landscape obstacles may affect the travelling waves generated by them in
ecological systems. Moreover, our results in §2a predict that the wave
properties will vary much more gradually with distance from the obstacle edge
than in the case of a flat boundary. The PTWs reported in empirical studies to
date have wavelengths that are relatively large compared with the size of the
habitat, and it seems unlikely that any ecological domain is sufficiently long to
allow the development of wave trains of many wavelengths (say more than
10). We therefore predict that if curved obstacles are generating PTWs in
Proc. R. Soc. A (2008)
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Figure 7. The effect of obstacle geometry on wave amplitude predicted by equations (1.1a) and
(1.1b). Triangle, the predicted amplitudes for equations (1.1a) and (1.1b) for a circular obstacle
(LminorZLmajor); circle, the predicted amplitudes for equations (1.1a) and (1.1b) for different major
ellipse dimensions (Lmajor) when the minor dimension (Lminor) is fixed at 1; and plus, the
amplitudes predicted by equations (1.1a) and (1.1b) for different major ellipse dimensions (Lmajor)
when the minor dimension (Lminor) is fixed at 20. We also plot (cross) the amplitudes predicted for
circular obstacles by one-dimensional simulations, given by solving equations (1.3a) and (1.3b)
using the same numerical space and time resolutions as for the two-dimensional simulations. These
differ slightly from the two-dimensional results for circular obstacles (triangle) due to numerical
error. The parameter values are u0Z2 and u1Z0.8. The initial conditions (at tZ0) were random
values for u and v that were chosen from a uniform distribution between 0 and 1 and the results
shown are for tZ2850. We fixed uZvZ0 at the obstacle edge, and used zero-flux conditions at the
edge of the domain, which is a square with side-length 300. The equations were solved using an
alternating direction semi-implicit Crank–Nicolson scheme. Obtaining sufficient accuracy for these
simulations requires considerable run-times for even moderate resolutions. We used a grid spacing
of 0.25 and a time step of 0.01. For a planar obstacle, error estimation is straightforward since the
exact amplitude is known (equation (2.3)), and these resolutions give an error of 0.5%. Each of the
two-dimensional simulations used for this figure took approximately 7 days to run on a Sun V20z
computer with a 2.2 GHz AMD Opteron processor.
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ecological systems then the wave properties will vary to a measurable extent
with distance from the obstacle edge. It may be important to consider this
when analysing field data. For example, it may explain why two studies of the
PTWs in abundance of field voles in Kielder Forest (Northern UK; Lambin
et al. 1998; MacKinnon et al. 2001), differing in the spatial and temporal scales
of the data analysed, reported different wave properties (wave speeds of
19 km yrK1 reported by Lambin et al. (1998) compared with 14 km yrK1

reported by MacKinnon et al. (2001); these correspond to wavelengths of
approx. 76 and 56 km, respectively).
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Significantly, all of our results in this paper apply only close to Hopf
bifurcation in the kinetics. An investigation of behaviour far from Hopf
bifurcation is a natural topic for future study. With a number of spatio-temporal
field studies due to report over the next few years, such a study would be
particularly timely.
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N.J.A.), a Doctoral Training Award from EPSRC (N.J.A.) and the NERC Environmental
Mathematics and Statistics Programme (M.J.S.). J.A.S. thanks Adri Olde Daalhuis (University of
Edinburgh) for help with the hypergeometric function.
Appendix A

In this appendix, we present various mathematical details underpinning the work
in the paper; some of the calculations have been presented previously in Sherratt
(submitted).
(a ) Solution of equation (2.12 )

We begin by solving equation (2.12), via the substitution

w ZY ðyÞcoshpy and xZ ð1Ctanh yÞ=2 with pZK3C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2K11

p
:

