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Fronts propagating into an unstable background state are an important class of solutions to the cubic
complex Ginzburg-Landau equation. Applications of such solutions include the Taylor-Couette system in the
presence of through flow and chemical systems such as the Belousov-Zhabotinskii reaction. Plane waves are
the typical behavior behind such fronts. However, when the relevant plane-wave solution is unstable, it occurs
only as a spatiotemporal transient before breaking up into turbulence. Previous studies have suggested that the
band of plane waves immediately behind the front will grow continually through time. We show that this is in
fact a transient phenomenon and that in the longer term there is a fixed-width band of plane waves. Moreover,
we show that the phenomenon occurs for a wide range of parameter values on both sides of the Benjamin-
Feir-Newell and absolute instability curves. We present a method for accurately calculating the parameter
dependence of the width of the plane-wave band facilitating future experimental verification in real systems.
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I. INTRODUCTION

The cubic complex Ginzburg-Landau equation �CGLE� is
one of the most studied nonlinear equations in physics �1�. It
is a generic model for weakly nonlinear spatially extended
oscillatory media arising as the amplitude equation near a
supercritical Hopf bifurcation �2�. An important problem in
such systems is front propagation into an unstable state and
the CGLE has been fundamental to the study of this problem
in contexts including the Taylor-Couette system in the pres-
ence of through flow �3,4� and chemical systems such as the
Belousov-Zhabotinskii reaction �5�. Here we report on, and
explain, a previously unrecognized phenomenon associated
with such front propagation: a fixed-width band of plane
waves behind the front �Fig. 1�. This phenomenon occurs for
a wide range of parameters and we describe a method that
predicts the width of the band making this a natural target for
future experimental study.

The CGLE in one space dimension is given by

�tA = A + �1 + ib��x
2A − �1 + ic��A�2A , �1�

where the complex field A is a function of space x and time
t, and b and c�0 are real parameters. This equation has
a family of propagating front solutions connecting the un-
stable state A=0 to a plane wave. The latter is a fundamental
class of solutions of the CGLE with the general form
A=�1−Q2eiQx−i�t, where �= �b+c�Q2−c and −1�Q�1.
Straightforward substitution reveals a one-parameter family
of plane waves for all values of b and c. The wave number
Q�v� selected behind a propagating front is uniquely deter-

mined by the speed of the front v �which is �2�1+b2 �4��
via v= �b−c�Q+ �b+c� /Q �4,6�. Our specific focus is on the
dynamics that results from the corresponding plane wave
A�v� being unstable. In such cases the plane-wave solution is
either not observed or eventually undergoes a transition to
more complex dynamics such as a pattern of localized de-
fects or spatiotemporal chaos �Fig. 1�.

In a previous study �7� we described and explained the
phenomenon of fixed-width bands of plane waves in a sys-
tem of reaction-diffusion equations of so-called “Lambda-
Omega” type. These are simply CGLE �1� with the linear
dispersion term b=0. Superficially, our results appeared to be
qualitatively different from those of Nozaki and Bekki �6�
and of subsequent authors �reviewed in �4�� for the full
CGLE. These previous studies demonstrated the existence of
a region of plane waves immediately behind the propagating
front, whose width grows through time at a constant rate.
However, when we performed longer term simulations of the
full CGLE �1�, we found this behavior to be a transient: the
size of the region of plane-wave solutions eventually reaches
a limit and remains at the limiting width for all subsequent
times. Figure 1 illustrates three typical examples of the oc-
currence of plane-wave bands. In each case we apply a small
initial perturbation localized near the left-hand boundary to
the trivial state A=0. This induces a front to propagate across
the domain. Behind the front there is a region of plane
waves, whose width increases at early times, at a rate that
can be calculated via the theory of linear spreading speeds
�4,6�. However, in each case the long term behavior is a
constant width plane-wave band.

