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Abstract

Many oscillatory biological systems show periodic travelling waves. These are often modelled using coupled reaction–diffusion equations.
However, the effects of different movement rates (diffusion coefficients) of the interacting components on the predictions of these equations
are largely unknown. Here we investigate the ways in which varying the diffusion coefficients in such equations alters the wave speed, time
period, wavelength, amplitude and stability of periodic wave solutions. We focus on two sets of kinetics that are commonly used in ecological
applications: lambda–omega equations, which are the normal form of an oscillatory coupled reaction–diffusion system close to a supercritical
Hopf bifurcation, and a standard predator–prey model. Our results show that changing the ratio of the diffusion coefficients can significantly
alter the shape of the one-parameter family of periodic travelling wave solutions. The position of the boundary between stable and unstable
waves also depends on the ratio of the diffusion coefficients: in all cases, stability changes through an Eckhaus (‘sideband’) instability. These
effects are always symmetrical in the two diffusion coefficients for the lambda–omega equations, but are asymmetric in the predator–prey
equations, especially when the limit cycle of the kinetics is of large amplitude. In particular, there are two separate regions of stable waves
in the travelling wave family for some parameter values in the predator–prey scenario. Our results also show the existence of a one-parameter
family of travelling waves, but not necessarily a Hopf bifurcation, for all values of the diffusion coefficients. Simulations of the full partial
differential equations reveals that varying the ratio of the diffusion coefficients can significantly change the properties of periodic travelling waves
that arise from particular wave generation mechanisms, and our analysis of the travelling wave families assists in the understanding of these
effects.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The components of many biological systems exhibit regular
temporal cycles. These are sometimes an emergent property
from the interactions between different components of the
system. Periodic waves also occur in a wide variety of
biological systems, ranging from intracellular chemodynamics
such as calcium signalling, to cyclic population dynamics
in ecology [2–8]. A natural hypothesis is that these waves
arise from the combination of oscillatory local dynamics and
diffusive-type dispersal (reviewed in [1]).

∗ Corresponding author. Tel.: +44 0 131 451 3253; fax: +44 0 131 451 3249.
E-mail address: m.j.smith@ma.hw.ac.uk (M.J. Smith).

Reaction–diffusion models are traditionally used to study
systems exhibiting periodic travelling waves (see Fig. 1(c), for
example dynamics). These combine diffusion in space with
reaction kinetics that are intrinsically oscillatory in time. The
standard mathematical form for reaction–diffusion models with
two interacting (and oscillating) components is

∂u
∂t

= Du
∂2u
∂x2 + f (u, v) (1a)

∂v

∂t
= Dv

∂2v

∂x2 + g(u, v) (1b)

where u(x, t) and v(x, t) are the quantities (e.g. animal
population sizes) of the interacting components of the system,
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Fig. 1. Comparison of the effects of varying α on the wave family predicted by travelling wave equations (8) with reaction kinetics of λ–ω form ((a)—Eqs. (3)
and (4), with ω0 = 1.5 and ω1 = 0.5) or predator–prey form ((b)—Eqs. (9), with σ = 0.15, µ = 0.05 and κ = 0.2). Grey-filled circles indicate the position of
cHopf from which the wave family emanates (Eqs. (12) and (13)). cHopf doesn’t exist for lines with no filled circles. Grey lines denote unstable waves and black
lines denote stable waves. Note that in (b) stability changes at c = 6.7 when α = 1. Stability also changes at c = 18.0 and c = 34.8 when α = 10 and α = 100,
respectively (not shown). See (Section 2) for details on the calculation of wave families and their stability. The labelled crosses denote periodic travelling waves
selected in simulations of Eqs. (1) that are illustrated in (c) and (d). In (c) and (d), Eq. (1) were solved numerically as detailed in Section 5. The zero Dirichlet
boundary conditions are at x = 0 and the zero Neumann boundary conditions are at x = 2000.

x and t denote space and time, respectively, and the diffusion
coefficients Du and Dv are positive constants. The functions f
and g will be of a form giving a stable limit cycle solution in
the kinetic ordinary differential equations.

For systems exhibiting periodic travelling waves, the
appropriate solution forms are u(x, t) = U (z) and v(x, t) =

V (z), where z = (x/c) − t is the travelling wave coordinate
and c is the wave speed. Substituting these into Eqs. (1) gives

(Du/c2)U ′′
+ U ′

+ f (U, V ) = 0, (2a)

(Dv/c2)V ′′
+ V ′

+ g(U, V ) = 0, (2b)

where prime denotes d/dz. Periodic travelling wave solutions
of reaction–diffusion equations were first studied by Kopell
and Howard [9]. They showed that, provided Du and Dv are
sufficiently close, a system of equations of the form (2) has
a one-parameter family of limit cycle solutions, corresponding
to periodic travelling waves. They studied in detail the case of

Du = Dv , with f and g having “λ–ω” form

f (u, v) = λ(r)u − ω(r)v, (3a)
g(u, v) = ω(r)u + λ(r)v, (3b)

where r = (u2
+ v2)1/2. This remains the prototype system

for oscillatory reaction–diffusion systems, and natural specific
forms for λ and ω are

λ(r) = 1 − r2, (4a)

ω(r) = ω0 − ω1r2, (4b)

where for simplicity we assume that the constants ω0 and ω1
satisfy ω0 > ω1 > 0. One advantage of studying travelling
wave equations with reaction kinetics formulated in this way
is that the family of periodic waves then has a very simple
analytical form, namely

u = r̂ cos[ω(r̂)t ± λ(r̂)1/2x] (5a)

v = r̂ sin[ω(r̂)t ± λ(r̂)1/2x] (5b)
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where r̂ ∈ (0, 1) parametrises the wave family [9]. As wave
amplitude, r̂ , increases from 0 to 1, the spatial wavelength
2π/λ(r̂)1/2 increases from 2π to infinity, the time period
2π/ω(r̂) increases from 2π/ω0 to 2π/(ω0 − ω1) and the wave
speed ω(r̂)/λ(r̂)1/2 increases from ω0 to infinity. Note that in
the case Du = Dv and ω0 = 0, Eqs. (2) becomes the complex
Ginzburg–Landau equation with zero linear dispersion (see for
example [41], Sec. II.B).

Kopell and Howard [9] showed that the stability of the
travelling waves as solutions of Eqs. (1) and (3) on unbounded
domains, also changes along the one-parameter family, with the
exact condition for stability being

4λ(r̂)

[
1 +

(
ω′(r̂)
λ′(r̂)

)2
]

− λ′(r̂) ≤ 0. (6)

This implies that sufficiently low amplitude waves are always
unstable and sufficiently high amplitude waves are always
stable. Here, and throughout this paper, we are referring to wave
stability on unbounded domains.