This substitution is adapted from §2.1.2.227 of Polyanin & Zaitsev (2003); after
some algebraic simplification, it reduces (2.12) to

xðxK1Þd2w=dx2 CðpC4Þð2xK1Þdw=dxCðpC4Þw Z 0: ðA 1Þ

Note that for some values of the parameter a, p and hence the solution w are
complex. Linearly independent solutions of (A 1) are given by wZFða;b;g; xÞ
and wZFða; b;g; 1KxÞ, where F is the hypergeometric function, and
(Abramowitz & Stegun 1970, §15.5; Gradshteyn & Ryzhik 2000, §9.153.7)

aCbZ 2pC7Z 1C2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2K11

p
; ðA 2aÞ

abZgZ pC4Z 1C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2K11

p
; ðA 2bÞ

so that

a; bZ
1

2
1C2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2K11

p
G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48a2K47

p� �
: ðA 2cÞ

Therefore, (2.12) has linearly independent solutions

YGðyÞZRe sechpy Fða; b;g; ð1Gtanh yÞ=2Þ½ �: ðA 3Þ

The standard calculation of the Wronskian (see, e.g. §0.2.1-2 of Polyanin &

Zaitsev 2003) implies that YKðyÞYC0 ðyÞKYCðyÞYK0 ðyÞZKwðaÞcosh6y. The

constant Kw can be obtained by noting that YGð0ÞZRe Fða;b;g; 1=2Þ and
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YG0 ð0ÞZGð1=2ÞRe F 0ða; b;g; 1=2Þ, so that

KwðaÞZRe F a; b;g;
1

2

� �
$Re F 0 a;b;g;

1

2

� �

Z 4p Re
GðabÞ

G 1Ca
2

� 	
G 1Cb

2

� 	
" #

$Re
GðabÞ

G a
2

� 	
G b

2

� 	
" #

; ðA 4Þ

using §6.1.15, §15.1.24 and §15.2.1 in Abramowitz & Stegun (1970).
(b ) Behaviour of (2.14) as y/N

We now discuss the behaviour as y/N of the general solutions of (2.9). Recall
from (2.14) that this is given by the sum C1T 1CC2T 2CC3T 3CT 4, where C1,
C2 and C3 are constants of integration, and

T 1 Z sech2y

ðy1Zy

y1Z0
YCðy1Þdy1;

T 2 Z sech2y

ðy1Zy

y1Z0
YKðy1Þ dy1;

T 3 Z sech2y;

T 4 Z
sech2y

KwðaÞ

ðy1Zy

y1Z0
YKðy1Þ

ðy2ZN

y2Zy1

YCðy2Þgðy2Þ
cosh4y2

dy2 dy1

�

K

ðy1Zy

y1Z0
YCðy1Þ

ðy2ZN

y2Zy1

YKðy2Þgðy2Þ
cosh4y2

dy2 dy1

�
:

Here YGðyÞZRe½sechpyFða; b;g; ð1Gtanh yÞ=2Þ�, pZK3C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2K11

p
, aCb

Z1C2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2K11

p
and abZgZ1C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2K11

p
. The constant Kw(a) is defined

by YCðyÞYK0 ðyÞKYKðyÞYC0 ðyÞZKwðaÞcosh6y and is given explicitly in (A 4).

By construction T 4/gðNÞ=½24ð1Ka2Þ�ZA1Ka
ffiffiffi
2

p
=6 as y/N, and the limiting

behaviour T 3w4eK2y as y/N is immediate. However, the behaviour of T 1 and

T 2 as y/N depends on gKaKbZK
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2K11

p
, and we consider separately

the three cases of a2 greater than, equal to and less than 11/12.
(i) 1Oa2O11/12

Leading order behaviour of T 1. For values of a in this range, gKaKb is real
and negative, so that (Abramowitz & Stegun 1970, §15.3.6)

Fða; b;g; xÞwGðgÞGðaCbKgÞ
GðaÞGðbÞ ð1KxÞgKaKb as x/1K:
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Therefore as y/N,

YCðyÞwGðgÞGðaCbKgÞ
GðaÞGðbÞ ðeK2yÞgKaKbð2eKyÞp

Z
2pGðgÞGðaCbKgÞ

GðaÞGðbÞ exp 3C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2K11

p� �
y

n o
:

Here, we are using pZK3C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2K11

p
. Therefore,

T 1w
2pC2GðgÞGðaCbKgÞ

GðaÞGðbÞð3C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2K11

p
Þ
exp 1C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2K11

p� �
y

n o
as y/N:

Leading order behaviour of T 2. F(a,b,g;0)Z1 in all cases (Abramowitz &
Stegun 1970, §15.1.1). Therefore, YKðyÞw2peKpy as y/N, and thus

T 2w
2pC2

3K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2K11

p exp ð1K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2K11

p
Þy

n o
as y/N:

Conclusions in this case. From these various leading order forms, it follows
that T 1 and T 2/N as y/N, at different rates, while T 3/0 and T 4/A1. Since
the sum C1T 1CC2T 2CC3T 3CT 4 must approach a finite limit as y/N, it is
necessary that C1ZC2Z0.