In this paper we provide a detailed account of the occur-
rence and nature of the fixed-width band of plane waves in
the CGLE. We first highlight some numerical errors in the
study of Nozaki and Bekki �6� which led them to incorrect
conclusions about the nature of the dynamics behind the
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propagating front. Next we give a brief overview of the
methods we used to predict the width of the plane-wave
band. We then report our predictions for the parameter de-
pendence of the width, which we confirm with simulations.
Finally, we discuss likely physical systems that could be used
to test our predictions.

II. CORRECTION TO THE STUDY
OF NOZAKI AND BEKKI [6]

The first study that we are aware of on propagating fronts
in the CGLE is that of Nozaki and Bekki �6�. These authors
discuss fronts connecting the unstable background state to
both stable and unstable plane waves. We began our own
work by attempting to reproduce the numerical simulations
in �6�. Despite �6� being very well cited, we found that the
simulations contained previously unrecognized major quali-
tative errors due to problems with numerical truncation. This
is most easily explained for Fig. 2 of �6�, in which the au-
thors show a propagating front, behind which there is a re-
gion of low amplitude plane waves, followed by plane waves
of higher amplitude; both plane waves are stable. Moreover,
the front shown in Fig. 2 of �6� undergoes a relatively abrupt
change in speed part way through the simulation. The initial

condition used in �6� is Ã=sech�0.05x̃�; here we use tildes

to denote Nozaki and Bekki’s variables, which differ from
those in Eq. �1� via scalings. Our own simulations of this
case show a uniformly propagating front followed by a
single plane wave �Fig. 2�a��. It seems that Nozaki and Bekki
performed their computations in single precision. Thus,
in reality they used initial conditions of the form
Ã=sech�0.05x̃� if sech�0.05x̃��10−5 and Ã=0 otherwise �the
exact threshold would depend on details of their numerical
implementation�. In Fig. 2�b� we show the results of a simu-
lation done at high precision but using this truncated initial
condition, which reproduces Fig. 2 of Nozaki and Bekki.
Figure 2�c� shows the results for Ã�x̃ ,0�=0 apart from a
perturbation localized to the left-hand boundary. In parts �a�
and �c�, a single stable wave train is selected behind the
invasion front. However, the truncated initial conditions lead
to a propagating front that is initially “pushed” before tran-
sitioning to a “pulled” front. These different propagating
front speeds lead to two different plane-wave solutions being
selected. The interface between these plane-wave bands
gradually moves with the lower amplitude wave train replac-
ing that of higher amplitude �19�.

There is a similar problem in Fig. 3 of �6�, which uses
parameter values giving an unstable plane wave behind the
front. In this case, the authors do not state their initial con-
ditions explicitly, but the tacit implication is that again

FIG. 1. Numerical simulations of pulled propagating fronts in CGLE �1� for different b and c values. The line plots show �A� for the last
time output of the surface plot below. The surface plots show the spatiotemporal dynamics of �A� with darker shading indicating smaller �A�
and black corresponding to �A�=0. The dotted lines mark the beginning and end of the plane-wave band as detected using the method
described in the main text. The figure shows that while different parameters can result in contrasting spatiotemporal dynamics behind the
plane-wave band, the constant width of the band is a consistent phenomenon. Simulations are initialized with �A�=0 other than a small
perturbation in x�1. The boundary conditions are Ax=0. Our numerical method is semi-implicit finite difference with grid spacing of 0.2
and a time step of 10−3.

MATTHEW J. SMITH AND JONATHAN A. SHERRATT PHYSICAL REVIEW E 80, 046209 �2009�

046209-2



Ã�x̃ ,0�=sech�0.05x̃�. Again, we were able to reproduce their
results by using the “truncated” version of this initial condi-
tion �we omit details for brevity�. The rather complicated
dynamics in Fig. 3�a� of Nozaki and Bekki is partly due to
the truncated initial conditions generating different unstable
plane waves in different parts of the domain. When Nozaki
and Bekki were working, more than 25 years ago, computa-
tional precision was much more limited than today; never-
theless, care is still needed to avoid numerical artifacts when
using initial conditions generating “pushed fronts.” In Fig. 1
and throughout the remainder of this paper, we consider ini-
tial conditions that generate a “pulled front,” which has
asymptotic linear spreading speed v�=2�1+b2 �4�; we write
Q�v��=Q� and A�v��=A� for brevity. However, we have also
found the same phenomena in pushed fronts, for which the
propagation speed is faster and the corresponding plane-
wave solution is different.