The analytical tractability of Eqs. (3) and (4), when Du =

Dv , has led to their use in studies of periodic travelling waves in
oscillatory biological systems [1,15,30]. The case of Du ≈ Dv
can be studied using perturbation theory (see [10]), but to
study the waves more generally, we use numerical bifurcation
software (see Section 2 for details). Plotting the time period
against the wave speed is a standard way of presenting the wave
family. In Fig. 1, for example, we illustrate the wave family for
kinetics of λ–ω form, and also for kinetics that are a standard
model for cyclic populations in ecology [31,32]. The figure
demonstrates that changing the diffusion coefficients alters both
the shape of the wave family, and the way in which wave
stability varies along it, for both sets of kinetics. The properties
of travelling waves commonly measured in ecological studies
are the amplitude (e.g. in numbers of individuals), speed (e.g. in
kilometres per year), wavelength (e.g. in kilometres), and time
period (in years), and so we focus on these measures in this
study. However, the latter two are straightforward functions
of wave number (2π/wavelength) and frequency (2π/time
period), that are more commonly used in physics.

In ecological systems, the diffusion coefficients of the
two (or more) components in oscillatory reaction–diffusion
equations are likely to be different. Therefore, it is an important
question to ask how the properties of the wave family are
affected by such differences. A partial answer to this question is
revealed by rewriting Eqs. (2) with α = Du/Dv and β = Du Dv
to give

(
√
αβ/c2)U ′′

+ U ′
+ f (U, V ) = 0, (7a)

(
√
β/

√
αc2)V ′′

+ V ′
+ g(U, V ) = 0. (7b)

This shows that the product of the diffusion coefficients β
simply scales the travelling wave speed. Eqs. (2) can therefore
be simplified further by using a rescaled wave speed c∗

=

c/β1/4 to give (dropping ‘*’s)

(
√
α/c2)U ′′

+ U ′
+ f (U, V ) = 0, (8a)

(1/c2√α)V ′′
+ V ′

+ g(U, V ) = 0. (8b)

A less simple question to answer, however, is how the wave
properties are affected by the ratio of the diffusion coefficients
(α). In this paper we give results that provide a partial answer
to this question. We firstly investigate how variation in α

affects the wave speed at the Hopf bifurcation of the wave
family (filled circles in Fig. 1(a) and (b)). Next, we explore
numerically how varying α affects the shape of the family of
travelling wave solutions (lines in Fig. 1(a) and (b)), and the
location of stable/unstable regions (black/grey lines in Fig. 1(a)
and (b)). Finally, we use numerical simulations of the partial
differential equations (1) to explore how varying α affects
the particular member of the travelling wave family generated
by two important classes of initial condition (e.g. crosses in
Fig. 1(b)–(d)).

In these various studies, we focus on two sets of reaction
kinetics used commonly in studies of periodic travelling waves
in ecology [15,21,30]: the λ–ω system given in (3), and a
standard model for cyclic predator–prey dynamics [31,32]. The
λ–ω reaction kinetics (Eqs. (3) and (4)) are the normal form
of any coupled oscillatory system close to a supercritical Hopf
bifurcation. Therefore, any such system can be approximated
by the λ–ω equations using the standard mathematical theory
of normal forms. Studying the λ–ω equations is thus of
general relevance to oscillatory reaction–diffusion equations.
The predator–prey kinetic equations are

f (u, v) = u(1 − u)−
uv

u + κ
, and (9a)

g(u, v) =
σuv

u + κ
− µv, (9b)

where u and v are the densities of prey and predators,
respectively, µ is the predator death rate, σ is the predator–prey
conversion rate, and κ is the half-saturation constant in the
hyperbolic functional response. Eqs. (9) have been re-scaled
such that 0 < u < 1 and have non-trivial steady state solutions
us = µκ/(σ − µ) and vs = (1 − us)(us + κ). Throughout this
paper we fix σ = 0.15 and µ = 0.05, and study the effects
of varying κ . We also assume that 0 < κ < 0.5, since in
this region us and vsare locally unstable and the kinetics have
a stable limit cycle. Sufficiently far from the Hopf bifurcation
(at κ = 0.5), these limit cycles can differ significantly from
the sinusoidal oscillations that occur very close to the Hopf
bifurcation (and which are always predicted by λ–ω kinetics).
Our hypothesis was that because of this, ratios of predator
and prey diffusion coefficients above and below 1 would have
different effects on the family of travelling waves.

2. Details on numerical computations

We used AUTO bifurcation and continuation software [11–
13] to compute the periodic solutions of the travelling wave
equations (8) and their stability. We only give a general
overview of our approach here since details of our methodology
are given in [11–13,33]. Similar methods were used by [33,38,
39] for other systems.

For given kinetic equations and parameters, the one-
parameter family of periodic travelling waves (such as
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in Fig. 1(a) and (b)) can be computed by performing a
continuation of the limit cycle solutions of Eqs. (8) as wave
speed is increased, starting at the wave speed of the Hopf
bifurcation of these equations, cHopf. In the scenarios where
cHopf doesn’t exist we located the wave family by labelling a
solution of specified time period in the wave family for α = 1
(which can always be found, see [9]) and then performing a
continuation in α to locate a solution of the same period but for
the required value of α.

The stability of periodic travelling wave solutions can
be computed by linearising Eqs. (8) about the wave, and
computing the spectrum of the resulting eigenvalue problem.
Full details of the approach we used are given in [33],
however we give a brief summary of the technique here. We
first calculated eigenvalues corresponding to eigenfunctions
that are periodic over one wavelength, by discretising in z
to give a (large) algebraic eigenvalue problem; we consider
only eigenvalues with an appropriately large real part. The
spectrum is then computed by continuation of the real and
imaginary parts of these eigenvalues as the phase difference
in the eigenfunction across one wavelength is increased from
0 to 2π . This is done sequentially, starting at each of the
eigenvalues corresponding to periodic eigenfunctions. This
gives the essential spectrum of the wave. Waves are stable
(on an infinite domain) if and only if their essential spectrum
contains only points with negative real part, other than the
origin, which is always an eigenvalue and corresponds to a
translation of the wave.

