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Abstract-h has been known for many years that immune cells can kill cancer cells by a variety 
of mechanisms. However, new experimental evidence suggests that cancer cells also express these 
cell killing mechanisms. This enables the tumour to mount a counterattack against the anticancer 
immune cells. Baaed on these observations. we propose an ordinary differential equation model for 
tumour-immune cell interactions. With initial conditions corresponding to a mixture of cancer and 
immune cells, numerical solutions of the model show a sharp increase in the level of a chemical 
regulator associated with the interaction of the two cell types. We investigate this behaviour by 
constructing an analytical approximation to the solution using singular perturbation analysis. This 
problem has an unusual asymptotic structure. Instead of the usual solution form, with two outer 
solutions separated by a single transition layer centred at the point at which the sharp jump in the 
solution occurs, our solution contains multiple fast time layers, with each layer being necessary to 
capture the entire dynamics of the sharp transition. @ 2003 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

The Fas ligand (called FasL) is a membrane-bound molecule which plays a crucial role in the 
immune system’s destruction of cancer cells [1,2]. FasL is expressed most prominently in a 
class of immune cells called T-lymphocytes (also termed T-cells). Binding of FasL to its receptor 
(Fas) on a tumour cell can transmit a signal which causes cell death in the Fas-receptor expressing 
tumour cell [3-51. Until recently, immune cells were thought to be the major source of active FasL 
molecules, with Fas-induced cell death directed towards the tumour [6]. However, this picture 
is incomplete, since it is now clear that many tumour cells also express the Fas ligand, and can 
therefore counterattack and kill Fas-expressing immune cells using their own weapons [7-91. 
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Based upon this ‘counterattack’, we have developed in [lo] an ODE model involving tumour- 
immune cell interaction, and cell surface expression of the Fas ligand and its receptor. The 
model predicts that an important regulatory event in this counterattack is the production of the 
soluble form of FasL (called sFasL) via the cleavage of the FasL molecule from the cell surfacr bv 
metalloproteinase enzymes (MMPs). This soluble Fas ligand can still bind to the Fas receptor. 
but is unlikely to transmit a death signal, and is shown to inhibit Fas-L killing by acting as 
a decoy ligand for the receptor. High levels of soluble sFasL have been found in many cancer 
patients, and our model does indeed reproduce this behaviour. An Interesting prediction of ou! 
model is that this high level of soluble FasL is obtained via a sharp increase in the sFasL solution 
The aim of this present work is to investigate this behaviour in more detail by constructmg ali 
analytical approximation to the solution using singular perturbation analysis. 

2. MODEL EQUATIONS 
The original model (see [lo] for full details) consists of seven ODES. two conservation equations 

for tumour and immune cell densities per unit area (m,T), two each for tumour and immune cells 
for the average numbers of Fas ligand molecules (L,,LT) and free Fas receptors (R,,RT) on the 
surface of each cell, and one for the concentration of the soluble Fas ligand (SL). To facilitate, 
the analysis, we reduce the dimension of this system by making the following assumptions. First. 
the cell killing occurs on a much slower time scale than that of the ligand and receptor binding, 
so in the region of the sFasL transition, the cell numbers appear to be constant. Thus. we fix 
the cell densities at these values. Second, the degradation of Fas ligand is much more rapid than 
that of the receptor, and thus, we assume that the tumour and immune cell FasL are both in 
equilibrium. Finally, near the sFasL transition the numbers of tumour and immune cell Fas arc% 
approximately the same, so we set Rr = R,. With this, the dimensionless system of ODES 
reduces to only two, for R = RT = R, and SL, namely, 

dR 
-=l-R-$RSL, 
dt 

dSL 
-=$+l-B+RSL. dt 

i 

(lb) 

