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From a discrete to a continuous model of biological cell movement
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The process by which one may take a discrete model of a biophysical process and construct a continuous
model based upon it is of mathematical interest as well as being of practical use. In this work, we take the
extended Potts model applied to biological cell movement to its continuous limit. Beginning with a single cell
moving in one dimension on a lattice and obeying Potts model rules of movement we develop an expression
for the diffusion coefficient of a collection of noninteracting cells which depends explicitly on the Potts model
parameters. We show how this coefficient varies when the Potts parameters for cell membrane elasticity and
cell-medium adhesion are varied, and perform computer simulations which support our theoretical result. We
explain the relationship between the probability of occupancy of lattice points and the density profile in the
continuous limit, and extend our analysis by including interactions between the cells. In so doing we are able
to develop a set of coupled ordinary differential equations showing the evolution of a density profile in the
presence of significant cell-cell adhesion, and show how increases in the strength of this adhesion modulates
diffusion. In so doing we develop some insights into how continuous models of physical systems can be based
upon discrete models which describe the same system.
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[. INTRODUCTION eling of cancer invasion developed by two of the authors
The mathematical models which researchers have devel10] involves the use of the extended Potts model, which is
oped to describe biological phenomena can be divided intof particular relevance to the work which we present here.
three broad categories: continuo(ghere all variables are Continuous models frequently involve the development of
considered to be defined at every point in space and tima reaction-diffusion equatidri1]. These are useful when the
changes continuouslydiscrete(where space is divided into length scale over which we wish to investigate the phenom-
a lattice of points with the variables defined only at theenon is much greater than the diameter of the individual
points and time changes in “jumpg”and hybrid(a mixture  elements composing it. For example, in the biological situa-
of the previous twh Each of these has advantages and distion, we would use a continuous model when we are inter-
advantages depending on the phenomenon under considested in behavior over a length scale much greater than the
ation, and on the length scale over which we wish to invesdiameter of one cell. These models have been found to be
tigate the phenomenon. particularly useful in the study of pattern formation in nature,
Discrete models of biophysical processes are of use whegspecially the phenomenon of “diffusion driven instability”
we are interested in the behavior of individual cells, as well[12].
as their interactions with other cells and the medium which Clearly, if we have both a continuous and discrete models
surrounds them. Usually, the cells are considered to be pointsf the same phenomenon, we would expect the models to
which move on a lattice according to certain rules. Thesayive rise to similar solutions at length scales where their
rules can be modified according to the states of neighboringanges of applicability overlap. Some workers have investi-
points, such as whether or not they are occupied. Individuagated how one may make this crossover using a variety of
based models have found useful application to many physitechniques: for example, Turchji3,14] uses the technique
cal systems and even simple rules of interaction can give risef scaling both space and time to develop expressions for the
to remarkably complex behaviofl]. In particular, diffusion coefficient which depend explicity on the
individual-based models have found applications in ecologyndividual-based “hopping” probabilities on a discrete lat-
[2], pattern formatiori3], tumour growth[4—6], and angio- tice. Deutsch[15] analyzes(discrete velocity jump pro-
genesis associated with malignari@y8] amongst many oth- cesses to derivécontinuous transport equations applicable
ers. The application of hybrid models — where cells areto biological systems. An alternative approach involves the
modeled as discrete entities with their movements being indevelopment of asymptotic theories which show how differ-
fluenced by continuous spatial fields — has also been foundnt types of equations to describe both diffusion and hyper-
to be a useful approad®]. A discrete approach to the mod- bolic phenomena can be developed through taking different
types of scalings in space and tiff6—20.
In this work we have taken th@liscrete Potts model of
*Email address: stephen@ma.hw.ac.uk biological cell movement and shown how it can be used to
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obtain an expression for th@ontinuou$ diffusion coeffi- 5
cient of a collection of identical noninteracting cells, and Ee=2 Mv,—V1)2, 2
present computational results which support our analysis. In 7

Sec. Il we first give an overview of the extended Potts mode{yere the summation runs over all of the cells in the system
and its applicability to the modeling of biological cell move- andu, is the instantaneous volume of cell Bringing Egs.
ment. We go on to show how a careful study of the move+y) anq(2) together we obtain the following term for the total
ment of the centers of mass of isolated Potts modeled Ce"%nergy of the system:

combined with the taking of suitable limits in space and
time, can allow us to develop an expression for the diffusion
coefficient of a mass of such cells. This expresgion the Eo= > > Jf(aij)JT(ai,j,)"'g Muv,~VpZ (3

it

diffusion coefficiem — a continuous, macroscopic quantity o

is explicitly dependent. on thémicrpscopitr Potts model pa- In evolving the simulated cellular aggregate we use the
rameters for cell-medium adhesiveness and cell membrang .. "~ method30]. We consider copying the param-

