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From a discrete to a continuous model of biological cell movement
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The process by which one may take a discrete model of a biophysical process and construct a continuous
model based upon it is of mathematical interest as well as being of practical use. In this work, we take the
extended Potts model applied to biological cell movement to its continuous limit. Beginning with a single cell
moving in one dimension on a lattice and obeying Potts model rules of movement we develop an expression
for the diffusion coefficient of a collection of noninteracting cells which depends explicitly on the Potts model
parameters. We show how this coefficient varies when the Potts parameters for cell membrane elasticity and
cell-medium adhesion are varied, and perform computer simulations which support our theoretical result. We
explain the relationship between the probability of occupancy of lattice points and the density profile in the
continuous limit, and extend our analysis by including interactions between the cells. In so doing we are able
to develop a set of coupled ordinary differential equations showing the evolution of a density profile in the
presence of significant cell-cell adhesion, and show how increases in the strength of this adhesion modulates
diffusion. In so doing we develop some insights into how continuous models of physical systems can be based
upon discrete models which describe the same system.
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I. INTRODUCTION

The mathematical models which researchers have de
oped to describe biological phenomena can be divided
three broad categories: continuous~where all variables are
considered to be defined at every point in space and t
changes continuously!, discrete~where space is divided into
a lattice of points with the variables defined only at t
points and time changes in ‘‘jumps’’!, and hybrid~a mixture
of the previous two!. Each of these has advantages and d
advantages depending on the phenomenon under cons
ation, and on the length scale over which we wish to inv
tigate the phenomenon.

Discrete models of biophysical processes are of use w
we are interested in the behavior of individual cells, as w
as their interactions with other cells and the medium wh
surrounds them. Usually, the cells are considered to be po
which move on a lattice according to certain rules. The
rules can be modified according to the states of neighbo
points, such as whether or not they are occupied. Individ
based models have found useful application to many ph
cal systems and even simple rules of interaction can give
to remarkably complex behavior@1#. In particular,
individual-based models have found applications in ecolo
@2#, pattern formation@3#, tumour growth@4–6#, and angio-
genesis associated with malignancy@7,8# amongst many oth-
ers. The application of hybrid models — where cells a
modeled as discrete entities with their movements being
fluenced by continuous spatial fields — has also been fo
to be a useful approach@9#. A discrete approach to the mod
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eling of cancer invasion developed by two of the auth
@10# involves the use of the extended Potts model, which
of particular relevance to the work which we present her

Continuous models frequently involve the development
a reaction-diffusion equation@11#. These are useful when th
length scale over which we wish to investigate the pheno
enon is much greater than the diameter of the individ
elements composing it. For example, in the biological sit
tion, we would use a continuous model when we are in
ested in behavior over a length scale much greater than
diameter of one cell. These models have been found to
particularly useful in the study of pattern formation in natu
especially the phenomenon of ‘‘diffusion driven instability
@12#.

Clearly, if we have both a continuous and discrete mod
of the same phenomenon, we would expect the model
give rise to similar solutions at length scales where th
ranges of applicability overlap. Some workers have inve
gated how one may make this crossover using a variety
techniques: for example, Turchin@13,14# uses the technique
of scaling both space and time to develop expressions for
diffusion coefficient which depend explicitly on th
individual-based ‘‘hopping’’ probabilities on a discrete la
tice. Deutsch@15# analyzes~discrete! velocity jump pro-
cesses to derive~continuous! transport equations applicabl
to biological systems. An alternative approach involves
development of asymptotic theories which show how diff
ent types of equations to describe both diffusion and hyp
bolic phenomena can be developed through taking differ
types of scalings in space and time@16–20#.

In this work we have taken the~discrete! Potts model of
biological cell movement and shown how it can be used
©2004 The American Physical Society10-1
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obtain an expression for the~continuous! diffusion coeffi-
cient of a collection of identical noninteracting cells, a
present computational results which support our analysis
Sec. II we first give an overview of the extended Potts mo
and its applicability to the modeling of biological cell mov
ment. We go on to show how a careful study of the mo
ment of the centers of mass of isolated Potts modeled c
combined with the taking of suitable limits in space a
time, can allow us to develop an expression for the diffus
coefficient of a mass of such cells. This expression~for the
diffusion coefficient — a continuous, macroscopic quantit!
is explicitly dependent on the~microscopic! Potts model pa-
rameters for cell-medium adhesiveness and cell memb
elasticity. In Sec. III we go on to present computer simu
tion results which are in excellent agreement with this ana
sis. In Sec. IV we argue that an analogy can be drawn
tween the probability of occupancy of a lattice point in
discrete model and the local density in the continuous lim
On this basis we introduce interactions between the ce
and develop a set of coupled ordinary differential equati
to model the evolution of a density profile composed of ce
obeying Potts model rules of movement. We conclude
discussing the insights which this study gives into how d
crete models of biophysical processes can be used as a
for the development of their continuous equivalents.