Since Nozaki and Bekki’s study there have been a number
of real physical experiments that have reported the phenom-
enon of plane waves behind invasion fronts �4�. To our
knowledge, however, none have studied the phenomenon in
sufficient detail as to test our prediction that the growth of a
plane-wave band is transient when the wave selected by the
propagating front is unstable.

III. CALCULATING THE WIDTH
OF THE PLANE-WAVE BAND

Our calculation of the width of the plane-wave band is
based on methods we have used in previous studies of the
dynamics behind propagating fronts in the case of b=0 �7,8�.
We provide only a general overview here, concentrating on
the elements that are different from our previous work, and
refer the reader to our previous publications for detailed de-
scriptions of the methodology.

The key issue underlying our calculation is the absolute
stability of the plane wave A� in a frame of reference moving
with velocity V. If the plane wave is absolutely unstable in a
frame with V�v�, then perturbations to the plane wave can
outrun the front and the plane wave will not be seen. Con-
versely, if the plane wave is stable then there will be an
uninterrupted expanse of plane waves rather than a band.
However, if the plane wave is convectively unstable in the
frame of reference moving with the front speed v� then all
unstable modes will propagate away from the front as they
grow leading to the band in which the plane waves are vis-
ible even though they are unstable. The left-hand edge of the
band occurs when the perturbations present in the plane

FIG. 2. Numerical solutions of the complex Ginzburg-Landau
equation as formulated in Nozaki and Bekki �6� with parameters as

in their Fig. 2. The equation is �t̃Ã=2Ã+ �2.2+ i��x̃
2Ã− �1+ i��Ã�2Ã,

which can be converted to Eq. �1� by simple rescalings. Shading

corresponds to the value of �Ã�, with darker shading indicating

smaller �Ã� and black corresponding to �Ã�=0. The initial conditions

are as follows: �a� Ã�x̃ ,0�=sech�0.05x̃�; �b� Ã=sech�0.05x̃� if

sech�0.05x̃��10−5 and Ã=0 otherwise; �c� Ã�x̃ ,0�=0 except for a

small perturbation near x̃=0. The boundary conditions are �x̃Ã=0.
Our numerical method is semi-implicit finite difference with grid
spacing of 0.2 and a time step of 10−3.
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FIG. 3. �a� Wave train bands behind pulled propagating fronts in
Eq. �1� are predicted to occur in �b ,c� parameter space where
0�W��. The gray broken line is the boundary at which the
selected plane wave is absolutely unstable in the moving frame
of reference with V=v�. This line crosses the b=0 axis at
c=18.727 51. The thick solid line is the boundary at which the
selected plane wave is stable. In �b� the thin black solid lines show
contours for the bandwidth coefficient W, with the coefficient val-
ues labeled at the edge of the plot, and we overlay the Benjamin-
Feir-Newell curve �thin black broken line�, the absolute instability
curve �thick black broken line�, and the absolute stability boundary
�when V=0� for the plane wave selected by a pulled propagating
front �thick gray line�. There is a region of multiple W values in the
bottom left of �b� located between the two W=50 contours with
b�−2.5.
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wave immediately behind the front become sufficiently large
that they dominate the plane wave itself, which we assume to
occur when the perturbations become amplified by a scaling
factor F. For any given frame velocity V, the distance behind
the front at which this amplification first occurs can easily be
calculated: it depends on both the maximum growth rate of
perturbations in that frame of reference and the speed
V−v� at which the perturbation travels away from the front.
The actual width of the plane-wave band is given by the V
which minimizes this distance. In �7� we show that this is
V=Vband, which solves