B et e 0 o Drecertcompulr SUlters fr one atice poi ) o a neighorng ltce
9 Ypoint (i’,j"), and work out the total energy changé of

sis. In Sec. IV we argue that an analogy can be drawn be; o .
tween the probability of occupancy of a lattice point in a he system due to the copy. If this site copy were to result in

discrete model and the local density in the continuous limit reduction in the total energy of the system, then it is ac-

On this basis we introduce interag;ions between the celléceptEd' If, however, the energy would be increased then it is
. . : -~ “accepted with Boltzmann weighted probability

and develop a set of coupled ordinary differential equations

to model the evolution of a density profile composed of cells 1 if AH=<O

o_beying_ Potts _mo_del rules_ of movement. We_conclude _by Pl =01 =1 s . 0, @
discussing the insights which this study gives into how dis- e I =0,

crete models of biophysical processes can be used as a basis _ .

for the development of their continuous equivalents. where g is a parametefanalogous to temperature in other

physical systemsvhich quantifies the likelihood of energeti-
cally unfavorable events occurring. By repeating these site-
Il. FROM TRANSITION PROBABILITIES TO A copy attempts we are able to track the evolution of the sys-
DIFFUSION COEFFICIENT tem as it attempts to reduce its total energy. We illustrate in
Fig. 1 an example of the evolution of a simulated malignant
tumour under the Potts model from the previous work of two
The extended Potts model has found application in paref the authorg10].
ticular to the problem of differential adhesion driven sorting
in a variety of system§21-26. Here we give a brief over-

view of the model, and refer the reader to the previous work - ) ) ) )
of two of the authors for greater det4il0]. The diffusion of a collection of noninteracting particles

We attach to each poinij) on a square lattice a label €an be studied from two perspectives: we can either observe

oi; » and define adjacent points which have the same value df€ behavior of the whole collection and work out its diffu-
o to lie within the same cell. Athough there may be manySion coefficient by noting the area covered after a given time
cells present, many of thefif not all) will be of the same ©F We can focus on the behavior of one particle in the col-
type. Hence, we define an additional labetvhich defines lection and work out the behavior of the whole ensemble
the type of cello; . Biological cells have receptors on their from a study of the random walk which it performs. If the
surfaces associated with adhesiverf@s, and the binding SYSteém is ergodic, then these two approaches will give the
of these receptors with their associated ligands either on §2me result. _

neighboring cell or in the extracellular matrix gives rise to an LS our motivation to take the simulated Potts model cells
adhesive energy. We quantify this energy by defining Cou_and work out the effective diffusion coefficient of a collec-

pling constants for the energy of interaction between neigh- ion of such cells, so that we may draw a relationship be-
boring lattice points with differing values af. Hence, the tween this coefficient and the Potts model parameters. In our

total adhesive energy of the system is given by _simulations, observing t_he beha_lvior o_f a single cell over time

is much less computationally intensive than observing the

behavior of a large number of cells for a short time. This is

Each= 2 E Ir(oi) I oy - (1) because the simulation of a large number of cells requires
vy storing information about each cell in arrafyghich may be

thousands of elements longnd updating them at each
In addition to adhesiveness, the cells also have a potentidllonte Carlo time step, all of which is very time consuming.
energy associated with the elasticity of the cell membranéience — since the ergodic hypothesis states that both ap-
[28,29, and we define the elastic constantdylf the cells  proaches will ultimately give the same answer — we con-
have a “relaxation volume'V; (the volume to which they centrate on the behavior of an individual cell, and work out
would relax in the abscence of external fongeken the total the diffusion coefficient of a collection of identical such cells
energy associated with cell membrane elasticity is given byby studying its movement.

A. Overview of the extended Potts model

B. The diffusion coefficient of a Potts modelled cell mass
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&ni
E:a[ni—1+ni+1_2ni]- (6)

If we write n;_;=n(x—h), n;.;=n(x+h), whereh is the
separation between the points, perform Taylor expansions,
introduce a scaling=\ 7, and take the limif13]

lim (\h?)=D (7)
h—0

A —©

then we obtain the diffusion equation

an 5 #°n
aT_a (9)(2,

®

where we have neglected tiig h*) and higher terms.