R(0) = 1, SL.(O) = 0, 

where fi and E are positive constants. The biological interpretation of the model is that Fas 
receptor and sFasL are supplied at constant rates to the cell surface and extracellular space. 
respectively, both degrade linearly proportional to their concentrations and both are used up 
when sFasL binds irreversibly to the cell surface Fas receptor. These are the -RSL/E” and 
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(a) 
Figure 1. (a) and (b) are illustrations of the form of R(t) and S,(t). The R(t) 
solution gradually decreases from the initial value R(0) = 1 to its steady state R’. 
After an initial transient, there is a sharp jump in the SL solution to the steady 
state SL = 1. The solution is calculated by numerical solution of (la) and (lb), with 
E = 10m2 subject to the initial conditions SL(O) = 0, R(0) = 0. The parameter fl 
is taken to be 1. (c) is a plot of the solution w(t) = R(t)S,(t)/c3. After an initial 
increase, w(t) is a simple step function with a jump from w = fl + 1 to w = 1 at 
t = t*. 
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Figure 1. (cont.) 

-RSL,/E~ terms. The Fas receptor has a long half-life, a turnover time of hours [ll] compared to 
the rate of FasL MMP inactivation, and the decline of sFasL in the blood stream, which are both 
of the order of minutes [12]. Thus, the three terms involving E are large; for biologically realistic 
parameters, E is in the range 1O-2-1O-5 and p = O(1). 

Numerical solutions have two key features that are also found in solutions of the full model (see 
Figures la and lb). First, the R profile gradually decreases from its initial value to its steady 
state (which we will denote by R*). Second, after an initial transient, where there is a small 
relative increase in SL compared to the decrease in the R solution, there is a sharp jump in the 
SL profile to the steady state St=l. 

The basic objective of this paper is to investigate the sharp jump in the concentration of sFasL 

by singular perturbation analysis. 

3. SINGULAR PERTURBATION ANALYSIS 

Regular Solution and Initial Singular Layer 

We first look for the outer solution of system (1) in the form of a regular series expansion 
SL = CnzO SLY?, RL = Cnzo RL*E”, which, on substituting into (1) and equating powers of E, 
gives two possible solutions: 

o<t<t*: R(t) = kexp(-t) - ,S, SL(t) = 1+p E3 

kexp(-t) - p ’ (2) 

where k is a constant of integration and 

t>t*: R(t) = e3, SL(t) = 1, (3) 

where we have used t* to denote the time at which the sharp Sr, transition occurs. 
Note that, in the first solution (2), we cannot satisfy the initial condition SL(O) =: 0. In fact, 

if t = 0, SL(O) = (1 + p)/(k - 0) # 0. This is because the SL-equation as E + 0 is singular near 
t = 0. We have found that, in order to capture the behaviour of the solution of (1) for times near 
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t = 0, it is necessary to introduce the resealing S,(t) = S(t) &3 and the fast time scale t = t/~-‘. 
in which case the O(1) equations, in terms of S(t; E) = ,$(t’; E) and R(t; E) = fi(t; E), are 

dii 

dt - 0, 
d?i’ _- --==o+1-RS, 
dt 

where tildes denote the inner (singular) solution valid near t = 0. Solving these equations with 
R(O) = 1 and S(0) = 1 then gives 

ii= 1. S = (p + 1) (1 - exp (-t^)) ia) 

Matching the singular and outer solutions will determine the value of the unknown constant k. 
The requirement R(0) = ii(co) implies that k = 1 + P. Note that, for t = ln(k//I), the outer 
solution SL -+ co (2), and so ln(k/P) is an upper bound for the solution of t”. Thus, we have 
obtained matched asymptotic expansions for the solution of (1) for times 0 < t < t*. To complete 
the analysis, we now find solutions for the transition layer near t = t*. To do this, we introduce 
a change of variables for R and SL in both of the outer regions. 

