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A b s t r a c t - - P e r i o d i c  wave trains are the generic one-dimensional solution form for reaction-dif- 
fusion equations with a limit cycle in the kinetics. Such systems are widely used as models for 
oscillatory phenomena in chemistry, ecology, and cell biology. In this paper, we study the way in 
which periodic wave solutions of such systems are modified by periodic forcing of kinetic parameters. 
Such forcing will occur in many ecological applications due to seasonal variations. We study temporal 
forcing in detail for systems of two reaction diffusion equations close to a supercritical Hopf bifurcation 
in the kinetics, with equal diffusion coefficients. In this case, the kinetics can be approximated by the 
Hopf normal form, giving reaction-diffusion equations of A-w type. Numerical simulations show that 
a temporal variation in the kinetic parameters causes the wave train amplitude to oscillate in time, 
whereas in the absence of any temporal forcing, this wave train amplitude is constant. Exploiting the 
mathematical simplicity of the A-w form, we derive analytically an approximation to the amplitude 
of the wave train oscillations with small forcing. We show that the amplitude of these oscillations 
depends crucially on the period of forcing. (j~) 2004 Elsevier Ltd. All rights reserved. 

Keywords--Reaction-diffusion,  Travelling waves, A-w systems. 

1. I N T R O D U C T I O N  

Periodic wave t ra ins  are the  generic one-dimensional  solut ion form for react ion-diffusion equat ions 

with a s table  l imit  cycle in the kinetics. Such stable l imit  cycles are used widely in biological 

and  chemical applicat ions;  chemical concent ra t ion  waves such as those found wi th  the  Belousov- 

Zhabot inski i  react ion are visual ly  d ramat ic  examples [1], other  examples  inc lude  the  intracel lular  

calcium system [2], and  predator-prey in teract ions  [3,4]. Periodic wave t ra ins  are solut ions with 

cons tan t  shape and  speed tha t  oscillate in bo th  space and  time. T h e y  were first s tudied by Kopell  

and Howard [5], who showed tha t  all oscillatory reaction-diffusion systems have a one-parameter  
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family of periodic wave train solutions; here, we use the word 'oscillatory' to indicate that the 
reaction-diffusion kinetics have a stable limit cycle. 

Over the last two decades, many authors have considered the form of periodic wave trains, 
and their stability as solutions of the corresponding reaction-diffusion systems [6-9]. More recent 
work has focused on the generation of these solution forms from simple initial conditions, of the 
type that would arise naturally in applications [10,11]. For example, in [11], Sherratt considered 
the behaviour behind invasive wave fronts with initial data decaying exponentially across the 
domain, and showed that such initial data does indeed generate a periodic wave train. Another 
recent study focusing on the generation of periodic wave trains is that of Ermentrout et al. [10]. 
They consider wave train generation and interaction in equations that undergo a subcritical Hopf 
bifurcation and have a regime of bistability, leading to transition fronts between wave trains and 
homogeneous oscillations, and spatially localised oscillations. 

One important difference between real ecological systems and typical reaction-diffusion mod- 
els are the temporal oscillations in parameter values due to seasonal variations. Timm and 
Okubo [12], and Sherratt [13] studied the effects of temporal oscillations on the ability of reaction- 
diffusion systems to form Turing type patterns. Timm and Okubo studied a model for a predator- 
prey interaction between different species of plankton, with a sinusoidal temporal variation in 
the dispersal rate of the predator zooplankton. They presented numerical evidence that sug- 
gested that the homogeneous steady state becomes more stable as the amplitude of the temporal 
variation in dispersal rate increases. More recently, Sherratt [13] extended the assumptions of 
Timm and Okubo to include the simple case in which the temporal variation in diffusivity has 
a square-tooth form, alternating between two constant values. There, analytic conditions for 
dispersal driven patterns were determined, which show that in some cases oscillations in the 
predator dispersal rate can promote pattern formation. 

In this paper, we consider the effects of temporal forcing on wave train propagation for systems 
of two reaction diffusion equations close to a supercritical Hopf bifurcation in the kinetics, with 
equal diffusion coefficients. In this case, the kinetics can be approximated by the Hopf normal 
form, giving reaction-diffusion equations of A-w form. A-w systems have been widely used in 
prototype studies of reaction-diffusion equations, and have proved invaluable in the study of 
spiral waves [14,15] and periodic plane waves [5,6]. Our objective is to understand the way in 
which such variations modify the generation of periodic wave trains behind invasive transition 
wave fronts. We do not consider the specific effects of seasonal variations in any particular 
ecological system; rather, we investigate the generic effect that oscillations in parameters have 
on oscillatory systems. 