FIG. 1. Showing the characteristic appearance of a simulated SO, yve see tha't.V\./e Cfn start_W|th knowlgdge of the discrete
tumour. From Ref[10], where the simulation is described in detail. ransition probabilities ™ andT ", and use it to work out the
In this simulation, the cells are experiencing both cell-cell and cell-diffusion coefficient. If we relax the assumptian” =T,
medium adhesion, and have elastic, deformable membranes. ThBen the resulting diffusion equation becomes nonlinear.
cell mass is surrounded by extracellular matBCM), and the cells  Nonlinear diffusion well describes many phenomena in biol-
secrete proteolytic enzymes which dissolve it. In so doing theyogy [11], but in this work we concentrate on the simple case
create steep local gradients of ECM protein concentration whictof linear diffusion.
the cells are attracted to move up through the process of haptotaxis. We note that in the above, and in the derivations that
In this manner the cells are shown to invade the ECM as long, thickollow, we must regard the diffusion limit as formal since we
strands of cells — a pattern known as “fingering,” which is a hall- assume the boundedness of the higher derivatives necessary
mark of malignant invasion. Parameters used in the figwtéch  to validate the limiting procedure. The above method has
are described in detail in Refl0]): Jcc=3, Jem=6, ky=40,  also been applied to model chemosensitive movement in

t=1500,n,=2000. bacteria, for example, see Othmer and Stevi8l§ and
Painter, Horstmann, and Othm&2].
Consider a particle moving in one dimensiiD) on a In the Potts model, the cells have finite spatial extent,

lattice as illustrated in Fig. 2. If one such particle is initially whereas in the derivation above they are treated as being
located at point then there are three things which it can do: mathematical points. However, if we concentrate on the
move to the right with probabilityfi *, move to the left with movement of the simulated cells’ centers of mé&sm) then
probability T~, or do nothing with probability +(T* we can use this point-based model. We conduct the following
+T7). Hence, the rate of change of the number of particlesinalysis in 1D to make the algebra straightforward, and as-
at pointi is given by[13] sume that the results will have qualitative application to
higher dimensions. The main reason for this will become
=Ty (W + T (N =Ty (W =T (W), g\glgr?r,:/tl(\)I\I{:sncgﬁOCEE]Séd;;:bf}lnglftance moved by the c.m. at
(5) Consider a cell in 1D such as that illustrated in Fig. 3: its
c.m. is at the point indicated. In the Potts model simulations,

whereu is a continuous variable upon which the transitionthere are four possible changes which can be attempted: an

particles at point. If we take the transition probabilites to be ight or the left. Each of these changes will have an energy
equal constant¥ " =T~ =a, then associated with them, and in the simple case of one cell in

1D, the directionality of the movement has no effect on the
- energy, andAE is dependent only on whether an expansion

an;
at

Tn, Ty or a contraction is occurring. In the case of there being more
/\‘ '/\ than one cell present, this symmetry is lost and directional
effects onAE have to be included: we consider this higher
L L L level of complexity in Sec. IV.
i-1 \\/i U i+l An expansion or contraction of one Potts lattice point re-
— . sults in a movement of the c.m. which is equal to one half of
T n, T n, the distance between points on the lattice. Hence, in focus-

sing on the movement of the c.m. we are considering the

FIG. 2. A schematic diagram of the transition probabilities af- movement of a point-based particle on a lattice which is
fecting a particle moving on a 1D lattice. twice as fine as the Potts lattice, with two points for every
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FIG. 3. Adiagram of a simulated cell in 1D moving on the Potts 19 L L L L L L
lattice (large circle$, along with the lattice upon which the cell's 0 1 2 3 L 4 5 & 7

center of mass moves during the expansion or contraction of the

cell (small circle$. The arrows at the extremities of the cell illus- FIG. 4. A sketch of the energy curve f&r[given by Eq.(9)] as
trates the four movements which it can make, either by expanding function of cell length_ for sample values of the Potts param-
to the right or the left, or shrinking from the right or the left. An eters. As we can see, the minimum of the energy occurs at a value
expansion or contraction will result in the cell’s perimeter increas-of |_ which is not equal td.-(=5). Note also that, since the energy