Change of Variables 

With the outer solution (a), in the region 0 < t < t*, SL(t) is of the order O(E~) and R(tj 
is O(1) while, for t > t’, SL is O(1) with the outer form R(t) of the order c3. We can thus 
rescale R and SL in both the outer regions, using the resealing R(t) = &t)E3 in the outer region 
t > t* and S,(t) = ,?L(t)E3 f or all 0 < t < t’. However. it is more convenient to rewrite (1) using 
the variables SL(t) and w(t) = (l/s3)R(t)SL(t), giving 

E3 (w’ + w) SL + E2 (SLOW - wp - w + w”) = Si(1 - w), (5a) 

ESL = B + 1 - osr, - w. (5b) 

The form of the w solution is illustrated in Figure lc. After an initial increase, the solution w(t) 
is a step function with a jump from w(t) = 1 + @ to w(t) = 1 at t = t”. Similarly, we can find 
solutions in each of the two outer regions 0 < t < t” and t > t*: 

o<t<t*: w(t) = 1+ P + P(l+PI E3 

p - (1 + P) exp(-t) ’ 

l+O 
SL(t) = (1 + p) exp(_t) - :jE3, 

t > t* : w(t) = 1, SL(t) = 1. (6b) 

The two parts of the outer solution (6a) and (6b) will be joined by a transition layer centered at 
t = t*, in which there is a sharp jump in the SL profile to the steady state S;l = 1. 

Singular Solution to the Problem 

We look for a solution valid near t = t*. Since the combination t/c occurs in the first term in 
the SL-equation, we transform t by introducing t^ = (t - t*)/c. The purpose of this transformation 
is to retain the derivative Si under the limiting process E + 0. Thus, the first order term E$$ 
contributes to the O(1) solution in the t-domain where the outer solutions are not valid, that is, 
near t = t’. Note that since the problem is linear in w and SL, that is, w and SL have O(1) 
jumps, resealing w and SL is inappropriate. Writing w(t; E) = G(~^;E) and SL(t; E) = >L(~:E). 
equation (5a) and (5b) becomes 

(74 E3tiSL+E2$3L+&2 $,73p-GpG+t22 ( > = 3; (1 - ti) 1 

dSL 
-7=p+1-p&ti. 
dt 
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We now set E = 0 to get the O(1) equations 

There are two possible solutions of this, 

and 

ti (i) = 1+ p, SL (t^) = 0, Pa) 

ti (t^> = 1, S, (t^) = 1 - or exp (-pi) , @b) 

where or is a constant of integration to be determined by matching. 
The part of the solution given by (8a) is the singular solution for w and SL that is valid for 

-t^ < 0, which is equivalent to t < t’, while (8b) is the singular solution valid for t^ > 0 (the singular 
region t > t*). These solutions govern w and SL in the immediate neighbourhood of t* which 
corresponds to the i-domain, -co < t^ < 00. However, the jump in 2i, at t^ = 0 implies that an 
additional solution component is required. That is, the singular solution (8) has the appropriate 
form, but fails to be valid in some intermediate region within the O(E)-domain near t”. 

In this case, we have to use an additional resealing, giving an ‘inner-inner’ solution near t = t’ 
which will join the two parts of the inner solution (8a) and (8b). With the transformation 
t = (t - t*)/.c, on letting E -+ 0 in (5), we lose the first-order term $$ and the first equation is 
simply algebraic. Thus, we must look for a transformation in t which involves E in such a way 
that, as E + 0, E~W’SL and ES; contribute to the O(1) solution where the singular solution (8) 
1s not valid. 