Using this technique, we investigated wave stability for
a wide range of wave speeds and α values. The transition
from stable to unstable waves occurs through an Eckhaus
instability [33,34] at the origin in the eigenvalue complex plane
in all cases we studied. In contrast, in some other reaction
diffusion systems periodic waves can destabilise through a
Hopf bifurcation; see Fig. 12(b) in [38], for example. The
boundary between stable and unstable waves in the c–α
plane can be computed by numerical continuation of this
Eckhaus bifurcation point. Again, full details of the approach
are given in [33] and we only give a brief summary. We
differentiate the eigenvalue equation twice with respect to the
phase difference in the eigenfunction over one wavelength. This
gives a system of coupled differential equations that includes
the second derivative of the real part of the eigenvalue, zeros
of which define Eckhaus points. We numerically continue
the locations of these zeros to trace the stability/instability
boundary for periodic waves. An appropriate starting point
for this continuation can be found via sufficiently precise
estimation of the wave speed at an Eckhaus point for one
value of α, via explicit computation of the essential spectrum.
However in the λ–ω case this is unnecessary because an
appropriate starting point is α = 1 and the critical wave speed
given in Eq. (6).

In the stability analysis we focused on the parameter ranges
0.01 ≤ α ≤ 100 and 0 ≤ c ≤ 10. We also computed the
stability of solutions to Eqs. (8), for the different scenarios,
when c = ∞, which corresponds simply to the limit cycle of the
kinetic equations. This spatially synchronous solution is known

to be stable to spatially varying perturbations when α = 1, but
can be unstable when α 6= 1 [9]. When c = ∞ Eqs. (8) are
functions of U and V with only time dependent coefficients,
making stability much easier to calculate than for finite values
of c. Solutions can be separated into Fourier modes, and for
each Fourier wavenumber, numerical computation of the (two)
Floquet exponents is straightforward. This showed that for all
parameter sets considered in the remainder of this paper, the
spatially homogeneous oscillations corresponding to c = ∞

are stable.

3. The effect of unequal diffusion coefficients on the wave
speed at the Hopf bifurcation in the travelling wave
equations

Eqs. (8) can be converted into a system of four first-
order ordinary differential equations in the standard way, and
linearising these equations about the steady state solutions of
the reaction kinetics gives the characteristic equation

Det(J ) = ψ4
+ ψ3c2

Hopf

(
1

√
α

+
√
α

)
+ψ2c2

Hopf

(
c2

Hopf +
√
α fU +

gV
√
α

)
+ψc4

Hopf( fU + gV )+ c4
Hopf( fU gV − fV gU )

= 0 (10)

where ψ is an eigenvalue of the stability matrix, the subscripts
on f and g denote the partial derivatives with respect to U or
V , evaluated at the steady state, and cHopf is the wave speed
giving a Hopf bifurcation in (8). At cHopf, (10) will have a pair
of pure imaginary roots, sayψ = ±iζ , where ζ is the frequency
of the corresponding (zero amplitude) travelling wave solution.
Substituting these solutions into (10) and equating the real and
imaginary parts gives

cHopf =

√
−(gV − α fU )2 − fV gU (1 + α)2

√
α(1 + α)( fU + gV )

. (11)

This equation is not new, and was derived in a different way in
Kopell and Howard’s [9] original paper. Substituting the λ–ω
kinetics (3) and (4), and the steady state U = V = 0, into (11)
gives

cHopf =

√
ω2

0(α + 1)2 − (α − 1)2

2
√
α(α + 1)

, (12)

which is plotted in Fig. 2(a) for different values of ω0.
Straightforward analysis reveals that when ω0 > 1, cHopf =

+∞ at both α = 0 and α = ∞, and when ω0 < 1 cHopf is
complex at both α = 0 and α = ∞. It is also straightforward to
show that the curve described by Eq. (12) is symmetrical about
α = 1.

Substituting the predator–prey kinetics (9) and their steady
state solutions into Eq. (11), with σ = 0.15 and µ = 0.05,
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(a) λ–ω. (b) Predator–prey.

Fig. 2. The effect of varying α on the wave speed at the Hopf bifurcation, cHopf, for travelling wave equations (8) with reaction kinetics of λ–ω form (Eqs. (3) and
(4)) (a) and with predator–prey reaction kinetics (Eqs. (9)) (b). (a) Different lines are realisations of Eq. (13) for different, labelled values of ω0, with ω1 = 0.5. (b)
Different lines are realisations of Eq. (14) for different, labelled values of κ , with σ = 0.15 and µ = 0.05.

Fig. 3. The effect of varying κ on the value of α at the turning point of Eq.
(13), αmin. Cycles occur in the region 0 < κ < 0.5, but the turning point only
occurs when κ > κcrit ≈ 0.24. The location of αmin provides a simple measure
of the asymmetry in the effects of the two diffusion coefficients on the Hopf
bifurcation wave speed cHopf.

gives

cHopf =

√
3α2(κ − 2)+ 6α(κ − 2)+ 14 − 77κ + 80κ2

60
√
α(2κ − 1)(α + 1)

, (13)

which is plotted in Fig. 2(b) for different values of κ . cHopf =

+∞ when α = ∞ for all κ in the range 0 < κ < 0.5.
cHopf = +∞ when α = 0 for, and cHopf is complex when α = 0
and κ < κcrit. Differentiation of Eq. (13) with respect to α
yields a cubic equation which indicates that when κ > κcrit, Eq.
(13) has one minimum, at αmin say. The deviation of αmin from
1 provides a simple measure of the asymmetry in the effects
of the predator and prey diffusion coefficients on cHopf for
different values of κ (Fig. 3). As κ → 0.5− (Hopf bifurcation
in the kinetics), the whole curve (13) becomes symmetrical
about α = 1. As κ is decreased below 0.5, αmin decreases,
reflecting the greater asymmetry in (13) as the kinetics move
further from Hopf bifurcation. Finally at κ = κcrit, αmin = 0;
when κ < κcrit Eq. (13) has no turning points and cHopf doesn’t
exist for positive values of α sufficiently less than 1.

4. The effects of unequal diffusion coefficients on the wave
family properties

4.1. Parameter ranges

For the λ–ω kinetics we fixed ω1 = 0.5 and picked three
values for ω0; a small ω0 (ω0 = 0.6) where ω0 < 1, an
intermediate ω0 (ω0 = 1.5) where ω0 > 1, and a large ω0
(ω0 = 4) which is also > 1: recall that cHopf exists for all α
if and only if ω0 ≥ 1. In the normal form of an oscillatory
system close to Hopf bifurcation, the parameter ω0 is always
large, being inversely proportional to the square of the limit
cycle radius [14]; see Ref. [15] for the normal form derivation
for Eqs. (9). However we chose to include our analysis of the
other two cases, both for completeness and because they aid in
the interpretation of the predator–prey cases.

For the predator–prey equations we considered four different
values of the parameter κ . We chose κ = 0.49 and κ = 0.4
because they are reasonably close to the Hopf bifurcation of
the kinetics (at κ = 0.5). When converted to normal form
(see [15]), the corresponding λ–ω parameters are ω1 ≈ 0.86
in both cases, with ω0 ≈ 47 and ω0 ≈ 4.0, respectively. The
third case, κ = 0.25, was chosen because it is further from the
Hopf bifurcation of the kinetics, but nevertheless cHopf exists
for all values of α. The fourth case we studied was κ = 0.2, for
which cHopf does not exist when α < 0.15.