�v� − Vband�Im�kmax�Vband�� = Re��max�Vband�� , �2�

where �max is the growth rate of the most unstable
linear mode and kmax is the corresponding spatial
frequency. The bandwidth itself is −log�F� / Im�kmax�Vband��,
so that all of the parameter dependence resides in
W�b ,c�=1 / �Im�kmax�Vband���, which we refer to as the
“bandwidth coefficient.” In general, there can be multiple
solutions of Eq. �2� and it is then the smallest W that will
determine the width of the plane-wave band.

There are three standard approaches to calculating abso-
lute stability and, hence, �max and kmax: �i� numerical con-
tinuation of saddle points of ��k�− iVk in the complex k
plane �9�; �ii� calculating the sign of the linear spreading
speed �4�; �iii� calculating branch points in the absolute spec-
trum �10,11�. We adopt the last approach for which �11�
gives a detailed methodological description. For a linear
mode with temporal eigenvalue � and spatial frequency k,
the dispersion relation D�� ,k ;V�=0 is a quartic polynomial
in k. We denote the four roots by k1 , . . . ,k4 with
Im k1� Im k2� Im k3� Im k4. “Branch points” are the �six�
values of � for which ki=ki+1 for some i and they are rel-
evant to absolute stability if their index i=2, which corre-
sponds to the “pinching condition” of �12�. Therefore, we
solve Eq. �2� for Vband via numerical continuation of known
solutions to

D��,k;V� = �kD��,k;V� = 0 �3�

monitoring the indices of the repeated roots. Our numerical
codes, which use the software packages MATLAB �13� and
AUTO �14�, are available from the first author on request.
Note that our approach to calculating absolute stability con-
cerns infinite domains, which is the relevant scenario for the
plane-wave bandwidth. On bounded domains, plane-wave
solutions of the CGLE can exhibit remnant instabilities in
which perturbations grow while being repeatedly reflected
from the boundaries �11,15�, but such an instability is not
relevant here.

We used MATLAB �13� to solve Eq. �3� for given values of
b, c, and V giving six values of � and their associated values
of k. We used these values as starting points in numerical
continuation of Eq. �3� in AUTO �14� for varying parameter
values. We first performed continuations in V looking for
values that satisfied Eq. �2�. This then gave us Vband and,
thus, �max, kmax, and W for given values of b and c. We next
performed continuations in either b or c, while maintaining
equality �2�, to allow us to monitor the variation in W and to
label combinations of b and c associated with specific values

of W. Finally, we used these labeled solutions as starting
points for numerical continuations tracking contours of con-
stant W in b-c parameter space.

We tested our predictions of W with numerical simula-
tions of Eq. �1�. We used a standard semi-implicit finite dif-
ference method to solve the equations �in MATLAB �13��. Nu-
merical tests with this method showed that our simulations
were accurate to about 0.1%. We used an automated method
�implemented in MATLAB �13�� for detecting the width of the
plane-wave band in simulations. We defined the observed
bandwidth as the region immediately behind the invasion
front at which ��A /�x��1	10−3. This condition gives a ro-
bust measure of bandwidth although the size of the threshold
means that the resulting values are slightly smaller than �but
directly correlated with� estimates suggested by visual in-
spection of space-time plots such as those shown in Fig. 1.
We estimated the derivative numerically after applying a
smoothing algorithm followed by a polynomial fit over a
moving window of 9 grid points. By implementing this
method we could then compare actual measures of band-
width in numerical simulations with our predicted values of
W from numerical continuation. We used standard linear re-
gression to compare the predictions with the simulations. We
allowed for nonzero intercepts in the regression lines because
our method for measuring the width of the plane-wave band
in simulations excludes some regions on either side.