Section 2 begins by introducing reaction-diffusion systems of A-w type. In Section 3, we present 
the results of numerical simulations for A-w systems with temporal variation. Exploiting the 
mathematical simplicity of the A-w form, we derive analytically (Section 4~) an approximation to 
the amplitude of the forced wave train oscillations. We then use this approximation to describe 
how the amplitude of these solutions depends on the period of forcing. We discuss the results in 

Section 5. 

2. I N T R O D U C T I O N  T O  A-w S Y S T E M S  

We will start with an introduction to the "A-w" class of reaction-diffusion systems. These have 
the general form 

0U 02U 
- -  +  (r)u - ( l a )  

Ot Ox 2 

Ov 02v 
- -  + w(r)u + A(r)v, (lb) 

Ot Ox 2 

where r = (u 2 + v2) 1/2, and A(0) and w(0) are both strictly positive. This type of equation is 
a standard prototype for oscillatory reaction-diffusion systems; their form facilitates analytical 
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study. In this paper, we will restrict attention to the case 

=  0(t) - = - ( 2 )  

where Wo, Wl > 0, and we allow Ao to vary with time t. Note that ,  with Ao(t) = Ao a constant, this 
is the normal form for kinetics close to a supercritical Hopf bifurcation, provided the variables 
have the same diffusion coefficient. System (1) with Ao(t) -- Ao, which we refer to as the 'unforced' 
easd% has kinetics with a unique steady state at u = v:= 0, which is unstable, and a stable limit 

cycle around that  point that  is circular, with radius "'0 • 
To study these systems it is convenient to change variables from (u, v) to polar variables (r, 0), 

where 0 is the phase, defined by r = (u 2 + v2) 1/2 and 0 = t a n - l ( u / v ) ,  in terms of which (1) 

becomes 

Or 02r ( 0 0 )  2 
o - 7  = - + _ , ( 3 a )  

00 020 2 Or O0 
0---( = (Wo - wlr  2) + ~ + r 0--~ O---x" (3b) 

In common with any oscillatory reaction-diffusion system, the unforced equations have a one 
parameter  family of periodic wave train solutions [5]. The main advantage of a A-w system is 
tha t  the form and stability of periodic plane wave solutions can be writ ten down explicitly 

r = R, 0 = ~d(R)t -~ )~(R)l/2x. 

Here, the wave amplitude R parameterises the wave train family. For the unforced system given 

by (2) this means that  periodic plane waves exist for all amplitudes R < Ao U2. The ± reflects the 
fact tha t  the wave train can travel in either direction. Kopell and Howard [5] derived a stability 
condition for the periodic wave train solutions of A-w systems, namely that  

4A(R) I + \ A , ( R ) ]  ] +RA ' (R)_ <0 ,  

for linear stability. In the case of (2), this shows that  the unforced periodic wave trains are stable 
if and only if their amplitude R > Re, where Rc = [2),0(1 + w~)/(3 + 2w~)]1/21 

NumericM simulations illustrating the generation of these solutions in the unforced case of (2) 

is shown in Figures l a  and lb. Here, we plot the solutions for u as a function of space at successive 
times, with the vertical separation of successive solutions proportional to the time interval. The 
solutions for v have a qualitatively similar form. In these simulations, we have generated periodic 
waves using initial conditions Consisting of an exponentially decaying perturbat ion to the unstable 
equilibrium u = v = 0. Specifically, we consider initial data  of the form 

u(x, O) = v(x, O) = A exp( -~x)  

on the semi-infinite domain [0, oo), with boundary conditions 

Ou Ov 
- -  - -0 ,  a t x = 0  and u , v ~ 0 ,  a s x - ~ o o .  