ing or decreasing by a length equal to twice the separation betweegrve is a quadratic, it is symmetric abol,,, and, hence,
lattice points(as perimeter is laid down on the top and the bottom Ew. —=Ew 1k, wherek is an integer(Parameters used:r
in min ’ :

of the cel). Following such an expansion or contraction, the cell's :5”")\:1 Jem=2.)
center of mass will move a distance equal to one half of the Potts

lattice spacing. 3
o o Linin=Lr— =" (12)
Potts lattice pointthis also is illustrated in Fig.)3In 2D and

higher, this simplifying assumption Is |O$t’ as there is a muc ence, the equilibrium length of the cell is determined by the
greater diversity of possible changes in cell shape at eac

. > _ lative strengths ok and J. . By substituting Eq.(12)
MCS. Taklng this Into account ”_“a'fes the analysis far MOrGhto Eq.(9) we obtain an expcression for the minimum energy
complex while having little qualitative effect on the results - .
relating the transition probabilities to the Potts parameters ™"
and in Sec. lll we present computational results which sup- J(Z:M
port this assumption. Emin=2(Lt+1)Jcm— ~ (13
The energy of a cell at length has contributions from

both the energy of cell-medium adhesiveness and cell meny gyketch ofE vs L for sample values of.1, Joy and\ is

brane elasticity and is given by given in Fig. 4. It tells us that any change in cell length away
) from L i, results in an increase in its total energy and will be
EL=[2L+2]Jcu+N[L—L1]" (9)  accepted during the Potts model simulations with probability

exd —(AE/B)]. Hence, the likelihood of a cell being at length
It may be shown that the energy associated with expansion df will be proportional to the difference in energy at this

the cell by one Potts lattice point is given by volumeE,; and the minimum energ§ in:
1 E, —En

whereas that associated with contraction of one lattice poinfperez =the partition function, given by
is given by '

. (15

k
1

AEc=—2Jcy+A[1-2(L—L7)]. (11) Z=n2_k exr{E(E(LTM)—Emm)
We can see from the expression fdE,, if L<L; it may  Note the parametdcin the summation above. The choice of
nevertheless be energetically unfavorable for the cell to exthis is unimportant, provided it is greater than or equal to the
pand — even though it is below its target voluing— due  maximum deviation fronlL which the cell will attain. Fol-
to the energy expense of laying down perimeter. Similarlylowing Potts model rules, the probability of a site copy at-
contraction may be unfavorable even though the cell is at &mpt during which a cell initially at length; expands or
lengthL>L+. The length which minimizeg, is given by  contracts to lengtl., =1 will be given by
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1 if B +1—E <O
Li—L;x1)= ' -
p(Li—Ly*1) exp (FLiz1i= BB if Eri-1mE, >0 N
(16)
30

C. Relating energy and Potts modeled movement to diffusion

We can relate the above study to the diffusion coefficient
of the cell in the following way. In words: The probability of ¥ 4
a cell at position moving to the right=probability of cell
being at lengthL; and moving to the right while at this
length + probability of being at length , and moving to the

right while at this length+ etc. for all possible lengths. 10r
So,
k 0 1 1 1 1
+_ R 0 50 100 150 200
T —n;k Pr+mP+n) (17 t (in MCS)

whereP ) = probability of being at length r+n [given FIG. 5. The relationship betweds?) and timet for two values

by E 12 ] and pR B bability of ina to th of B. Lines have been fitted through the data points by least squares
.y g. (. ) an. (Ly+m) p.ro ability ot moving to the fitting. As we can see, the slope of the line is increasing3as

right while at this length. Similarly, increased. From the Einstein relationsKi?)=2Dt, this corre-

sponds to an increase in the diffusion coefficibnt(Other param-

k
eters\=4,Jcu=2, L;=5.)