II. FROM TRANSITION PROBABILITIES TO A
DIFFUSION COEFFICIENT

A. Overview of the extended Potts model

The extended Potts model has found application in p
ticular to the problem of differential adhesion driven sorti
in a variety of systems@21–26#. Here we give a brief over-
view of the model, and refer the reader to the previous w
of two of the authors for greater detail@10#.

We attach to each point (i , j ) on a square lattice a labe
s i j , and define adjacent points which have the same valu
s to lie within the same cell. Athough there may be ma
cells present, many of them~if not all! will be of the same
type. Hence, we define an additional labelt which defines
the type of cells i j . Biological cells have receptors on the
surfaces associated with adhesiveness@27#, and the binding
of these receptors with their associated ligands either o
neighboring cell or in the extracellular matrix gives rise to
adhesive energy. We quantify this energy by defining c
pling constantsJ for the energy of interaction between neig
boring lattice points with differing values ofs. Hence, the
total adhesive energy of the system is given by

Eadh5(
i j

(
i 8 j 8

Jt(s i j )
Jt~s i 8 j 8! . ~1!

In addition to adhesiveness, the cells also have a pote
energy associated with the elasticity of the cell membr
@28,29#, and we define the elastic constant byl. If the cells
have a ‘‘relaxation volume’’VT ~the volume to which they
would relax in the abscence of external forces!, then the total
energy associated with cell membrane elasticity is given
02191
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l~vs2VT!2, ~2!

where the summation runs over all of the cells in the syst
andvs is the instantaneous volume of cells. Bringing Eqs.
~1! and~2! together we obtain the following term for the tot
energy of the system:

Etot5(
i j

(
i 8 j 8

Jt(s i j )
Jt(s i 8 j 8)1(

s
l~vs2VT!2. ~3!

In evolving the simulated cellular aggregate we use
Monte Carlo method@30#. We consider copying the param
eters for one lattice point (i , j ) into a neighboring lattice
point (i 8, j 8), and work out the total energy changeDE of
the system due to the copy. If this site copy were to resul
a reduction in the total energy of the system, then it is
cepted. If, however, the energy would be increased then
accepted with Boltzmann weighted probability

p~s i j →s i 8 j 8!5H 1 if DH<0,

e2DH/b if DH.0,
~4!

whereb is a parameter~analogous to temperature in oth
physical systems! which quantifies the likelihood of energet
cally unfavorable events occurring. By repeating these s
copy attempts we are able to track the evolution of the s
tem as it attempts to reduce its total energy. We illustrate
Fig. 1 an example of the evolution of a simulated maligna
tumour under the Potts model from the previous work of t
of the authors@10#.

B. The diffusion coefficient of a Potts modelled cell mass

The diffusion of a collection of noninteracting particle
can be studied from two perspectives: we can either obs
the behavior of the whole collection and work out its diff
sion coefficient by noting the area covered after a given ti
or we can focus on the behavior of one particle in the c
lection and work out the behavior of the whole ensem
from a study of the random walk which it performs. If th
system is ergodic, then these two approaches will give
same result.

It is our motivation to take the simulated Potts model ce
and work out the effective diffusion coefficient of a colle
tion of such cells, so that we may draw a relationship b
tween this coefficient and the Potts model parameters. In
simulations, observing the behavior of a single cell over ti
is much less computationally intensive than observing
behavior of a large number of cells for a short time. This
because the simulation of a large number of cells requ
storing information about each cell in arrays~which may be
thousands of elements long! and updating them at eac
Monte Carlo time step, all of which is very time consumin
Hence — since the ergodic hypothesis states that both
proaches will ultimately give the same answer — we co
centrate on the behavior of an individual cell, and work o
the diffusion coefficient of a collection of identical such ce
by studying its movement.
0-2
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FROM A DISCRETE TO A CONTINUOUS MODEL OF . . . PHYSICAL REVIEW E 69, 021910 ~2004!
Consider a particle moving in one dimension~1D! on a
lattice as illustrated in Fig. 2. If one such particle is initial
located at pointi then there are three things which it can d
move to the right with probabilityT1, move to the left with
probability T2, or do nothing with probability 12(T1