Ox Ox 

The solution evolves to a transition front moving across the domain at constant speed, and behind 
this front there is a periodic wave train; the direction of the wave train can be either the same 
or opposite to tha t  of the front. The evolution of periodic waves from initial conditions of this 
form was considered previously byShe r r a t t  [11]. 
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Figure 1. Typical numerical solutions of (1) showing a front moving across the domain at constant speed, 
with periodic wave trains behind this wave. In (a) and (b), we consider the unforced case of A(r) -- A0 - r 2 
and w(r) = wo - wlr  2, where )~0, w0, and Wl are constants. In (a), the wave trains move in the negative 
x direction, while in (b) they move in the positive x direction. In (c) and (d), we study the way in which 
temporal forcing modifies the periodic wave train pattern. The forcing term has the form A(r) ---- ) ,o+ef ( t ) - r  2, 
with f ( t )  ~= sin(2~t/T). The temporal forcing causes spatiotemporal disturbances to the periodic wave train 
pattern after the invasion of a front. The figure illustrates that the amplitude of thedis turbance depends 
crucially on the period of forcing T. We consider (1) on the semi-infinite domain [0, oo) with initial data of 
the form u(x, O) = v(x, 0) ----- Aexp(-~x) .  The parameter A affects the time course of the evolution, but has 
no effect on the ultimate behaviour, we take A = 0.1. The parameter values are: (a) ~ = 0.8, A0 ---- 1, w0 = 2, 
wl = 1, 0 < t  < 60; (b) ~ -=4 ,  A0 = 3 ,  w0----- 1, wl ---- 1, 0 < t < 40. The parameter values used in (c) and 
(d) are )~o = 1, w0 = 2, wl = 1, e = 0.8, with (c) T = 4; (d) T = 23,0 <: t < 60. In each case, the boundary 
condition at x ---- 0 is zero flux, Ux ---- v~ ---- 0, but the solutions are essentially independent of this and the same 
behaviour results if one uses any fixed values for u(0, t) and v(0, t). In numerical solutions, the right-hand 
boundary is necessarily finite and we took the boundary conditions to be u ---- v = 0. The equations were 
solved using a Crank-Nicolson scheme. This numerical scheme, with initial data and boundary conditions, 
was also used in the solutions of (1) presented in the other figures. 

3. T E M P O R A L L Y  V A R Y I N G  P A R A M E T E R S  I N  A-w S Y S T E M S  

W e  b e g i n  b y  p r e s e n t i n g  t h e  r e su l t s  o f  n u m e r i c a l  s i m u l a t i o n s  o f  t h e  A-w s y s t e m  (1) w h e r e  t h e  

p a r a m e t e r  A0 is a l lowed  to  v a r y  in t ime .  Specif ica l ly ,  we  c o n s i d e r  (1) w i t h  t e m p o r a l  fo rc ing  of  

t h e  f o r m  

,~o(t) = Ao + e f ( t ) ,  f ( T  + t) = f ( t ) ,  w i t h  ~ f ( s )  ds  = O, (4) 

w h e r e  A0 >> e > 0 a n d  f ( t )  has  a m p l i t u d e  1. N o t e  t h a t  w i t h  e = 0 th i s  r e d u c e s  t o  t h e  u n f o r c e d  

case.  T h e  p a r a m e t e r  e con t ro l s  t h e  a m p l i t u d e  o f  t h e  t e m p o r a l  forc ing ,  a n d  T is t h e  pe r iod ,  a n d  

so c h a n g i n g  t h e  p a r a m e t e r  T a l t e r s  t h e  p e r i o d  of  f ( t )  b u t  has  no  effect  on  i ts  a m p l i t u d e .  N o t e  

also t h a t  we" r e q u i r e  f ( t )  t o  h a v e  m e a n  zero.  

T y p i c a l  n u m e r i c a l  s o l u t i o n s  of  (1) w i t h  (4) a re  s h o w n  in F i g u r e s  l c  a n d  l d ;  we use  a forc ing  

f u n c t i o n  o f  t h e  f o r m  f ( t )  =- s in (27r t /T) ,  b u t  s imi l a r  r e su l t s  a re  s een  for a r a n g e  o f  f u n c t i o n a l  fo rms  

s a t i s f y i n g  (4) (ful l  de t a i l s  o f  t h e s e  a re  g iven  in S e c t i o n  4). In i t i a l ly ,  t h e  s o l u t i o n  has  t h e  s a m e  

f o r m  as s h o w n  o n  F i g u r e  l a ,  n a m e l y  a w a v e  f ron t  m o v i n g  ac ross  t h e  d o m a i n  in t h e  pos i t i ve  x 

d i r ec t i on .  B e h i n d  th i s  f ron t ,  t h e  t e m p o r a l  v a r i a t i o n  in A0 causes  p e r i o d i c  d i s t u r b a n c e s  t o  t h e  

r e g u l a r  w a v e  t r a i n  p a t t e r n .  T h e  a m p l i t u d e  a n d  f r e q u e n c y  of  t h i s  d i s t u r b a n c e  d e p e n d s  u p o n  t h e  

fo rc ing  p a r a m e t e r s  (e, T ) - - t h e  l a rge r  t h e  va lue  o f  e, t h e  g r e a t e r  t h e  a m p l i t u d e  of  t h e  d i s t u r b a n c e  
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to the wave train pattern. Moreover, the amplitude of the disturbance also depends on  the 

period T of forcing, as illustrated in Figures lc  and ld. 