- L
T7= 2 PurnPliim: (18)
associated with it; however, it breaks down where there is
where the symbols have the same meaning for movements toore than one cell present, as the environment in that case

the left. The cells have to be abmesize, so in addition the has an influence oAE. This is discussed in detail later in

probabilitiesP (. ,) must be normalized to satisfy the con- this chapter.
Substituting Eqs(14) and(21) into Eq.(17), and recalling

dition the derivation of Eq(8), we obtain the following expression
k for the diffusion coefficient of noninteracting Potts modeled
> Pi+m=1 (190  cells in terms of the Potts model parameters
n=-k T
Referrin i i i i i 1 & Emin— E(L +n)
g to Fig. 4, since the curve is a quadratic symmetric D=— > ex T
aboutl y,, it follows thatE  _n=E(_ +n) wherekis an 4Z =k B
integer. Suppose that the cell is at some lengthL++n. If 1
a site change is attempted in which the cell would expand in % 1+exp{ — |23yt N(2n+ 1) || (22)
length by one Potts lattice point, then using Ef) it is B
possible to show that the size of the energy associated with _ ) )
an expansion Of one |attice point is given by In this equanon_'r is the Iength of the cell in the absence of
adhesive ef“fectsELT+n is the energy at length{+n, de-
AE,=2JcutN(2n+1). (200 fined in Eq. 9, wheren is an integerE , is the minimum

. . . _ . energy of the cellJ¢y is the cell-medium adhesive energy
If this energy change is negative then the site change will beo it length is the cell membrane elasticity coefficient,
accepted; conversely, if it is positive it will be accepted with 7 ig he partition function defined by Eq15), and 3 is a

Qoltzmann-_weighted probability. In th_e Monte Carlo simulg- parameter which quantifies the probability of energetically
tion, there is an equal 50% probability of choosing a point,,\tavorable events from taking place.

either just inside or just outside of the cell’s lateral extremi-
ties for copying into its neighbor. Hence, there is an equal

chance of expansion or contraction being attempted at each Iil. COMPUTATIONAL RESULTS
time step. We may therefore conclude that Now that we have a theoretical expression for the diffu-
IAE, | sion coefficient, we present the results of some Monte Carlo
n D (21)  simulations which support it. The mean square distasée
which a single particle will move in timeécan be related to

R _plL 1
PlLism =P em= 7| 1+exH —

L ) the diffusion coefficient of a gas of such particles through the
where we have assumed thBﬁ_T+n)=P(LT+n). This as-  Ejnstein relation

sumption is accurate for the single cell case where an expan-
sion to either the right or to the left has the same energy (s?)=2Dt. (23
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FIG. 6. Diffusion coefficientD vs B. From the lines fitted
through the data points in Fig. 5 we work out the diffusion coeffi-
cientsD. The relationship is initially linear, as we would expect 0.20
from the Einstein relationship, but at high D begins to saturate.
This is because, at higjg, the Boltzmann weighted probability
function tends to 1, and further increasesdrhave no effect on
increasing the motility of the cell. The curve obtained from plotting
Eq. (22) as a function of3 is overlaid on the data points and, as we
can see, there is very good agreement. Note that the saturatio™
effect is stronger in the discrete case: this is because, at high value  0.16 |
of B the cells are limited in the number of different shapes which
they can take, and begin to fragmefiParameter valuesx=4,
Jem=2,L1=5.)

0.14 1

Hence, by studying the movement of a single cell in our

Potts model simulations, we may work out the diffusion co-

efficient D for these simulated cells. 042 . s . s
We began by running some simulations in 1D for a single 0 10 20 30

cell. We allowed the cell to move for a given number of (b) &

Monte Carlo time step@MCS), worked out the mean square _ _
distance traveled in that time, repeated this process 500 FIG. 7. An illustration of how changes ik andJcy affect the
times, and evaluate the mean squared distésﬁ)efor thist. transition probability as obtained from ER2). Increasing\ has
We then repeated this process ten times to get the mean Bie effect of reducing " across the whole of the range of density
(sz>=@ The reason for this choice of repetitions was to(Upper graph, wittley=4). This is as we would expect, as if the
K th t ired t the simulati ithi membrane is made “stiffer,” then it becomes energetically unfavor-
eep the ume require . 0 run the simuiations wi |_n a rea'able for movement of the c.m. to occur. Similarly, 3§y, is in-
sonable level yet ensuring that the standard deviation of th

X . . Sreased(lower graph, withx=4), changes of cell shape which
Eeag was relatively smal<7%). The results are given in involve an increase in cell perimeter become energetically un-
ig. 5.