(ii) a2Z11/12

Leading order form of T 1.When a2Z11/12, gKaKbZ0, so that (Abramowitz &
Stegun 1970, §15.3.10)

Fða;b;g; xÞwKGðaCbÞlogð1KxÞ
GðaÞGðbÞ as x/1K:

Therefore as y/N,

YCðyÞw ye3y

4GðaÞGðbÞ :

Here, I am using the fact that aCbZ1 and pZK3 in this case. Therefore,

T 1w
yey

3GðaÞGðbÞ as y/N:

Leading order form of T 2. As in appendix Aa(i), T 2wð1=6Þey as y/N.
Conclusions in this case. Again T 1 and T 2/N at different rates as y/N,

while T 3/0 and T 4/A1. Since the sum C1T 1CC2T 2CC3T 3CT 4 must
approach a finite limit as y/N, it is necessary that C1ZC2Z0.

(iii) 0!a2!11/12

Leading order form of T 1. In this case, gKaKb is pure imaginary, so that
(Abramowitz & Stegun 1970, §15.3.6)

Fða; b;g; xÞwGðgÞGðgKaKbÞ
GðgKaÞGðgKbÞC

GðgÞGðaCbKgÞ
GðaÞGðbÞ ð1KxÞgKaKb as x/1K:
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Therefore,

sechpyF a;b;g;
1Ctanh y

2

� �

w
GðgÞGðgKaKbÞ
GðgKaÞGðgKbÞC

GðgÞGðaCbKgÞ
GðaÞGðbÞ e2ðaCbKgÞy

� �
2peKpy

Z
GðgÞGðgKaKbÞ
GðgKaÞGðgKbÞ 2

p exp 3K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2K11

p� �
y

n o

C
GðgÞGðaCbKgÞ

GðaÞGðbÞ 2p exp 3C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2K11

p� �
y

n o
as y/N;

0YCðyÞhRe sechpyF a;b;g;
1Ctanh y

2

� �� �

wðk1 sin dyCk2 cos dyÞe3y as y/N:

Here, the real numbers d, k1 and k2 are given by

dZK
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11a2K12

p
;

k1 Z Im 2pGðgÞ GðaCbKgÞ
GðaÞGðbÞ K

GðgKaKbÞ
GðgKaÞGðgKbÞ

� �� �
;

k2 ZRe 2pGðgÞ GðaCbKgÞ
GðaÞGðbÞ C

GðgKaKbÞ
GðgKaÞGðgKbÞ

� �� �
:

Therefore,

T 1w
4ey

9Cd2
½ð3k1Cdk2Þsin dyCð3k2Kdk1Þcos dy� as y/N:

Leading order behaviour of T 2. As in appendix Aa(i),

YKðyÞwRe½2peKpy�Z ðk3 sin dyCk4 cos dyÞe3y as y/N;

where k3ZKIm(2p) and k4ZRe(2p). Therefore,

T 2w
4ey

9Cd2
½ð3k3Cdk4Þsin dyCð3k4Kdk3Þcos dy� as y/N:

Conclusions in this case. Again T 1 and T 2/N as y/N, while T 3/0 and
T 4/A1. In this case, T 1 and T 2 exhibit growing oscillations as y/N, with the
same growth rate, but their linear independence implies that C1ZC2Z0.
Appendix B