1T2). Hence, the rate of change of the number of partic
at point i is given by@13#

]ni

]t
5Ti 21

1 ~u!ni 211Ti 11
2 ~u!ni 112Ti

2~u!ni2Ti
1~u!ni ,

~5!

whereu is a continuous variable upon which the transiti
probabilitiesT1 andT2 may depend andni is the density of
particles at pointi. If we take the transition probabilites to b
equal constantsT15T25a, then

FIG. 1. Showing the characteristic appearance of a simula
tumour. From Ref.@10#, where the simulation is described in deta
In this simulation, the cells are experiencing both cell-cell and c
medium adhesion, and have elastic, deformable membranes.
cell mass is surrounded by extracellular matrix~ECM!, and the cells
secrete proteolytic enzymes which dissolve it. In so doing th
create steep local gradients of ECM protein concentration wh
the cells are attracted to move up through the process of haptot
In this manner the cells are shown to invade the ECM as long, th
strands of cells — a pattern known as ‘‘fingering,’’ which is a ha
mark of malignant invasion. Parameters used in the figure~which
are described in detail in Ref.@10#!: JCC53, JCM56, kH540,
t51500,np52000.

FIG. 2. A schematic diagram of the transition probabilities
fecting a particle moving on a 1D lattice.
02191
:

s

]ni

]t
5a@ni 211ni 1122ni #. ~6!

If we write ni 215n(x2h), ni 115n(x1h), whereh is the
separation between the points, perform Taylor expansio
introduce a scalingt5lt, and take the limit@13#

lim

l→`
h→0

~lh2!5D ~7!

then we obtain the diffusion equation

]n

]t
5aD

]2n

]x2
, ~8!

where we have neglected theO(h4) and higher terms.
So we see that we can start with knowledge of the disc

transition probabilitiesT1 andT2, and use it to work out the
diffusion coefficient. If we relax the assumptionT15T2,
then the resulting diffusion equation becomes nonline
Nonlinear diffusion well describes many phenomena in bi
ogy @11#, but in this work we concentrate on the simple ca
of linear diffusion.

We note that in the above, and in the derivations t
follow, we must regard the diffusion limit as formal since w
assume the boundedness of the higher derivatives nece
to validate the limiting procedure. The above method h
also been applied to model chemosensitive movemen
bacteria, for example, see Othmer and Stevens@31# and
Painter, Horstmann, and Othmer@32#.

In the Potts model, the cells have finite spatial exte
whereas in the derivation above they are treated as b
mathematical points. However, if we concentrate on
movement of the simulated cells’ centers of mass~c.m.! then
we can use this point-based model. We conduct the follow
analysis in 1D to make the algebra straightforward, and
sume that the results will have qualitative application
higher dimensions. The main reason for this will becom
evident when we consider the distance moved by the c.m
each Monte Carlo time step~MCS!.

Consider a cell in 1D such as that illustrated in Fig. 3:
c.m. is at the point indicated. In the Potts model simulatio
there are four possible changes which can be attempted
expansion to the right or to the left or a contraction from t
right or the left. Each of these changes will have an ene
associated with them, and in the simple case of one ce
1D, the directionality of the movement has no effect on t
energy, andDE is dependent only on whether an expansi
or a contraction is occurring. In the case of there being m
than one cell present, this symmetry is lost and directio
effects onDE have to be included: we consider this high
level of complexity in Sec. IV.

An expansion or contraction of one Potts lattice point
sults in a movement of the c.m. which is equal to one half
the distance between points on the lattice. Hence, in foc
sing on the movement of the c.m. we are considering
movement of a point-based particle on a lattice which
twice as fine as the Potts lattice, with two points for eve
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Potts lattice point~this also is illustrated in Fig. 3!. In 2D and
higher, this simplifying assumption is lost, as there is a mu
greater diversity of possible changes in cell shape at e
MCS. Taking this into account makes the analysis far m
complex while having little qualitative effect on the resu
relating the transition probabilities to the Potts parame
and in Sec. III we present computational results which s
port this assumption.

The energy of a cell at lengthL has contributions from
both the energy of cell-medium adhesiveness and cell m
brane elasticity and is given by

EL5@2L12#JCM1l@L2LT#2. ~9!