Further insight into the way in which the period of forcing affects the periodic wave train 
pat tern is given by replotting the solutions such as those in Figures lc  and ld  in terms of r and 

= #x, rather than u and v. In the unforced case, the typical form of r is a travelling wave, 
moving with constant shape and speed in the positive x direction. In the region of the periodic 
waves, the solution amplitude r is constant. Numerical calculation of the form of the phase 
gradient ¢ also reveals a transition wave, which changes from zero to ¢ = IA(~) 1/2, moving in 
parallel with the r wave. A typical form of r and ¢ subject to temporal  forcing of the form in (4) 
is illustrated in Figure 2: as a function of time t at a fixed position x (Figures 2a and 2c), and 
as a function of x at fixed t (Figures 2b and 2d). 

(a) (b) (c) (d) 

r , , , | | , , , , | , , ,  

, .  V . . . |  . . . .  

T = 3  

0 , ~ , , , I , , , , I , , ,  i .... , , , ,  

T = 1 0  

o 

0 10 20 30 

t ime,  t 

0 ,,, ,,,,I,,,, , , , I , I , , ,-- 0 , , , , I , , , , " i , ,  ' 

,,, I I,,,,I,,,, 

ii1 
50 100 150 0 20  4 0  60  0 50 100 150 

space,  x t ime ,  t space,  x 

F igure  2. A n  i l lus t ra t ion  of t h e  solut ion of (1) replo t ted  in t e r m s  of (a),(b) r and  (c),(d) ¢ = 0e in each 
of t h e  four cases  T = i ,  3, 6, 10, found v ia  numer ica l  solut ion of (1) sub jec t  to (4), w i th  f ( t )  = s in(2~rt /T).  
T h i s  so lu t ion  shows in more  detai l  t h e  way in which  t h e  per iod of t e m p o r a l  forcing affects t h e  periodic wave 
t r a in  p a t t e r n s  after  invasion of a wave front.  In  (a) and  (c), t h e  so lu t ions  are  p lo t t ed  as a func t ion  of t a t  
a fixed pos i t ion  x (fixed x = 20, 0 <= x < 150), while in (b) and  (d) p lo t t ed  as a func t ion  of x at  fixed 
(fixed t = 45, 0 < t <: 60). Note  t h a t  in t he  unforced case, w i th  e = 0, t h e  t e m p o r a l  per iod  of t he  periodic 
wave t r a i n  is given by Twave = 2~ / w(R ) ,  where  R is t h e  cons t an t  value of t he  wave a m p l i t u d e  r in t h e  region 
of t h e  per iodic  wave t ra in .  W h e n  T is smal l  compared  to Twave, ¢ is cons t an t ,  and  r d e m o n s t r a t e s  pure ly  
t e m p o r a l  osci l la t ions beh i nd  t he  t r ans i t i on  front. For larger va lues  of  T ,  t hese  osci l la t ions  are coupled wi th  
more  compl ica ted  behav iou r  in ¢ .  A n  in te res t ing  p roper ty  of t h e  so lu t ions  is t h a t  increas ing  T,  wi th  e fixed, 
increases  t h e  a m p l i t u d e  of t he  r oscil lat ions beh ind  th i s  front.  T h e  p a r a m e t e r  va lues  are A0 ----- 1, w0 = 2, 
Wl ---- 1, e = 0.5, g iv ing Tw~ve = 5.3. T h e  o ther  p a r a m e t e r s  are as in F igure  1. 
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As in the unforced case, the solutions evolve to a transition wave moving across the domain. 
However, the behaviour behind the wave front consists of either regular temporal oscillations or 
spatiotemporal oscillations, depending on the size of T. When T is small in comparison to the 

temporal period of the wave train (Twave), one observes regular temporal oscillations in the wave 
amplitude r, while as a function of space at a given time, r appears to be constant. Numerical 

calculation of the form of ~b reveals that ¢ is constant behind this front, the same as in Figure la 

for a periodic wave train. For larger values of T, one observes more complicated behaviours 

in ~b, with spatiotemporal oscillations behind the wave front. Numerical simulations show that, 
as e increases, the amplitude of the r oscillations increases. Moreover, increasing the value of T, 
with the amplitude of forcing e fixed, also increases the amplitude of these oscillations. Figure 3 

illustrates these effects on the amplitude of the oscillations in r. Intuitively, one might expect 
the amplitude of the r oscillations to depend on the amplitude of forcing. But, the solutions in 

Figure 3 suggest that the period of forcing is as important ~ its amplitude in determining the 
size of the r oscillations behind the transition wave front. 