Note that our defined threshold of ��A /�x��1	10−3 is
larger than in our previous study of the b=0 case �7�, where
we used ��A /�x��5	10−7. We chose the new threshold be-
cause it resulted in a closer correspondence between the au-
tomated measurement and the size of the plane-wave band as
visible by eye �as illustrated in Fig. 1�. One consequence of
the new threshold is that, as expected from our theory, it
causes a change in the slope and intercept of the fitted linear
relationship between observed bandwidth and W; hence,
these differ from those given in �7�. Repeating the analyses
in �7� with the larger threshold results in estimates of the
slope and intercept of the linear regression that are similar to
those found here. This is consistent with our theory, which
predicts that �for a given threshold� the observed bandwidth
and W should be linearly related, with slope independent of
the parameter values b and c.

IV. RESULTS

Our results indicate that a plane-wave band behind propa-
gating fronts will occur for a wide range of parameter values
in the CGLE �Fig. 3�a��. As expected, one boundary to the
parameter region in which a plane-wave band occurs is the
contour at which the wave train band behind the propagating
front becomes stable. Another boundary is the point at which
the plane-wave band is absolutely unstable in all moving
frame reference velocities, V. Along this curve, Vband=v� and
W=0.

Our analysis of W in �b ,c� parameter space revealed the
expected pattern of high bandwidth coefficients close to the
plane-wave stability boundary with lower values further
away �Fig. 3�b��. It also revealed that the bandwidth varies
nonmonotonically with parameters �see also Fig. 4�. We also
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plot in Fig. 3�b� the Benjamin-Feir-Newell curve �beyond
which all plane-wave solutions are unstable�, the absolute
instability curve �beyond which all plane-wave solutions are
absolutely unstable when V=0�, and the absolute stability
boundary for the plane wave selected by a pulled propagat-
ing front �when V=0�. This highlights that these curves pro-
vide no real information about the bandwidth.

In Fig. 4 we compare the width of the plane-wave band
observed in numerical simulations with W for two slices in
the b-c parameter plane. The fit is extremely good. The fig-
ure also shows the nonmonotonic dependence of W on pa-
rameters.

We also discovered a region of multiple W values in the
b-c parameter plane �Fig. 5�a�� which allowed us to test and
confirm our prediction that it should be the smallest value of
W �Fig. 5�b�� that determines the size of the plane-wave
band. Although we did not find any other regions of multiple

W values during our investigation, we do not know whether
other such regions occur elsewhere in parameter space.

V. DISCUSSION

We have identified a phenomenon in the one-dimensional
CGLE: fixed-width bands of plane waves behind propagating
fronts. We have calculated the bandwidth as a function of
parameters obtaining very good agreement with simulations.
The constancy of the bandwidth over time and the ability to
predict its value precisely make it a natural target for experi-
ments. The widespread applicability of the CGLE means that
there are a number of candidate systems that could be used.
One such is convection in binary miscible fluids. At rela-
tively high Rayleigh numbers, localized perturbations �in
temperature� to the quiescent homogeneous conductive state
can generate propagating fronts behind which are plane
waves �16�. To our knowledge, only stable plane waves have
been reported, but the relevant amplitude equation is the �cu-
bic� CGLE �17� and, thus, our results suggest that plane-
wave bands, followed by spatiotemporal chaos, would be
found as control parameters are varied. Another possibility is
the Taylor-Couette system with through flow �3� for which
the �cubic� CGLE is again the relevant amplitude equation.
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FIG. 4. Comparison of the bandwidth coefficient W with nu-
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Localized perturbations can be generated by a sudden change
in the inlet boundary location and lead to plane waves behind
a propagating front. Previously, this has been used to locate
the convective instability boundary, but its wider application
would provide a natural test of our results. Potential non-
physical test systems include oscillatory chemical reactions
�5� and oscillatory microbial interactions �18�, both of which
have been studied using the �cubic� CGLE. In all of these
various cases, the relevant CGLE coefficients have already
been derived, so that our results can be applied directly to

predict the dependence of the width of the plane-wave band
on the system parameters.
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