It may be shown that the energy associated with expansio
the cell by one Potts lattice point is given by

DEe52JCM1l@112~L2LT!#. ~10!

whereas that associated with contraction of one lattice p
is given by

DEc522JCM1l@122~L2LT!#. ~11!

We can see from the expression forDEe , if L,LT it may
nevertheless be energetically unfavorable for the cell to
pand — even though it is below its target volumeLT — due
to the energy expense of laying down perimeter. Simila
contraction may be unfavorable even though the cell is
lengthL.LT . The length which minimizesEL is given by

FIG. 3. A diagram of a simulated cell in 1D moving on the Po
lattice ~large circles!, along with the lattice upon which the cell’
center of mass moves during the expansion or contraction of
cell ~small circles!. The arrows at the extremities of the cell illus
trates the four movements which it can make, either by expand
to the right or the left, or shrinking from the right or the left. A
expansion or contraction will result in the cell’s perimeter incre
ing or decreasing by a length equal to twice the separation betw
lattice points~as perimeter is laid down on the top and the botto
of the cell!. Following such an expansion or contraction, the ce
center of mass will move a distance equal to one half of the P
lattice spacing.
02191
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JCM

l
. ~12!

Hence, the equilibrium length of the cell is determined by t
relative strengths ofl and Jc.m.. By substituting Eq.~12!
into Eq.~9! we obtain an expression for the minimum ener
Emin :

Emin52~LT11!JCM2
JCM

2

l
. ~13!

A sketch ofE vs L for sample values ofLT , JCM and l is
given in Fig. 4. It tells us that any change in cell length aw
from Lmin results in an increase in its total energy and will
accepted during the Potts model simulations with probabi
exp@2(DE/b)#. Hence, the likelihood of a cell being at leng
L will be proportional to the difference in energy at th
volumeEL and the minimum energyEmin :

p~L !5
1

Z
expS 2

~EL2Emin!

b D , ~14!

whereZ5the partition function, given by

Z5 (
n52k

k

expF 1

b
~E(LT1n)2Emin!G . ~15!

Note the parameterk in the summation above. The choice
this is unimportant, provided it is greater than or equal to
maximum deviation fromLT which the cell will attain. Fol-
lowing Potts model rules, the probability of a site copy a
tempt during which a cell initially at lengthL1 expands or
contracts to lengthL161 will be given by

e

g

-
en

ts

FIG. 4. A sketch of the energy curve forE @given by Eq.~9!# as
a function of cell lengthL for sample values of the Potts param
eters. As we can see, the minimum of the energy occurs at a v
of L which is not equal toLT(55). Note also that, since the energ
curve is a quadratic, it is symmetric aboutLmin , and, hence,
E(Lmin2k)5E(Lmin1k) , wherek is an integer.~Parameters used:LT

55, l51, JCM52.!
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FROM A DISCRETE TO A CONTINUOUS MODEL OF . . . PHYSICAL REVIEW E 69, 021910 ~2004!
p~L1→L161!5H 1 if EL1612EL1
<0

exp2(EL1612EL1
)/b if EL1612EL1

.0.
~16!

C. Relating energy and Potts modeled movement to diffusion

We can relate the above study to the diffusion coeffici
of the cell in the following way. In words: The probability o
a cell at positioni moving to the right5probability of cell
being at lengthL1 and moving to the right while at this
length1 probability of being at lengthL2 and moving to the
right while at this length1 etc. for all possible lengths.

So,

T15 (
n52k

k

P(LT1n)P(LT1n)
R , ~17!

whereP(LT1n) 5 probability of being at lengthLT1n @given

by Eq. ~14!# and P(LT1n)
R 5 probability of moving to the

right while at this length. Similarly,

T25 (
n52k

k

P(LT1n)P(LT1n)
L , ~18!

where the symbols have the same meaning for movemen
the left. The cells have to be atsomesize, so in addition the
probabilitiesP(LT1n) must be normalized to satisfy the co
dition

(
n52k

k

P(LT1n)51. ~19!

Referring to Fig. 4, since the curve is a quadratic symme
aboutLmin , it follows thatE(Lmin2n)5E(Lmin1n) wherek is an

integer. Suppose that the cell is at some lengthL5LT1n. If
a site change is attempted in which the cell would expan
length by one Potts lattice point, then using Eq.~9! it is
possible to show that the size of the energy associated
an expansion of one lattice point is given by

DEn52JCM1l~2n11!. ~20!