4.2. λ–ω kinetics

For both sets of kinetics, and for the chosen parameter sets,
we confirmed the existence of a family of travelling waves for
values of α between 0.01 and 100. These are plotted, in c–α
and amplitude–α space in Figs. 4 and 5, with contour lines of
fixed time period overlaid. These contours indicate that, in all
cases, there is a sheet of periodic travelling wave solutions in
c–α space, bounded above by c = ∞ (zero wave number), and
bounded below by the Hopf bifurcation curve when this exists,
or c = 0 when it doesn’t.

For given parameters in the λ–ω kinetics, the effects
of variation in α on the wave family properties is always
symmetrical about α = 1 (Fig. 4). The effects of varying
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Fig. 4. The effect of varying α on the shape of the wave family and on wave stability when the kinetics of the travelling wave equations (8) are of λ–ω form (Eqs.
(3) and (4)) and ω1 = 0.5. In (a) and (b) ω0 = 4, in (c) and (d) ω0 = 1.5, and in (e) and (f) ω0 = 0.6. Thick solid lines in (a), (c) and (e) are the locus of cHopf
(Eq. (13)). Thin lines are contours of waves of specific periodicity. Arrows indicate the direction of contours of increasing periodicity. The region of stable waves is
shaded in grey. The ranges of the time period contours are (a,b) 1.58–1.79, (c,d) 4.2–6.2 and (e,f) 11–62. In (a) and (c) some contours lie so close to the cHopf line
as to be indistinguishable. Note the log10 axis for α.

Fig. 5. The effect of varying α on the shape of the wave family and on wave stability when the kinetics of the travelling wave equations (8) are of the predator–prey
form (Eqs. (9)). Parameter values are σ = 0.15, µ = 0.05 and (a,b) κ = 0.49, (c,d) κ = 0.40, (e,f) κ = 0.25, and (g,h) κ = 0.20. Thick solid lines in (a), (c), (e)
and (g) are the locus of cHopf (Eq. (14)). Thin lines are contours of waves of specific periodicity. The region of stable waves is shaded in grey. The ranges of the
time period contours are (a,b) 39.6–40.3, (c,d) 38.5–47.5, (e,f) 39.0–140 and (g,h) 36.0–200. The arrows indicate the direction of contours of increasing periodicity.
Note the log10 axis for α.
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α are relatively minor in the two cases in which ω0 > 1
(Fig. 4(a)–(d)). For all values of α, the minimum speed of the
wave family is at cHopf, at which wave amplitude is zero. The
branch of periodic solutions emerging from cHopf is always in
the direction of increasing wave speed (and amplitude) in these
cases. Time period also generally increases with wave speed
and amplitude for a given α, with the exception of an initial
decrease from the time period at cHopf when α is sufficiently
smaller or larger than 1 (as is apparent in Fig. 4(c)). Stability
analysis reveals a single critical value of speed and amplitude
at which wave stability changes, for all values of α analysed,
with low amplitude waves being unstable and high amplitude
waves being stable. The shape of the stability boundary line has
a similar shape to the nearby time period contours, implying
that the time period at which stability changes has only a slight
dependence on α. In summary, changing α has relatively little
effect on the properties of the travelling wave family for these
parameter values. The main effect of increasing (or decreasing)
α away from α = 1, in these scenarios, is to increase the speed,
and decrease the amplitude, of waves of a given time period.

In the case in which ω0 < 1 (Fig. 4(e) and (f)) the
effect of varying α on the shape of the wave family is similar
to the two previous examples at the high wave speed end
(c > 1, say). However, there are significant differences at
slower wave speeds. In the region in which the cHopf line
exists, wave speed initially decreases with increasing amplitude
away from the Hopf bifurcation point, indicating a subcritical
Hopf bifurcation. Increasing

∣∣c − cHopf
∣∣ is always associated

with increasing time period in this region, causing certain
wave speeds to be associated with two different time period
values. The sheet of solutions in c–α space, in this scenario,
therefore folds at a minimum wave speed (at c < cHopf) for
some values of α. Where the cHopf line does not exist, the
minimum wave speed is zero, which is associated with non-
trivial stationary waves. As wave speed increases from zero,
time period decreases from infinity, before reaching a minimum
and then increasing again. In summary, varying α has a minor
quantitative effect on the properties of the wave family at the
high wave speed end in this scenario, and in a manner similar to
the previous examples. At the low wave speed end of the wave
family, increasing or decreasing α away from α = 1 causes
an increasingly large “tail” in the wave family in which wave
speed and/or time period initially decrease before increasing
with increasing distance from cHopf when this exists, and from
c = 0 otherwise.

4.3. Predator–prey kinetics

For the predator prey kinetics, the effects of variation in α
on the wave family properties are not generally symmetrical
about α = 1 (Fig. 5). The degree of asymmetry increases
with decreasing κ . For our highest value of κ (κ = 0.49),
in which the limit cycle of the kinetics is of low amplitude,
the effects of variation in α is qualitatively very similar to the
λ–ω scenarios when ω0 > 1 (Fig. 5(a) and (b) compared to
Fig. 4(a)–(d)). When κ = 0.4 the asymmetry about α = 1 is
noticeable (Fig. 5(c) and (d)). Several lines of fixed time period

Fig. 6. (a) The α value associated with folds in the stability boundaries for
varying κ when the kinetics of the travelling wave equations (8) are of the
predator–prey form (Eqs. (9)) with σ = 0.15, µ = 0.05. We have plotted α
on the horizontal axis to aid interpretation and comparison with other figures.
(b)–(g) show the stability boundaries for given values of κ , which are indicated
by dashed lines in (a). The insert in (g) shows a close up of the region indicated
by the arrow, to illustrate that there is a single region of wave stability.

only occur for sufficiently large α and the stability boundary
is also asymmetrical about α = 1. When κ = 0.25, the most
obvious difference to the previous scenarios is that there are
two separate regions of stability (Fig. 5(e) and (f)). The stability
boundary in the previous scenarios has shifted to have a turning
point at α ≈ 0.025 and there is now a second stability region.
For c greater than about 1.5, the time period contours are similar
to the previous scenarios, except that they have a minimum
wave speed at α values of about 0.2. For c less than about 1.5,
the time period contours fold at a certain wave speed which is
greater than cHopf. The effects of α when κ = 0.2 are similar
(Fig. 5(g) and (h)). The main difference from the κ = 0.25 case
is that high wave period contours exist at low wave speeds when
cHopf doesn’t exist and, as for the λ–ω kinetics when ω0 = 0.6
(Fig. 4(e) and (f)), there is a non-zero minimum wave amplitude
at c = 0 (Fig. 5(h)).