Resealing in the Inner Region 

Motivated by the form of the inner solution (8), we look for a solution valid on a smaller 
inner-inner domain centered at t = t*. Numerical simulations indicate that it is necessary for SL 
to be of the order E, and so we take SL = ESL. We then let < = (t - t*)/P, where cy must be 
determined, and rewrite (8) in terms of w(t) = $(<) and SL = c(E): 

E2-%$ + E3$U + &%$P - $@ - 11, + $2 = a2(1- q), 

E2-a da 
x = P + 1 - p&o - $I, 

If Q = 2, then as E ---t 0 with < fixed both first-order terms remain in the first approximation. 
Thus, with (Y = 2, the O(1) equations are 

= $J(P + I- $J) + a2(1 - $), (9a) 

Substituting (9b) into (9a) implies 

- Pa (e - to) , (10) 

where <e is a constant of integration. Substituting this back into (9b) with 0 = (l/y)% gives 

$ - p (I - Jo) $ - (p + 1)y = 0. 
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If we now change the dependent variable to < = fi([ - <o)~/:! instead of <, the problem becomes 

which is in a standard form known as a degenerate hypergeometric equation (Kummer Is equatzon). 
The solution is available from standard textbooks, which in terms of the original variables gives 
a solution for a([) in the inner-inner region as 

o$2ki@(u + 1,3/a; C) - ‘Q(u. + 1.3/2; C)] 

[Ici@(% 1/2; 0 + ql(o, 1/2; 01 (i< 0) 1 

ll! 

where [ = < - cc, a = (P + 1)/2P, Ici and k2 are constants of integration which will be deter- 
mined by matching, and @a(.) and e(.) are hypergeometric functions of the first and second kino. 
respectively. Substitution of this into (10) gives the inner-inner solution for 11, 
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Figure 2. Schematic behaviour of the leading order solutions of the caricature 
model (7) for w(t) and S,(t) (see text for full details). 

By constraining the solution a(<) to be continuous at < = 0, standard formulae for a,(.) and \k(,) 
yield a constraint equation in terms of Gamma functions, I(.), with 

(12) V1/2) 
Icl + r(a + l/2) = -kz - 

rY1/2) 
r(a + i/2) 

We also need to match the inner-inner solutions with the inner solutions calculated previously. 
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Figure 3. A comparison between the approximation ((14a) and (14b) with D = 1. 
co = 1, and e = 10e2) for w(t) = (l/~~)R(t)Sl(t) and SL(~) (*) and a numerically 
calculated form (-), found via numerical solution of the model ODES (la) and (lb). 
The matched asymptotic solution agrees very well with the numerically calculated 
solutions. The numerical solutions show that t* is close to the upper bound t’ < 

ln((l + @)/PI. 

The four matching conditions are 

=limti(i) =l+p, 
LO 

(13a) 

(13b) 

= lim S;, (t^) = 0, 
i-+0 

(13c) 

= ,!iy & (i) = (1 - or) + /3a& (13d) 

Substituting $J = 1 into (9b) and integrating implies that to leading order as 5 --f 03., u = ,B<, 
and so the last condition becomes E& = (1 - al) + /3art^. Recalling that < = (r - t”)/~~ and 
t^ = (t - t*)/E, we get 

Ep(t -t*) 
&2 

= 1 _ cyl + Pa1 (t - t*) 
E ’ 

and so we must have cur = 1. Standard asymptotic expansions for the hypergeometric func- 
tions a(.) and Q(.) show that (12) and matching conditions C( -co) = 0 and a(~) = &’ are 
satisfied if ICI = 0 and kg = -2I’(l/2)/I’(u + l/2). Th e remaining two matching conditions 
(13a),(13b) hold automatically, with no conditions required. The constant ~$0 is not determined 
by leading order matching and can thus be chosen arbitrarily at this order. Figure 2 schematically 
illustrates the matching process. 
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Composite Solution 

The complete composite solution is the sum of the inner solutions near t = 0, the outer 
solutions (6): inner solutions (8), and inner-inner solutions (lO):( 11) near t = t’, minus the 
common parts, giving 

w(t;E) = PU + P) t - t* 
@-(l+p)e~p(-t)‘~+’ E2 ( 1 -(P+l)exp 2 . 