If this energy change is negative then the site change wil
accepted; conversely, if it is positive it will be accepted w
Boltzmann-weighted probability. In the Monte Carlo simul
tion, there is an equal 50% probability of choosing a po
either just inside or just outside of the cell’s lateral extrem
ties for copying into its neighbor. Hence, there is an eq
chance of expansion or contraction being attempted at e
time step. We may therefore conclude that

P(LT1n)
R 5P(LT1n)

L 5
1

4 S 11expF2
uDEnu

b G D , ~21!

where we have assumed thatP(LT1n)
R 5P(LT1n)

L . This as-

sumption is accurate for the single cell case where an ex
sion to either the right or to the left has the same ene
02191
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associated with it; however, it breaks down where there
more than one cell present, as the environment in that c
has an influence onDE. This is discussed in detail later i
this chapter.

Substituting Eqs.~14! and~21! into Eq.~17!, and recalling
the derivation of Eq.~8!, we obtain the following expression
for the diffusion coefficient of noninteracting Potts model
cells in terms of the Potts model parameters

D5
1

4Z (
n52k

k

expS Emin2E(LT1n)

b
D

3F11expS 2
1

b
u2JCM1l~2n11!u D G . ~22!

In this equationLT is the length of the cell in the absence
adhesive effects,ELT1n is the energy at lengthLT1n, de-

fined in Eq. 9, wheren is an integer,Emin is the minimum
energy of the cell,JCM is the cell-medium adhesive energ
per unit length,l is the cell membrane elasticity coefficien
Z is the partition function defined by Eq.~15!, and b is a
parameter which quantifies the probability of energetica
unfavorable events from taking place.

III. COMPUTATIONAL RESULTS

Now that we have a theoretical expression for the dif
sion coefficient, we present the results of some Monte Ca
simulations which support it. The mean square distance^s2&
which a single particle will move in timet can be related to
the diffusion coefficient of a gas of such particles through
Einstein relation

^s2&52Dt. ~23!

FIG. 5. The relationship between^s2& and timet for two values
of b. Lines have been fitted through the data points by least squ
fitting. As we can see, the slope of the line is increasing asb is
increased. From the Einstein relationship^s2&52Dt, this corre-
sponds to an increase in the diffusion coefficientD. ~Other param-
eters:l54, JCM52, LT55.)
0-5
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Hence, by studying the movement of a single cell in o
Potts model simulations, we may work out the diffusion c
efficient D for these simulated cells.

We began by running some simulations in 1D for a sin
cell. We allowed the cell to move for a given number
Monte Carlo time steps~MCS!, worked out the mean squar
distance traveled in that time, repeated this process
times, and evaluate the mean squared distance^s2& for this t.
We then repeated this process ten times to get the mea
^s2&5^s2&. The reason for this choice of repetitions was
keep the time required to run the simulations within a r
sonable level yet ensuring that the standard deviation of
mean was relatively small~,7%!. The results are given in
Fig. 5.

From the Einstein relationship, we can work outD from
the slope of this set of lines. In Fig. 6 we show the variat
of D with the Potts parameterb and have superimposed o
the results a curve of Eq.~22! with the same parameter va
ues. As we can see, there is very good agreement betw
the computational results and the theory. Of course,D is
dependent also on the other Potts parameters in Eq.~22!, and
in Fig. 7 we illustrate the effect of changing the paramet
for adhesiveness and membrane elasticity. As we can see
general shape of the curve is not influenced, but the slop
it is changed in ways which we would expect: increasing
stiffness of the cell membrane reduces its motility, as d
increasingJCM .

We mentioned in Sec. II that our results, although o

FIG. 6. Diffusion coefficientD vs b. From the lines fitted
through the data points in Fig. 5 we work out the diffusion coe
cients D. The relationship is initially linear, as we would expe
from the Einstein relationship, but at highb, D begins to saturate
This is because, at highb, the Boltzmann weighted probability
function tends to 1, and further increases inb have no effect on
increasing the motility of the cell. The curve obtained from plotti
Eq. ~22! as a function ofb is overlaid on the data points and, as w
can see, there is very good agreement. Note that the satur
effect is stronger in the discrete case: this is because, at high va
of b the cells are limited in the number of different shapes wh
they can take, and begin to fragment.~Parameter values:l54,
JCM52, LT55.)
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tained from studies of the 1D situation, have qualitative a
plication to higher dimensions. This assumption is suppor
by our study of the relationship between the mean-squa
distance traveled in a given time in 2D, illustrated in Fig.
as we can see, there is a linear relationship between^s2& and
t, in keeping with the Einstein relationship.