) . ) . favourable, which reduces the likelihood of such site-swaps occur-
From the Einstein relationship, we can work dutfrom

! ! : ' ring, and reduces the motility of the cell.
the slope of this set of lines. In Fig. 6 we show the variation

of D with the Potts paramete8 and have superimposed on tained from studies of the 1D situation, have qualitative ap-
the results a curve of Eq22) with the same parameter val- plication to higher dimensions. This assumption is supported
ues. As we can see, there is very good agreement betwel our study of the relationship between the mean-squared
the computational results and the theory. Of couBeis  distance traveled in a given time in 2D, illustrated in Fig. 8:

dependent also on the other Potts parameters iiZ2f.and a5 we can see, there is a linear relationship betws®nand
in Fig. 7 we illustrate the effect of changing the parameters iy keeping with the Einstein relationship.

for adhesiveness and membrane elasticity. As we can see, the

general shape of the curve is not influenced, but the slope of

it is changed in ways which we would expect: increasing the

stiffness of the cell membrane reduces its motility, as does

increasingdcy - As we discussed in Sec. |, continuous models are usually
We mentioned in Sec. Il that our results, although ob-cast in the form of partial differential equatiorf®DE’s).

IV. THE EVOLUTION OF A CONTINUOUS
DENSITY PROFILE
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FIG. 8. The relationship betweds“) andt for the 2D case. As . —

we can see, there is a linear relationship between the two in keeping

with the Einstein relationship, and the gradient of the least-squares FIG. 9. The eight possibilites for what can happen to lattice

fitted line increases with increasing This supports our assump- pointi in the case of multiple cells on a 1D lattice. Scenarios I-IV

tion that studying the simplified 1D case nevertheless has qualitacorrespond to the probability of lattice pointbeing invaded —

tive application to higher dimensions. which corresponds to the number density of cells at poimtreas-

ing when there are many cells present. Scenarios V-VIII corre-

When we attempt to solve a PDE numerically using a finite>P°"d 10 the cell number densigcreasingNote that scenario V'is
. . . . . the inverse of scenario |, scenario VI is the inverse of scenario Il,

difference method, the first step is to discretise space ang <o on

develop a set of coupled ordinary differential equations

(ODE's) to describe the evolution of the dependent variablenterpret the physical quantity “density” in continuous mod-
at each lattice pOint. In biOlOgical situations, Usua"y the CO-¢ls as Corresponding S|mp|y to the probabmty of a particu|ar
efficients of the PDE are continuous quantities such as thgoint in space being occupied by a cell. Hence, we draw a
diffusion coefficient. In Sec. Il we took a Potts modeled cellparallel between the probability of occupancy of a lattice
and derived a continuous diffusion coefficient for a collec-point in the 1D Potts model simulations and the local density
tion of noninteracting identical cells of this type moving on ain the continuous limit.
lattice following these rules. In this section, we extend this Turning now to the influence of energetic changes on the
study to include interactions between the cells, and in sanovements of the cells, consider each of the eight possible
doing develop a set of coupled ODE’s which describe thescenarios illustrated in Fig. 9. Each has an energy associated
evolution of a density profile in which the cells composing it With it: some of these energies are equal, and some are the
obey Potts model rules of movement. same in magnitude but different in sign. If we define the
In our study of cell movement in Sec. Il we considereddguantity pi(t) as corresponding to the probability of lattice
only a single isolated cell moving around the lattice. ThisPointi being occupied at timethen the probabilities of each
had the advantage of making the energy changes associategenario illustrated can be worked out. For example, the
with movement symmetric in space: the cell's surroundinggroPability of configurationt existing in the region of point
were isotropically vacant, and the probabilities of movement imet is given by(we drop thet's for convenienc
. RS o on b
in every direction were the santee., in 1DT —T ). Inthe . p'=pi (1= p)pi- 1. (24)
case where there are many cells present, this symmetry is
broken as the presence of cells adjacent to the cell of interes¥hen lattice pointi is invaded through, say, scenario |,
influences the likelihood of the cell moving in one direction where the cell expands into the lattice point from the left,
as opposed to another. then the invading cell will increase in length. As a first ap-
Figure 9 is the many-cell equivalent of Fig. 3, and illus- proximation, we assume that the cells do not deviate by
trates the eight possible site-swap events which can happenuch from their target length+: this approximation is rea-
to lattice pointi. Each of these has a likelihood of occurrencesonable from a biological perspective, as in many instances
depending on the probability of the neighboring lattice pointof cell movement, there is not much change in cell volume.
being occupied, and on the energy associated with cell-celence, for the invading cell to remain closeltg there will
contact. Considering the first point, we assume here that amave to be some contraction at the opposite end of theaell
equivalence can be drawn between the probability of occudistancel; away) through scenarios VI or VIII. Similarly, if
pancy of a lattice point and the continuous number density inattice pointi is invaded from the right through scenario Il
this region of space. This equivalence is reasonable if wéhen there have to be a contraction at the opposite etithbf
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cell through scenario V or VII, and so on. Since we have 1.0 T
assumed that point-1 is occupied, and that the cells are of
lengthLy, then we can say with certainty that point Lt

will be occupied. However, poirit—L+— 1 will be occupied 08 -
with probability Pi-L -1 Similarly, since we have assumed -

that pointi +1 is definitely occupied, we can say that dite
+ L+ will also be definitely occupied. However, sites Lt