( ) 
(14a) 

1+P 
SL(t’E) = (1 + /?)exp(-t) - D 

i”+s0(?) +l-exp(Y:i(t;-t*)) (14b) 

-‘@it*) -(l+p)exp 2 
( ) 

With this solution, in the 0(E2)-region near t = t*, the inner-inner solution is the dominant 
form while, away from this singular region, the outer form is dominant, the inner solution acts as 
an intermediate form joining the inner-inner and outer solutions. We also have an inner solution 
near t = 0, which joins the outer solution to the initial data. 

Exact analytical calculation of t* would require matching the inner solution (8) with higher- 
order terms in the inner-inner solution, which we have not attempted. However, we have already 
demonstrated that ln( (1 + ,B)/p) is an upper bound for t’: the outer and inner solutions will 
never match if the outer solution SL -+ co, and so from (2), we must have t’ < ln((1 +,B)/p). 
Numerically calculated solutions of the model equations (1) indicate that t* E ln((1 + /3)/p). 
Figure 3 illustrates the very good fit of this approximation to the numerical solution, with t* 
close to this upper bound. 

4. DISCUSSION 

Summary 

The problem studied in this paper is more complex than a standard singular perturbation 
problem. A standard problem of this type matched asymptotic expansions would contain two 
outer solutions separated by a single transition layer centred at t = t’. However, with the example 
presented in this work, there can be no uniformly valid asymptotic solution with a single transition 
layer. In this problem, near t = t* there are in effect two fast time scales, the fast time in which t 
is of O(E~) and the w solution changes very rapidly, and a slower time of O(E) during which the 
SL solution increases to its steady-state value SE = 1. So, near t = t*, both solutions w and SL 
change very rapidly, but the change in the w solution is very fast compared with the change 
in SL. Thus, to extract the main features of both solutions, we require an inner expansion which 
approximates SL near t = t* and an inner-inner expansion to capture the faster change in the w 
solution. Away from the singular (inner) regions near t = t*, the nonsingular part of the solution 
is the dominant form. For a complete description of the solution, we also require an inner solution 
near t = 0 which joins the outer solutions onto the initial values w(0) = 0 and SL(O) = 0. This 
solution form compares very well with the numerical results (see Figure 3). With this process, 
we have been unable to calculate an exact analytical form for t*. Nevertheless, the analysis does 
give an upper bound for t*, namely t” < ln( (1 + D)//3), and numerical simulations show that t’ 
is close to this upper bound. 

Implications for the Full Model 

We now discuss the extent to which our results for the caricature system (1) can be extended 
to the full model. 

In the full model (described in [lo]), numerical simulations show that, after an initial transient, 
the number of soluble FasL molecules increases sharply to its steady state Si. TO study this 
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behaviour in more detail, we have considered a simplified caricature model. Numerical simulations 
show that the caricature model also exhibits the sharp transition in the SL solution. Investigation 
of the caricature model using singular perturbation analysis has given considerable insight into 
the behaviour of the solution, and has provided a good analytical approximation to the solutions 
of the simpler system. These solutions compare very well with the numerical simulations, and 
capture the interesting transition in the SL solution that was observed in the full model. 

The perturbation approach also yields insight into the mechanism by which the sharp transition 
in the SL solution is generated; we have shown that the level of SL is closely related to R, and 
the jump in SL is initiated when R falls to very low values, that is, near t = ln((1 + 0)/p). 
The caricature model is highly analogous to the full model. This analogy suggests that soluble 
FasL will increase rapidly to very high levels when the number of membrane-bound Fas receptor 
molecules becomes small. This makes sense intuitively, since a low number of free Fas receptors 
will not be able to bind with the large amounts of sFasL shed from the surface of the cells. 
resulting in the accumulation of high levels of extracellular soluble ligand. 

Elevated levels of sFasL have been reported in a wide range of human tumours and are as- 
sociated with poor patient prognosis [13,14]. In general, this activity is thought to occur as a 
result of the rapid cleavage of FasL by MMPs. Here. we show that sFasL interaction with its cell 
surface receptor Fas is also a key regulatory step in this process. 
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