IV. THE EVOLUTION OF A CONTINUOUS
DENSITY PROFILE

As we discussed in Sec. I, continuous models are usu
cast in the form of partial differential equations~PDE’s!.

ion
es

FIG. 7. An illustration of how changes inl andJCM affect the
transition probability as obtained from Eq.~22!. Increasingl has
the effect of reducingT1 across the whole of the range of densi
~upper graph, withJCM54). This is as we would expect, as if th
membrane is made ‘‘stiffer,’’ then it becomes energetically unfav
able for movement of the c.m. to occur. Similarly, ifJCM is in-
creased~lower graph, withl54), changes of cell shape whic
involve an increase in cell perimeter become energetically
favourable, which reduces the likelihood of such site-swaps oc
ring, and reduces the motility of the cell.
0-6
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FROM A DISCRETE TO A CONTINUOUS MODEL OF . . . PHYSICAL REVIEW E 69, 021910 ~2004!
When we attempt to solve a PDE numerically using a fin
difference method, the first step is to discretise space
develop a set of coupled ordinary differential equatio
~ODE’s! to describe the evolution of the dependent varia
at each lattice point. In biological situations, usually the c
efficients of the PDE are continuous quantities such as
diffusion coefficient. In Sec. II we took a Potts modeled c
and derived a continuous diffusion coefficient for a colle
tion of noninteracting identical cells of this type moving on
lattice following these rules. In this section, we extend t
study to include interactions between the cells, and in
doing develop a set of coupled ODE’s which describe
evolution of a density profile in which the cells composing
obey Potts model rules of movement.

In our study of cell movement in Sec. II we consider
only a single isolated cell moving around the lattice. Th
had the advantage of making the energy changes assoc
with movement symmetric in space: the cell’s surroundin
were isotropically vacant, and the probabilities of movem
in every direction were the same~i.e., in 1DT15T2). In the
case where there are many cells present, this symmet
broken as the presence of cells adjacent to the cell of inte
influences the likelihood of the cell moving in one directio
as opposed to another.

Figure 9 is the many-cell equivalent of Fig. 3, and illu
trates the eight possible site-swap events which can hap
to lattice pointi. Each of these has a likelihood of occurren
depending on the probability of the neighboring lattice po
being occupied, and on the energy associated with cell-
contact. Considering the first point, we assume here tha
equivalence can be drawn between the probability of oc
pancy of a lattice point and the continuous number densit
this region of space. This equivalence is reasonable if

FIG. 8. The relationship between^s2& andt for the 2D case. As
we can see, there is a linear relationship between the two in kee
with the Einstein relationship, and the gradient of the least-squ
fitted line increases with increasingb. This supports our assump
tion that studying the simplified 1D case nevertheless has qua
tive application to higher dimensions.
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interpret the physical quantity ‘‘density’’ in continuous mod
els as corresponding simply to the probability of a particu
point in space being occupied by a cell. Hence, we draw
parallel between the probability of occupancy of a latti
point in the 1D Potts model simulations and the local dens
in the continuous limit.

Turning now to the influence of energetic changes on
movements of the cells, consider each of the eight poss
scenarios illustrated in Fig. 9. Each has an energy assoc
with it: some of these energies are equal, and some are
same in magnitude but different in sign. If we define t
quantity pi(t) as corresponding to the probability of lattic
point i being occupied at timet then the probabilities of each
scenario illustrated can be worked out. For example,
probability of configurationI existing in the region of pointi
at time t is given by~we drop thet ’s for convenience!

pI5pi 21~12pi !pi 11 . ~24!

When lattice pointi is invaded through, say, scenario
where the cell expands into the lattice point from the le
then the invading cell will increase in length. As a first a
proximation, we assume that the cells do not deviate
much from their target lengthLT : this approximation is rea-
sonable from a biological perspective, as in many instan
of cell movement, there is not much change in cell volum
Hence, for the invading cell to remain close toLT there will
have to be some contraction at the opposite end of the ce~a
distanceLT away! through scenarios VI or VIII. Similarly, if
lattice point i is invaded from the right through scenario
then there have to be a contraction at the opposite end ofthat

ng
es

a-

FIG. 9. The eight possibilites for what can happen to latt
point i in the case of multiple cells on a 1D lattice. Scenarios I–
correspond to the probability of lattice pointi being invaded —
which corresponds to the number density of cells at pointi increas-
ing when there are many cells present. Scenarios V–VIII cor
spond to the cell number densitydecreasing. Note that scenario V is
the inverse of scenario I, scenario VI is the inverse of scenario
and so on.
0-7
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cell through scenario V or VII, and so on. Since we ha
assumed that pointi 21 is occupied, and that the cells are
length LT , then we can say with certainty that pointi 2LT
will be occupied. However, pointi 2LT21 will be occupied
with probability pi 2LT21. Similarly, since we have assume