We investigated further the changes in the stability
boundaries as κ varies by performing a continuation of the
fold in the second region of wave stability (i.e. that with larger
α values in Fig. 5(e)–(h)) (plotted in Fig. 6(a)). This fold
corresponds to the smallest value of α in the second stability
region. Fig. 6(b)–(g) show in more detail how the shapes and
positions of the stability boundaries vary as κ is reduced from
κ = 0.4. At κ = 0.4 there is only one region of stability. The
second stability region appears from α = ∞ and c = ∞ when
κ ≈ 0.34. As κ is reduced further, the region becomes larger,
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while at κ ≈ 0.24 two folds develop in the boundary of the first
stability region. At κ ≈ 0.16 the two stability boundaries meet,
giving a single region of wave stability.

In summary, varying α can have relatively large effects
on the properties of the wave families in the predator–prey
scenarios. Most notably, varying α can dramatically alter the
stability of waves of a given time period or wave speed. For
example in the case where κ = 0.2, when α = 100, stability is
restricted to waves with either a speed that is small and within
a narrow range of values, or a very fast speed; in contrast,
when α = 0.01, stable waves occur for all speeds above a
minimum value. Furthermore, varying α can alter the range of
wave properties that can be observed.

5. The effect of unequal diffusion coefficients on periodic
travelling waves generated by Dirichlet boundary condi-
tions

So far our analysis has concerned the effects of α on the
shape of the one-parameter family of periodic travelling waves.
In this, and the following, section we analyse how unequal
diffusion coefficients affect the properties of the actual waves
that arise in simulations of the reaction–diffusion equations
(1). It is now well established that periodic travelling waves
can arise naturally in reaction–diffusion systems in a variety
of circumstances. Broadly these can be grouped into waves
induced by (i) boundary conditions [16,17]; (ii) “invasion”,
whereby an unstable stable steady state ahead of an invasion
front changes to periodic travelling waves behind the invasion
front [18–25]; and (iii) heterogeneities in the environment [26–
28]. In this section we focus on (i), and study (ii) in the next
section.

We performed simulations of Eqs. (1), for two of the cases
studied in the previous section, on a one dimensional domain
with u = v = 0 at one boundary and ∂u/∂x = ∂v/∂x = 0 at
the other. All simulations started with random initial values for
u and v. The zero Dirichlet condition forces the system away
from spatially uniform oscillations and in all cases the long-
term solution consisted of a periodic travelling wave over at
least part of the domain, with thin transition layers near the
boundaries. Fig. 1(c) and (d) are two example realisations of
these simulations. We calculated numerically the speed, space
and time periods, and amplitude of the wave (since these are
commonly measured in ecological studies), and our results
are shown in Fig. 7. To aid interpretation of these results we
display them in combination with curves that define the range of
possible values for the wave family properties. These lines were
determined using the same techniques described in the previous
section except that to calculate the spatial wavelength contours
we substituted the alternative travelling wave coordinate ẑ =

x − ct into Eqs. (1) and used AUTO to analyse the resultant
travelling wave equations.

The mechanism via which a Dirichlet boundary condition
selects a particular member of the periodic travelling wave
family has been studied in detail in previous papers [15–17],
and we will not attempt to refine or extend these studies
here. Rather, our objective is to use our results on the

properties of the wave family to give a clearer interpretation
of the observed behaviour, in particular the occurrence of
spatiotemporal irregularities.

5.1. λ–ω kinetics

The effects of α on the overall range of possible wave
properties predicted by Eqs. (8) with the λ–ω kinetics Eqs. (3)
and (4) is, as suggested in the previous section, relatively minor
and symmetrical about α = 1 (Fig. 7 (a,c,e,g)). For all values
of α there is a band of unstable solutions close to the Hopf
bifurcation and a single boundary at which stability changes.
Our numerical simulations predict stable travelling waves for
all values of α in this scenario. In all cases, the time periods and
amplitudes of the travelling waves are close to those of the limit
cycle of the kinetics (Fig. 7(a,c,e,g)). The effects of varying
α on the properties of the waves selected by these boundary
conditions are similar to the effects of α on the shapes of various
wave family properties. In particular, the minimum of all wave
properties shown in Fig. 7 (a,c,e,g) occurs at α = 1 and the
effects of changing α is symmetrical about this point.

5.2. Predator–prey kinetics

The effects of α on the overall range of possible wave
properties predicted by Eqs. (8) with the predator–prey kinetics
Eqs. (9) are asymmetrical about α = 1 in this scenario
(Fig. 7(b, d, f, h)). In the region where cHopf doesn’t exist,
we found that the wavelength and amplitude approach non-
zero minimum values as c → 0. In Fig. 5(g) the largest time
period that we plotted had a period of 200 and wave speed of
about 0.1; wave amplitude varies smoothly with α along the
contour. However, along contours of higher fixed time period,
with wave speeds less than about 0.01, there are ‘tongues’ in
the plots of amplitude and wavelength against α (not visible
in the wavelength plot at the scale shown). In Fig. 7(f,h) we
plot lines corresponding to the smallest value of c we used
(c = 6.5 × 10−6). Further analysis reveals that these lines lie
within a region of stationary patterned solutions. We omit more
details of this region here for brevity but have included further
information and analysis in the Appendix.

In this scenario there are two stability regions (Fig. 7(b, d, f,
h)). The properties of the travelling waves picked out by the
zero Dirichlet boundary conditions in our partial differential
equation simulations lie close to these stability boundaries.
In fact, in some cases, the selected travelling waves lie on
the unstable side of the stability boundary. Our numerical
simulations showed that, in all of these cases, the travelling
waves that formed behind the Dirichlet boundary conditions
eventually developed into irregular spatiotemporal behaviour
(such as in Fig. 1(d), for example). Varying α also has a
significant effect on the measured properties of waves arising
in these scenarios, with a minimum generally occurring close
to α = 1. Varying α can therefore have significant effects
on the properties of the waves selected by these boundary
conditions.
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Fig. 7. The effect of α on the maximum and minimum values of the wave properties in the travelling wave family (solutions of Eqs. (8)), and on the wave properties
picked out by zero Dirichlet boundary conditions in simulations of Eqs. (1), for different reaction kinetics. Column headings correspond to λ–ω kinetics (Eqs. (3)
and (4) with ω1 = 0.5 and ω0 = 1.5), and to predator–prey kinetics (Eqs. (9) with σ = 0.15, µ = 0.05 and κ = 0.2). Light shaded areas denote the region of
unstable travelling waves and dark shaded areas denote the region of stable travelling waves; in unshaded areas there are no travelling waves. Lines correspond
to the positions of the Hopf bifurcation of the wave family (thick solid), a fold in the wave family (thin dashed), the value corresponding to the limit cycle of the
kinetic equations (thick dashed) or the value at the locus of waves of specific periodicity (thin solid line—see text for explanation). Circles correspond to the values
predicted by simulations of Eqs. (1), solved numerically as detailed in Section 5. Filled circles denote waves that showed no evidence of instability. Open circles
denote waves that existed transiently before developing into irregular spatiotemporal behaviour. Spatiotemporal dynamics for two scenarios with predator–prey
kinetics, when α = 1 and α = 100, are shown in Fig. 1(c) and (d), respectively. Values reported for apparently unstable periodic travelling waves were measured
from the region of waves that form directly behind the Dirichlet boundary, as is visible in Fig. 1(d). Note the log10 axis for α.