In this appendix, we give the listing of a procedure for the software package
MAPLE (Monagan et al. 2007) that calculates the coefficient A1 (given in (2.18a),
(2.18b) and (2.18c)) of the leading order correction to the PTW amplitude.
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A1dproc (a)
local tol, N, aa, bb, gg, p, J1part1, J1part2, J1, J2part1,
J2part2, J2, Fdash, Kwpart1, Kwpart2, Kw;
told1.0e-5;
if a!0.9 then
Nd30

elif a!0.97 then
Nd50

elif a!0.99 then
Nd100

elif a!0.998 then
Nd600

else
Nd1200

end if;
aad1/2Csqrt(12�a�a-11)C(1/2)�sqrt(48�a�a-47);
bbd1/2Csqrt(12�a�a-11)-(1/2)�sqrt(48�a�a-47);
ggd1Csqrt(12�a�a-11); pd-3Csqrt(12�a�a-11);
J1part1devalf(Int(Hypergeom([aa,bb],[gg],
((1Ct)/2))�(t�t)�((1-t�t)��(1Cp/2)), tZ0..1, digitsZN,
epsilonZtol));
J1part2d evalf(Int(Hypergeom([aa,bb],[gg],
((1-t)/2))�(t�t)�((1-t�t)��(1Cp/2)), tZ0..1, digitsZ30,
epsilonZtol));
J1dJ1part1CJ1part2;
J2part1devalf(Int(Hypergeom([aa,bb],[gg],((1Ct)/2))�
t�((3-2�a�a)�t�t-1)�((1-t�t)��(1Cp/2)), tZ0..1, digitsZN,
epsilonZtol));
J2part2devalf(Int(Hypergeom([aa,bb],[gg],((1-t)/2))�
t�((3-2�a�a)�t�t-1)�((1-t�t)��(1Cp/2)),tZ0..1, digitsZ30,
epsilonZtol));
J2dJ2part1CJ2part2;
Fdashdevalf(subs(xZ1/2,value(diff(hypergeom
([aa,bb],[gg],x),x))));
Kwpart1dGAMMA(aa�bb)/(GAMMA((1Caa)/2)� GAMMA((1Cbb)/
2));
Kwpart2dGAMMA(aa�bb)/(GAMMA(aa/2)� GAMMA(bb/2));
Kwd evalf(4�Pi�Re(Kwpart1)� Re(Kwpart2));
evalf[8](a�sqrt(2)�(KwCRe(Fdash)�Re(J2))/
(12�(1-a�a)� Re(Fdash)� Re(J1)));
end proc;

This procedure evaluates the formulae (2.18a), (2.18b) and (2.18c). The main
difficulty in the calculation is the singularity of the integrands in J1 and J2
(defined in (2.18a), (2.18b) and (2.18c)) as t/1K. This is true for all values of a,
but the singularity becomes more severe as a increases above

ffiffiffiffiffiffiffiffiffiffiffiffi
11=12

p
Z0:957.:

Specifically, the integrands are O((1Kt)K1/2) for 0!a%
ffiffiffiffiffiffiffiffiffiffiffiffi
11=12

p
and

Oðð1KtÞKð1C
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2K11

p
Þ=2Þ for

ffiffiffiffiffiffiffiffiffiffiffiffi
11=12

p
%a!1, as t/1K (see appendix A).
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For this reason, successful computation requires very high values of the MAPLE

parameter digits (the number of digits used for floating point operations) when a
is close to 1. The above procedure works successfully for values of a up to 0.999.
Appendix C

In this appendix, we discuss the issues associated with obtaining quantitatively
accurate numerical solutions of the equations studied in this paper. We include
these details as an aid to readers interested in performing similar work, since
some of the numerical solutions used for the figures are extremely expensive in
computer time. In all cases, we used a semi-implicit Crank–Nicolson finite-
difference method, with implicit evaluation of the spatial derivatives. For the
(radially symmetric) one-dimensional solutions, we used a central difference
representation of the first spatial derivative. For the two-dimensional results
presented in §4, we used an alternating direction implicit evaluation of the
diffusion term.

Accurate numerical solution of the l–u equations (1.3a) and (1.3b) with a
linear obstacle is relatively fast. Assessment of accuracy is straightforward since
we have the exact solution (2.3) with which numerical results can be compared.
Using this approach, for the parameter values used in figures 1–3, we selected a
time step dtZ10K4 and a space step dxZ0.33, which give a periodic wave
amplitude that is accurate to within 0.03%. This implies an error of
approximately 0.24% in the wavelength.