—1 and i+Lt+1 will be occupied with probabilites € o5t
Pi-L;-1 and Pi+Ly+1s respectively. Whether or not these

sites are occupied will influence the energy change associ
ated with the movement, and, hence, with the probability of 93
it occurring. So, for example, the probability of us having 4,
scenario | at point and scenario VIII to the left is given by

P =[pi—1(1-p)pi+ 1 J(1=Pir-) (29 0.0 e
200 300 400 500 600 700 800
i

09 r

06 -

04 -

and the probability of having scenario Il at poinand sce-

nario VII to the right by FIG. 10. The evolution of an initially Gaussian profile under Eq.
- (A1) (solid line: initial condition, dashed line: weak cell-cell adhe-
P =[Pi—1(1=P)Pi+11(1=Pisi +1)- (26)  sion, dot-dashed line: strong cell-cell adhesidn the case where

cell-cell adhesion is weak the evolution is diffusive with movement
Even though this may be the scenario at a given time, th&om high to low regions of density everywhere in space. However,
switch illustrated need not occur as there will be an energyn the case where cell-cell adhesion is strong, the evolution is more
change associated with the cell movement. In this example&omplicated: there is movement away from the high density area at
one cell-cell bond will form, and two cell-medium bonds the center, but aggregation at regions of intermediate defisity,
will be broken. Hence, if we defineAE*=AE""  Lr=5. Strong adhesionJcc=1, Jew=15, weak adhesionJcc

—AEWI—3 _23 then the Potts transition probability =15,Jcu=1). The numerical details are as follows: grid sixg
will be givenccby cM =1, time stepAt=0.0005 units, solution plotted after 32 000 itera-

tions. Iterating the solution for longer caused it to become unstable.
1 if AE*<O0, L
To=TIVI —TLVIIl — . _ (27) expect. However, when cell-cell adhesion is strong, the sys-
e AEYB if AE“>0. tem shows a changed profile, with slower dispersal.
Of course, it would be useful if we were able to use this
Hence, the likelihood of sité being invaded through the parallel between the probability of occupancy of a lattice
processes illustrated in scenarios I, VII, and VIII will be point and the density at that point in the continuous limit, to

given by obtain a PDE. In the same way as in our study at the begin-
ning of Sec. ll[see Eq(5)] we could take Eq(Al), perform

dp o Taylor expansions on thg , etc., and take appropriate limits

gt P ~1(1=P)Pial(1=Pi- )+ (1= Pi ) 1T in space and time. Due to the number of expansions involved

(28) and the additional complexity of including tii¢’s, the tak-

ing of this limit would be extremely complicated. However,
If we conduct the above analysis for all of the possible wayst does allows us to link the previous work on the simple
in which sitei could be either invaded or vacated throughone-cell case with the situation where there is a collection of
these mechanisms we can derive a set of coupled ordinaiyteracting cells and show the relationship between the two
differential equations which describe the evolution of a den-analyses.
sity profile under these conditions. The details of the deriva-
tion of the equations is given in the Appendix. We solved
them using a simple Euler method with periodic boundary
conditions(we also solved it using zero flux boundary con-  The key point of this work is to make explicit the rela-
ditions and the results were unchangeffe set as an initial tionship between a discrete and a continuous model of the
condition a Gaussian profile on [@,1000 domain, the same biophysical process, and to illuminate the connection
choice of domain size being determined relative to the sizdetween the macroscopic behavior of a system and the mi-
of the individual cells: sincé =5 lattice points, a domain croscopic dynamics of the individual entities which comprise
of [0,1000 was considered sufficiently large to allow the it. In so doing we hope to have given some general insights
system to evolve without boundary effects having a signifi-into how one may take a discrete model and develop expres-
cant effect on the behavior at the center of the profile. Thesions for continuous macroscopic quantities based upon it. In
results of evolving the profile under this equation are illus-particular, through taking suitable limits in space and time in
trated in Fig. 10. As we can see, when cell-cell adhesion i€qgs. (5) — (8) we have shown the connection between the
weak the system shows a diffusive evolution, as we wouldransition probabilities for movement of cells on a discrete