6. The effect of unequal diffusion coefficients on periodic
travelling waves generated by predators invading a prey
population

For our second case study we analyse the effects of changing
the diffusion coefficients on the waves generated by a predators
invading a prey population. This situation, which has no
analogue for the λ–ω kinetics, has been studied in detail in the

case of equal predator and prey diffusion coefficients [21,29,
35]. However, changing the ratio of the diffusion coefficients
enables a more comprehensive comparison of the invasion
speed, and the speed of periodic waves behind the invasion.
Again, our focus is on the use of our wave family study to
interpret the results of partial differential equation simulations,
rather than on the underlying wave selection mechanism,
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which is discussed in detail elsewhere [35]. We conducted a
limited study of such invasions by simulating Eqs. (1) with
predator–prey kinetic Eqs. (9). Our boundary conditions were
∂u/∂x = ∂v/∂x = 0 at both ends of a large domain and
we used initial conditions of u = 1, v = 0 across the whole
domain except at the left boundary where u = 1 and v = 1.
We chose two parameter sets, one in which the limit cycle of
the kinetics is close to Hopf bifurcation (κ = 0.49) and one in
which it is far from Hopf bifurcation (κ = 0.2). Rather than
fixing β =

√
Du Dv and varying α =

√
Du/Dv in Eqs. (1), as

in the rest of the paper, it is more convenient to do numerical
simulations with a fixed value of Dv . This fixes the invasion
speed, and thus allows us to fix an appropriate domain size. We
then varied α = Du . Effectively, this is a rescaling of the wave
speed. However, for consistency with the rest of the paper, we
undo this rescaling before plotting wave speeds calculated from
our simulations.

In Fig. 8 we give examples of the emergent spatiotemporal
dynamics and in Fig. 9 we plot the measured speeds of periodic
waves behind the invasion front for differing values of α. As
discussed above, we have reversed our rescaling of wave speed
in Fig. 9 to maintain consistency with the previous sections.
In the case where the kinetics are near Hopf bifurcation, we
found that α values greater than about 0.1 generated periodic
waves travelling in the opposite direction to the invasion
front, sometimes with a region of spatiotemporal irregularities
behind the front (Figs. 8(b), 9(a)). For these values of α, the
selected waves lie close to the stability boundary, but within
the stable region. For α less than about 0.1 we found no stable
periodic travelling waves, and instead apparently irregular
spatiotemporal behaviour develops immediately behind the
invasion front (Figs. 8(c), 9(a)). It was therefore not possible
to estimate the speed of selected periodic solutions in these
scenarios. Similar dynamics were also predicted for a narrow
region of α values close to 1.6. Presumably in these cases the
selected wave lies in the unstable region.

When the kinetics are far from Hopf bifurcation, we
found that sufficiently high values of α also selected stable
waves travelling away from the invasion front (Figs. 8(a),
9(b)). Simulations in which α lies between about 0.1 and
1 gave travelling waves that eventually decayed to irregular
spatiotemporal behaviour. This is consistent with our stability
calculations, since the measured wave speeds fall within a
region of the graph corresponding to unstable waves (Fig. 9(b)).
These values of α are also associated with the appearance of a
region of small amplitude and short wavelength waves moving
in the direction of the invasion front and at the same speed
(shown in the insert in Fig. 8(d)). Where α ≤ 0.1, two regions
of stable travelling waves develop behind the invasion front
(Figs. 8(d), 9(b)). A region of low amplitude stable waves, with
a low wave speed, develops immediately behind the invasion
front and a region of higher amplitude, faster waves develops
from the left boundary. As time progresses the high amplitude
fast waves invade the region of low amplitude slow waves but
at a rate that is slower than the invasion, so that the regions
occupied by the two periodic waves both grow in extent.

One by-product of our stability calculations is that we also
obtain the group velocity (the speed with which a perturbation
to the wave travels [33,44]) on the stability boundary. It is
straightforward to use this as a starting point for numerical
continuation of group velocity. This shows that throughout
parameter space in Fig. 9(b) the group velocity is negative.

The results in the previous sections allow us explain these
results to some extent. We know that the minimum possible
travelling wave speed is cHopf when it exists and zero when it
doesn’t (Fig. 2(b)). Moreover, simple linearization ahead of the
invasion suggests that the speed of the invasion front, cInv, may
be given by

cInv = 2

[
Dv

∂g
∂v

∣∣∣∣
u=1,v=0

] 1
2

= 2
[

Dv

(
σ

1 + κ
− µ

)] 1
2
. (14)

Although front propagation speeds depend on nonlinearities
in some reaction–diffusion systems (see for example [40])
extensive numerical simulations confirm Eq. (14) as the
invasion speed for our system. These two wave speeds are
superimposed on our simulation results in Fig. 9. For the
parameter values used in Fig. 9(a), cHopf > cInv for all values
of α, and when periodic waves develop, they always move at a
faster speed than the invasion. When α is less than about 0.1 our
numerical simulations predict highly irregular spatiotemporal
oscillations such as those shown in Fig. 8(c). In previous
papers [37], the selection of unstable waves by invasion has
been postulated as a mechanism for generating spatiotemporal
chaos but discussions have been very speculative due to an
absence of precise information on wave stability.