that pointi 11 is definitely occupied, we can say that sitei
1LT will also be definitely occupied. However, sitesi 2LT
21 and i 1LT11 will be occupied with probabilities
pi 2LT21 and pi 1LT11, respectively. Whether or not thes
sites are occupied will influence the energy change ass
ated with the movement, and, hence, with the probability
it occurring. So, for example, the probability of us havin
scenario I at pointi and scenario VIII to the left is given by

pI,VIII 5@pi 21~12pi !pi 11#~12pi 2LT21! ~25!

and the probability of having scenario II at pointi and sce-
nario VII to the right by

pII,VII 5@pi 21~12pi !pi 11#~12pi 1LT11!. ~26!

Even though this may be the scenario at a given time,
switch illustrated need not occur as there will be an ene
change associated with the cell movement. In this exam
one cell-cell bond will form, and two cell-medium bond
will be broken. Hence, if we defineDEa5DEI,VIII

5DEII,VII 5Jcc22JCM then the Potts transition probabilit
will be given by

Ta5TII,VII 5TI,VIII 5H 1 if DEa<0,

e2DEa/b if DEa.0.
~27!

Hence, the likelihood of sitei being invaded through the
processes illustrated in scenarios I, VII, and VIII will b
given by

dpi

dt
5pi 21~12pi !pi 11@~12pi 2LT21!1~12pi 1LT11!#Ta.

~28!

If we conduct the above analysis for all of the possible wa
in which site i could be either invaded or vacated throu
these mechanisms we can derive a set of coupled ordi
differential equations which describe the evolution of a d
sity profile under these conditions. The details of the deri
tion of the equations is given in the Appendix. We solv
them using a simple Euler method with periodic bound
conditions~we also solved it using zero flux boundary co
ditions and the results were unchanged!. We set as an initial
condition a Gaussian profile on a@0,1000# domain, the
choice of domain size being determined relative to the s
of the individual cells: sinceLT55 lattice points, a domain
of @0,1000# was considered sufficiently large to allow th
system to evolve without boundary effects having a sign
cant effect on the behavior at the center of the profile. T
results of evolving the profile under this equation are illu
trated in Fig. 10. As we can see, when cell-cell adhesio
weak the system shows a diffusive evolution, as we wo
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expect. However, when cell-cell adhesion is strong, the s
tem shows a changed profile, with slower dispersal.

Of course, it would be useful if we were able to use th
parallel between the probability of occupancy of a latti
point and the density at that point in the continuous limit,
obtain a PDE. In the same way as in our study at the be
ning of Sec. II@see Eq.~5!# we could take Eq.~A1!, perform
Taylor expansions on thepi , etc., and take appropriate limit
in space and time. Due to the number of expansions invol
and the additional complexity of including theTa8s, the tak-
ing of this limit would be extremely complicated. Howeve
it does allows us to link the previous work on the simp
one-cell case with the situation where there is a collection
interacting cells and show the relationship between the
analyses.

V. DISCUSSION

The key point of this work is to make explicit the rela
tionship between a discrete and a continuous model of
same biophysical process, and to illuminate the connec
between the macroscopic behavior of a system and the
croscopic dynamics of the individual entities which compr
it. In so doing we hope to have given some general insig
into how one may take a discrete model and develop exp
sions for continuous macroscopic quantities based upon i
particular, through taking suitable limits in space and time
Eqs. ~5! – ~8! we have shown the connection between t
transition probabilities for movement of cells on a discre

FIG. 10. The evolution of an initially Gaussian profile under E
~A1! ~solid line: initial condition, dashed line: weak cell-cell adh
sion, dot-dashed line: strong cell-cell adhesion!. In the case where
cell-cell adhesion is weak the evolution is diffusive with moveme
from high to low regions of density everywhere in space. Howev
in the case where cell-cell adhesion is strong, the evolution is m
complicated: there is movement away from the high density are
the center, but aggregation at regions of intermediate density.~l54,
LT55. Strong adhesion:JCC51, JCM515, weak adhesion:JCC

515, JCM51). The numerical details are as follows: grid sizeDx
51, time stepDt50.0005 units, solution plotted after 32 000 iter
tions. Iterating the solution for longer caused it to become unsta
0-8
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lattice and the corresponding diffusion coefficient for a m
of cells obeying the same microscopic rules. Through a c
ful study of the movement of the centers of mass of Po
modeled cells, we were able to derive an expression for
diffusion coefficient of a mass of such cells which explic
contained the Potts parameters for cell-cell and cell-med
adhesiveness and cell membrane elasticity. Through inv
ing the ergodic hypothesis and the Einstein relationship
were able to check this result against computer simulati
of the discrete model.