V. DISCUSSION
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lattice and the corresponding diffusion coefficient for a masgwhich would in turn be related to the cell density of the
of cells obeying the same microscopic rules. Through a cargumor), and so on. Similarly, in the diagnosis and treatment
ful study of the movement of the centers of mass of Pott®f cancer, it is not individual cell behavior which is moni-
modeled cells, we were able to derive an expression for theored, but the macroscopic size and appearance of the tumor.
diffusion coefficient of a mass of such cells which explictly So gaining a better understanding of how one may link the
contained the Potts parameters for cell-cell and cell-mediunmsights of molecular biology concerning the behavior of
adhesiveness and cell membrane elasticity. Through invoksingle cells to the macroscopic behavior of a large cellular
ing the ergodic hypothesis and the Einstein relationship weggregate is of considerable clinical importance, and math-
were able to check this result against computer simulationsematics has a useful role to play in illuminating this link.
of the discrete model.

Making clear the relationship between discrete and con-
tinuous models of biophysical phenomena is of increasing ACKNOWLEDGMENTS

importance. Recent advances in molecular biology have S.T. was supported by the EPSRC and J.A.S. was sup-

given us a greatly increased understanding of how micro- .
scopic changes in DNA expression can change the characté}?rted in part by EPSRC. We thank SHEFC for suppust

istics of an individual cell. For example, in the case of can-SearCh development grant no. 107
cer, it is known that as a cell progresses along its “stepwise
progression” to malignancy, it down regulates the expression
of cell surface molecules associated with adhesive[&3s
However, what is of clinical interest — and, therefore, of  Figure 9 illustrates all of the ways in which pointould
interest to mathematicians aiming to model these processér invaded or vacated through the movement of Potts mod-
— is not the behavior of individual cells, but the macro- eled cells. If we conduct the analysis described in Sec. IV for
scopic characteristics of the tumor: how fast it is likely to all of the possible ways in which the number density at isite
grow, how deeply it will invade into healthy tissue, the in- could be either increased or decreased through these mecha-
tensity of the radiation which may be needed to treat ithisms we obtain the following equation:

APPENDIX

dp
d_t': Pi—1(1=p)PisalPi L, TV +(1—p ) TV"]

+Pi— (L= PP alPis L2 T+ (1= Py )T

+pi—1(1=p) (1= pis )P, TV + (1= pi ) TV
+(1=pi-)(L=P)PisalPis L2 TV H (L= P+ ) TV ]

PP+l (=P L )P T+ (1=p o )= pi ) TVV]

=P P (=Pt P Lt T+ (L= P ) (2= Pio e ) T
—pi(1=pis )P, 21— p )T+ (1 =pi (L —pi )TV

—(1=pi- )P =Pis )P T+ (1= pig L) (TP )T, (A1)

This equation can be considerably simplified by making aAlso, we are considering here only directed movement of the
number of observations. First, we notice that the transitiorcells under the influence of differential adhesion: random
probabilities are symmetric, i.eT#P=TP2 Also, we see movement is not included. For this reason we can safely
that there is zero energy change associated with the transieglect the transitions where there is no creation or breaking

tions VIIL,IV and VIILIII as the number of cell-cell and cell-  of cell-cell bonds, as these will not influence the evolution of
medium bonds both before and after the transition is thehe system due to this process. Hence,

same. HenceAE=0 and, from Eq(27), the transition prob-
ability is 1. Hence,

TV =TIV=(), (A4)
TVILIV —TVVIl — 1 (A2)

VLI — VIl — q (A3) TV =TIV = (A5)
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Our final simplification is that transitions which have the

PHYSICAL REVIEW E 69, 021910 (2004

Tl,VIll :Tll,Vll :TV||,|| :TV“I'I :‘]CC_ 2‘]CM . (A?)

same energy change associated with them can be set equal.

Hence,

TV,lV:TV|,||| :Tlll,Vl :TIV'VZZ‘]CM_‘]CCI (AG)

The numerical solution of E§A1) with these simplifications
is illustrated in Fig. 10.
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