In Fig. 9(b), cHopf < cInv for smaller α, and correspondingly
two new phenomena occur. Firstly, as α decreases below about
1, a band of periodic waves develops immediately behind the
invasion front, moving at the same speed. For large α, the
initial invasion has the form of a transition wave connecting
u = 1, v = 0 and u = us , v = vs (shown most clearly
in Fig. 8(b,c), which are for larger κ). This transition wave
is effectively a heteroclinic connection in the travelling wave
equations (8) with c = cInv. As α decreases through about
1.5, cHopf decreases below cInv, and the eigenvalues of (8, c =

cInv) change to all having negative real parts. No heteroclinic
connection is therefore possible, and our simulations suggest
that instead, the initial invasion occurs via a point-to-periodic
orbit connection. For α just below 1.5, the periodic waves
moving with invasion speed are unstable and are seen only
transiently, with the long-term behaviour being spatiotemporal
irregularity. However for α less than about 0.1, the waves are
stable and persist. In addition, for α less than about 0.1, a
second band of periodic waves develops from the x = 0
boundary, of higher amplitude and faster speed than those
moving with the invasion. This second band of waves is a
new phenomenon, not reported in previous work on invasion
in oscillatory predator–prey systems (which is for α = 1). We
speculate that the interaction of the low amplitude waves and
the Neumann boundary conditions at x = 0 selects for stable
wave trains which propagate in the direction of the invasion, but
beyond this we have no clear explanation.
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Fig. 8. Simulation of the invasion of a prey population by predators using Eqs. (1) with predator–prey reaction kinetics (9), and with σ = 0.15, µ = 0.05 and
Dv = 1. In (a) and (d) the limit cycle of the kinetics is far from the Hopf bifurcation (κ = 0.2), and in (b) and (c) it is close to the Hopf bifurcation (κ = 0.49).
Prey diffusion coefficients are (a) Du = 1, (b) Du = 2.5, (c) Du = 0.004, and (d) Du = 0.1. The region of low amplitude oscillations behind, and moving with,
the invasion front in (d) are indistinguishable at the scale shown due to their short wavelength (appearing as a black block). The insert in (d), laid on top of this
region, shows a close up of the region just behind the invasion front, plotted over the same time interval as the main figure. The equations were solved numerically
as detailed in Section 6. We assume zero Neumann boundary conditions at both boundaries.

(a) κ = 0.49. (b) κ = 0.2.

Fig. 9. The effects of varying α = Du on the speed of the travelling waves emerging behind the invasion front (dots and triangles) in numerical simulations of Eqs.
(1) with reaction kinetics (9), and with σ = 0.15, µ = 0.05 and Dv = 1. In (a) the limit cycle of the kinetics is close to the Hopf bifurcation (κ = 0.49), and in (b)
it is far from the Hopf bifurcation (κ = 0.2). Dots represent negative wave speeds (travelling in the opposite direction to the invasion front) and triangles represent
positive wave speeds (travelling in the direction of the invasion front). Filled symbols denote waves that showed no evidence of instability. Open symbols denote
waves that developed into irregular spatiotemporal behaviour. The equations were solved numerically as detailed in Section 6. In addition we have plotted cHopf
(thick line) and the invasion wave speed cInv (thin line), calculated using Eqs. (13) and (14), respectively. For consistency with the rest of the paper, the wave speeds
calculated from our simulations have been rescaled (see text). Note that in (a) it was not possible to estimate the speed of selected periodic solutions when α ≤ 0.1:
these simulations predicted highly irregular spatiotemporal dynamics behind the invasion front.
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7. Discussion

In 1973, Kopell and Howard [9] published their landmark
paper on periodic travelling wave solutions of oscillatory
reaction–diffusion equations. They proved that for any set of
parameters for which the travelling wave ordinary differential
equations have a Hopf bifurcation, there is a one-parameter
family of such wave solutions. They also proved that low
amplitude waves are unstable provided that the diffusion
coefficients are sufficiently close. Further they introduced and
analysed in detail the λ–ω class of reaction–diffusion equations,
which have become important prototype equations for the
study of periodic travelling waves and other spatiotemporal
phenomena. Our philosophy in this paper has been to
investigate numerically a variety of extensions to Kopell and
Howard’s work using numerical continuation methods. This has
given a comprehensive picture of the way in which wavelength,
amplitude, speed, time period and stability vary along the wave
family, for a number of sets of kinetic terms. Crucially, our
results include variations in the ratio of diffusion coefficients;
this is an important extension, since many results of Kopell
and Howard and subsequent authors apply only to the case
of equal diffusion coefficients. In particular our results lead us
to hypothesise that a one-parameter family of travelling waves
exists for all combinations of diffusion coefficients (except the
trivial case where both are equal to zero), even though the Hopf
bifurcation from which the wave family emerges may not exist
for all ratios of diffusion coefficients.

Kopell and Howard’s results on wave stability, and those
of subsequent authors, are restricted to waves of sufficiently
high or low amplitude, except for the exact criterion for wave
stability (6) in the λ–ω case. In that case, there are critical
values of wave amplitude, speed and wavelength, below which
waves are unstable and above which they are stable. Our results
suggest that this simple division into stable and unstable waves
applies generally for the λ–ω kinetics, for a wide range of
ratios of the diffusion coefficients. However our results show
that for other sets of kinetic terms this simple division may not
apply, even with equal diffusion coefficients. Rather, there can
in general be isolated bands of stable speed/amplitude.

From the viewpoint of applications to ecological systems
our results have several important implications. The first is
that the ratio of the diffusion coefficients could have important
effects on the wave family properties, and on the properties
of waves picked out by given initial and boundary conditions.
For example, in the predator prey scenario, the range of
wavelengths picked out by-Dirichlet boundary conditions, as
a function of α, varies over 8-fold (Fig. 7(h)). This could
determine whether or not waves can be detected in a domain
(habitat) of limited size, or with limited resources available for
spatiotemporal data gathering. If the observed spatiotemporal
oscillations are of low amplitude (relative to their mean),
then we predict that the effects of changing the diffusion
coefficients should be similar to our findings for the λ–ω
kinetics above, and should be independent of the actual
underlying kinetics. However, the presence of fluctuations
induced by environmental factors and measurement error may

make it impossible to detect periodic travelling waves of such
low amplitude. For higher amplitude oscillations, predictions
on the effects of changing the diffusion coefficients are not
possible without some knowledge of the kinetic equations.

Thus far, we have not analysed the wave family properties
as α → ∞ or as α → 0. The latter limit is of direct ecological
relevance, giving a model for plant–herbivore interaction.
In a number of other reaction–diffusion systems [38,42,
43], periodic travelling waves approach a repeating series
of increasingly localised spikes as the ratio of the diffusion
coefficients tends to zero or infinity. The α → ∞ and α →

0 limits are of course singular for the travelling wave Eqs.
(8). However, it is straightforward to construct travelling wave
equations for the limiting cases Du = 0 (α = 0) and Dv = 0
(α = ∞), and wave families can be found by numerical
continuation of these third-order systems. A relatively limited
study for the predator–prey kinetics, using this approach,
suggests that the periodic travelling waves are not localised in
these limiting cases, and that the α → ∞ and α → 0 limits are
regular for the periodic travelling wave solutions.