For es0, numerical solutions are much more time consuming. The slower
spatial approach of the large-time solution to the PTW (algebraic rather than
exponential, see §1) means that a very large domain is needed. In addition, the
solution approaches its large-time limit more slowly. The approach is via a
transition wave, with the PTW behind the transition and spatially uniform
oscillations ahead (see Sherratt (2003) for a fuller discussion). The curvature of
the boundary means that this transition wave is convex when viewed from ahead,
and thus moves more slowly than in the linear case (Rubinstein et al. 1989;
Bradhnik & Tyson 1999). For the numerical solutions in figure 2, we used a
domain of length 100 and solved from tZ0 up to tZ4000. Simulations using
larger domains (see, e.g. figure 3) and longer solution times indicate that these
values introduce an error of approximately 0.12% in the periodic wave
amplitude, due almost entirely to the domain size: this is additional to the
error due to the space and time discretizations, which were the same as given
above for eZ0. Therefore, the total error in the wave amplitude is approximately
0.15%, which corresponds to an error of approximately 1.2% in the wavelength.
Each simulation takes approximately 1 hour on a Sun V20z computer with a
2.2 GHz AMD Opteron processor. For the two-dimensional results presented in
§4, such small space and time steps are computationally unfeasible, and we were
forced to accept lower levels of accuracy (details in the legends of figures 6 and 7).

For the predator–prey equations (3.1a) and (3.1b), the only additional
complication is the lack of an exact solution in the eZ0 case, making an
assessment of appropriate space and time steps more difficult. However, the
values used for the l–u equations can be converted into space and time steps
appropriate for the predator–prey equations via the rescalings used in the
Proc. R. Soc. A (2008)



M. J. Smith et al.388
reduction to normal form. These imply that (see Sherratt et al. (2003) for details)

dtjpredKprey Z
2bðbC1Þ

dðbK1ÞKðbC1Þ

� �
dtjlKu; ðC 1aÞ

dxjpredKprey Z
2bðbC1Þ

dðbK1ÞKðbC1Þ

� �1=2
dxjlKu: ðC 1bÞ

Formulae (3.2a) and (3.2b) imply that the predator–prey parameter values used
in figure 5 correspond to u1Z0.86, and u0Z0.86 (for dZ2.0450) and u0Z47 (for
dZ2.0408). These values of u0 are much larger than those used in figures 1–3,
and a significantly smaller time step is required for a given accuracy level. We
also reduced the space step a little, although the improvement in accuracy due to
this is only slight. By comparing the l–u simulations for a linear obstacle (eZ0)
to the exact solution (2.3), we found that dtjl–uZ3!10K6 and dxjl–uZ0:1 gave
errors of about 0.1% in the wave amplitude; this is larger than the errors in
figures 1–3 and represents a compromise between accuracy and run times. The
corresponding error in the wavelengths is 0.75%. Using (C 1a) and (C 1b), these
discretizations convert approximately to dtjpred–preyZ10K3 and dxjpred–preyZ1:67
(the exact conversions differ slightly between the two different values of d used in
figure 5), and we used these discretizations in figure 5.

For solutions on a curved boundary, we can translate the solution time and
domain sized used for the l–u equations into values appropriate for the
predator–prey system in a similar way. However, even larger values are actually
required, because we are using wavelength rather than amplitude as our solution
measure, and thus the domain must be long enough for the solution to have
converged to the periodic wave over a number of whole wavelengths. For the
simulations in figure 5, we used a domain length of 7000 (i.e. we solve on x0!x!
7000Cx0) and a solution time of 9!105. Convergence tests indicate that the
error in the wavelength due to the finiteness of the solution time is small:
approximately 0.03% for the smallest value of x0 used, and less when x0 is larger.
The error due to the finiteness of the domain is much greater (approx. 0.5%), but
this can be estimated using our perturbation theory solution, and a suitable
correction is included in formula (3.4). Each of the simulations used for figure 5
takes approximately 13 days on a Sun V20z computer with a 2.2 GHz AMD
Opteron processor.
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