Making clear the relationship between discrete and c
tinuous models of biophysical phenomena is of increas
importance. Recent advances in molecular biology h
given us a greatly increased understanding of how mic
scopic changes in DNA expression can change the chara
istics of an individual cell. For example, in the case of ca
cer, it is known that as a cell progresses along its ‘‘stepw
progression’’ to malignancy, it down regulates the express
of cell surface molecules associated with adhesiveness@33#.
However, what is of clinical interest — and, therefore,
interest to mathematicians aiming to model these proce
— is not the behavior of individual cells, but the macr
scopic characteristics of the tumor: how fast it is likely
grow, how deeply it will invade into healthy tissue, the i
tensity of the radiation which may be needed to trea
g
io

n
-
th
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~which would in turn be related to the cell density of th
tumor!, and so on. Similarly, in the diagnosis and treatme
of cancer, it is not individual cell behavior which is mon
tored, but the macroscopic size and appearance of the tu
So gaining a better understanding of how one may link
insights of molecular biology concerning the behavior
single cells to the macroscopic behavior of a large cellu
aggregate is of considerable clinical importance, and ma
ematics has a useful role to play in illuminating this link.
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APPENDIX

Figure 9 illustrates all of the ways in which pointi could
be invaded or vacated through the movement of Potts m
eled cells. If we conduct the analysis described in Sec. IV
all of the possible ways in which the number density at sii
could be either increased or decreased through these me
nisms we obtain the following equation:
dpi

dt
5pi 21~12pi !pi 11@pi 2LT21TI,VI1~12pi 2LT21!TI,VIII #

1pi 21~12pi !pi 11@pi 1LT11TII,V1~12pi 1LT11!TII,VII #

1pi 21~12pi !~12pi 11!@pi 2LT21TIII,VI 1~12pi 2LT21!TIII,VIII #

1~12pi 21!~12pi !pi 11@pi 1LT11TIV,V1~12pi 1LT11!TIV,VII #

2pipi 11@~12pi 2LT
!Pi 2LT21TV,II1~12pi 2LT

!~12pi 2LT21!TV,IV #

2pi 21pi@~12pi 1LT
!pi 1LT11TVI,I1~12pi 1LT

!~12pi 2LT11!TVI,III #

2pi~12pi 11!@pi 2LT21~12pi 2LT
!TVII,II 1~12pi 2LT

!~12pi 2LT21!TVII,IV #

2~12pi 21!pi@~12pi 1LT
!pi 1LT11TVIII,I 1~12pi 1LT11!~12pi 1LT

!TVIII,III #. ~A1!
the
om
fely
ing
of
This equation can be considerably simplified by makin
number of observations. First, we notice that the transit
probabilities are symmetric, i.e.,Ta,b5Tb,a. Also, we see
that there is zero energy change associated with the tra
tions VIII,IV and VIII,III as the number of cell-cell and cell
medium bonds both before and after the transition is
same. Hence,DE50 and, from Eq.~27!, the transition prob-
ability is 1. Hence,

TVII,IV 5TIV,VII 51, ~A2!

TVIII,III 5TIII,VIII 51. ~A3!
a
n

si-

e

Also, we are considering here only directed movement of
cells under the influence of differential adhesion: rand
movement is not included. For this reason we can sa
neglect the transitions where there is no creation or break
of cell-cell bonds, as these will not influence the evolution
the system due to this process. Hence,

TV,II5TII ,V50, ~A4!

TVI,I5TI,VI50. ~A5!
0-9
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Our final simplification is that transitions which have th
same energy change associated with them can be set e
Hence,

TV,IV5TVI,III 5TIII,VI 5TIV,V52JCM2JCC, ~A6!
T

.

02191
ual.
TI,VIII 5TII,VII 5TVII,II 5TVIII,I 5JCC22JCM . ~A7!

The numerical solution of Eq.~A1! with these simplifications
is illustrated in Fig. 10.
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