A surprising finding in our investigation of wave stability
is that, in all cases we studied, wave stability only changes
through an Eckhaus (‘sideband’) instability, and not through a
Hopf bifurcation, in contrast to [38]. Exploring the scenarios
under which these two different types of instability occur is a
natural direction for future study.

The results presented here are one step towards understand-
ing, and possibly predicting, the properties of the spatiotem-
poral dynamics that emerge from particular initial or bound-
ary conditions in oscillatory ecological systems. Our analysis
of the waves selected by zero Dirichlet boundary conditions
has shown that changing the diffusion rates can influence the
properties of the resulting periodic travelling waves, includ-
ing their stability. Previous studies of such wave selection have
been restricted to equal diffusion coefficients [15–17]. Here,
we extend this work, demonstrating that the diffusion coeffi-
cients play a key role in wave selection, including the stability
of the selected wave and consequently whether the long-term
spatiotemporal dynamics are ordered or disordered. Our stabil-
ity analysis is based on the essential spectrum, and this applies
on unbounded domains. As shown in Fig. 1(d), however, waves
that are essentially unstable may nevertheless be stable on suffi-
ciently small bounded domains. The results shown in Fig. 1(d)
suggest that the periodic travelling waves selected in this case
are convectively unstable [36], with the perturbation generated
by the zero Dirichlet boundary conditions being convected to
the right whilst growing. As a result, the waves only visibly
“break up” at sufficient distance from the boundary. A natural
extension of our work would be a comprehensive study of when
the essentially unstable waves are also absolutely unstable (im-
plying instability on all sufficiently large domains) [36]. Such a
study would clarify, for example, why there are values of α in
Fig. 9(a) that predict highly irregular spatiotemporal dynamics
without any evidence of periodic travelling waves, whereas in
Fig. 9(b), irregularities occur behind bands of essentially unsta-
ble waves.
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Appendix

In this appendix we provide further details on the stationary
patterned solutions that are approached in the predator–prey
reaction diffusion equations (Eqs. (1) with kinetics (9), and σ =

0.15, µ = 0.05 and κ = 0.2), when alpha α < αcrit ∼= 0.15, as
c → 0 (Fig. 7(f,h)).

We substituted the alternative travelling wave coordinate
ẑ = x − ct into Eqs. (1) to allow us to investigate the travelling
wave contours when c is close to zero. We found that for
any given value of α < αcrit with other parameters as above,
wavelength and amplitude approach non-zero limiting values
as c → 0 (Fig. A.1). This implies that there are limiting curves
of minimum wavelength and amplitude for α < αcrit and these
curves were estimated using AUTO by fixing c at a very small,
non-zero value and continuing in α (Fig. A.2).

Fig. A.2 illustrates that this limiting curve (also illustrated in
Fig. 6) is non-monotonic, exhibiting ‘tongues’. That is, regions
in which there are a series of sharp amplitude decreases and
increases for small changes in α.

Stationary patterns satisfy the equations

0 =
√
α
∂2u
∂x2 + f (u, v) (A.1a)

0 =
1

√
α

∂2v

∂x2 + g(u, v). (A.1b)

Equations of this form are well studied in the case of Turing
patterns (e.g. [1]) and although our system is not a Turing
system the analysis of it is very similar. We first linearise
the equations about their steady states with ũ = u − us
and ṽ = v − vs and then separate the solutions into Fourier
modes: ũ = u0eikx and ṽ = v0eikx . Substituting these into the
linearised equations gives

0 = u0
(

fu − K
√
α
)
+ v0 fv (A.2a)

0 = v0
(
gv − K (1/

√
α)

)
+ u0gu (A.2b)

where K = k2, and hence,

K 2
− K

(√
α + 1/

√
α
)
+ fu gv − fvgu = 0. (A.3)

Fig. A.1. The effect of reducing wave speed towards zero on wave amplitude
and wavelength for three different values of α < αcrit (see text for equations
and parameters). These results demonstrate that amplitude and wavelength
approach limiting values as c → 0. The different lines correspond to α = 0.1,
α = 0.05 and α = 0.01, in order of decreasing asymptotic values of amplitude
and wavelength as c → 0. Note the log10 axis for wave speed.

For stationary patterns to exist, this quadratic equation in K
must have real roots, which requires that(√

α + 1/
√
α
)2

− 4( fu gv − fvgu) > 0. (A.4)

Since fu gv − fvgu > 0 for the parameter values we are
using, there are two positive real roots for K whenever (A.4)
is satisfied. Substituting the predator–prey reaction kinetics and
parameter values into (A.4) gives the condition for stationary
patterned solutions to exist as α < 1/3.

To explore this patterned region we converted Eqs. (A.1) into
four ordinary differential equations and studied this system of
equations as a boundary value problem with u(0) = u(L),
v(0) = v(L), du/dx(0) = du/dx(L) and dv/dx(0) =

dv/dx(L) where L is the size of the domain.
We started with low amplitude sinusoidal stationary patterns

as initial conditions. These were calculated by solving (A.3)
for K , with all the other parameters specified, giving two
values of K , K1 and K2. The initial, low amplitude solutions
at the specified value of α were then calculated using u =

us + u0 cos(
√

K x) and v = vs + v0 cos(
√

K x), where
u0/v0 = − fv/( fu − K

√
α). Strictly, these are only solutions

in the limit as u0, v0 → 0, but with small non-zero values
of u0 and v0, they are sufficiently accurate to provide a
starting point for numerical continuation. We used AUTO to
perform continuations of these solutions in α for different fixed
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Fig. A.2. The limiting contour lines (thin) of amplitude and wavelength when
α < αcrit for the particular predator–prey scenario detailed in the text. The
thick lines denote stationary patterned solutions of fixed wavelength predicted
by Eqs. (A.1) and the dotted lines in the bottom panel are to highlight these
wavelengths. The insert is a close up of the area indicated by the arrow,
highlighting one of the “tongues” in the wavelength curve and one line of
patterned solutions of fixed wavelength. Note the log10 axis for α.

wavelengths (Fig. A.2). For each starting value of α(< αcrit),
this continuation generates a curve of stationary patterns for
both of the two fixed wavelengths. Moreover, both of these
curves cross the limiting contours of periodic travelling wave
amplitude as c → ∞; one of these crossings corresponds to the
limiting wavelength of the periodic travelling waves as c → 0
(Fig. A.2, bottom panel).

These results show that there is a region of the amplitude–α
plane in which there are stationary patterns; moreover there are
exactly two stationary patterns, with different wavelengths, at
each point in the region. The limiting forms of the periodic
travelling waves as c → 0 traces out a curve lying within this
region.
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