We now investigate this behaviour in more detail by constructing an analytical approximation 

to the solution behind the advancing wave front. We consider (I) for the simpler case in which the 

period of forcing T is small in comparison to Twave. Note that no formal use is made of T < Twave- 

Rather, we are simply interested in the form of the solution when T is small, in which ¢ is constant 
and r demonstrates purely temporal oscillations behind the transition wave front. Our objective 

is to understand the way in which the amplitude of these oscillations increases with a gradual 

increase in the forcing period. Work in this simpler case may give us insight into the behaviour of 
the solutions with larger periods of forcing, in which more complicated spatiotemporal patterns 
are observed in the ~ solution behind the transition wave front. 

4.  A N A L Y T I C A L  S T U D Y  O F  S M A L L  

P E R I O D  T E M P O R A L  F O R C I N G  

To study this behaviour analytically, we work with the equations in their polar coordinate 
form (3) 

= - + - + f ( t )  

Ot = 0 ~  + 2r=O~ -t- wo - wlr 2. (5b) 
r 

We drop the hat notation on A0 for simplicity. If we set e -- 0 to get the O(1) system, the large 
time solutions of (5) must be that  of the unforced system, that  is r -- R, 0= -- ¢, where R is 
the amplitude of the unforced periodic wave train and ¢ -- +A(R)U2 with R 2 + ¢2 = A0. Since, 
with forcing, the full equation for r contains an e term, we look for O (e) corrections to r and 0=. 
Substituting r = R(1 + e~) and 0 -- (w0 - wzR2)t + Cx + eO into (5) and equating coefficients of e 

gives 

~t -- ~ - ~¢2 _ 2¢0~ -t- (Ao - 3R 2) ~ ÷ f ( t ) ,  (6a) 

0t ---- 0xx + 2Yx¢ - 2w1R2~. (65) 

Based on the numerical observations, we look for solutions of (6) for small period forcing of the 
form ~ -- ~(t) and ~ --- 0(t). Substituting this into (6) gives 

~t = ~ (A0 - 3R 2 - ¢2) + f ( t )  = - 2 R 2 ~  ÷ f ( t ) ,  (7a) 

Ot = - 2 w l R  2~. (7b) 

Equation (7b) decouples from (Ta) to order e, and integrating (7a) gives 

d [g2R2t? ~] = e2R2tf(t,) ~ r ( t ) :  e -2R2t f t  f (~) e2R2td~+ cle_2R2t ' (8) 
d-~ g~=o 
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Figure 3. Graphs  i l lustrat ing the  change in the  ampl i tude  of t he  r oscillations when  e and T are increased. 
Behind  the  wave front, r varies periodically in t ime. In (a), we plot t he  m a x i m u m  and  min imum values of 
these  oscillations as a function of c wi th  t he  per iod of forcing T fixed, while in (b) p lo t ted  as a function 
of T wi th  e fixed. We denote  these  two values by rmax (solid line) and rmin (do t ted  line), respectively. The  
numerical  values of rmax and rmin are given by solving (1) subject  to (4) wi th  f(t) = sin(2~rt/T). The  pa- 
ramete r  values are Ao = 1, wo = 2, wl = 1, wi th  (a) T = 1; (b) e = 0.1. T h e  o ther  pa ramete r s  are as in 
Figure 1. 

where el is a constant  of  integration. In  reality, we are only interested in the  solution at relatively 

large times, and thus, we restrict  a t tent ion to  approximat ing  the  form of ~ as t -~ co. To do this, 

we replace t with nT 4- % where n E Z and ~- varies between 0 and T. We require a leading order 

expansion as t --+ co, which implies t ha t  n --+ co. Subst i tu t ing t = nT-FT into (8) and replacing 
with t - y gives 

( ) S  +" #(t) = 0 (e -2R=t) -t- f (t-) e2R=(g-t)dt = 0 e -2R~t 4- f ( t  -- y)e -2R% dy. 
J~-O J y = 0  

This can be simplified by breaking up the interval [0, nT + T] into the  subintervals [0, T], [T, 2T], 

. . . ,  [(n - 1)T, nT] and JuT, nT + ~-]. Then  

~y T j~y 2 T " 
~(t) = 0 (e -2R=t) -t- f ( t  y)e -2R=y dy 4- f ( t -  y)e -2R% dy 

=0 = T  

3T nT 

=2T = ( n - - t ) T  

If  we now set # = y - T in the second integral and t) = y = 2T in the  third,  etc., and use the  fact 
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that  f ( n T  + t) = f ( t )  for all n e Z, we obtain 

U =0 J~9=0 

+ e 4 R T f  f(t--9)  e -2R2°dg+ .+e  2('~-l)R2T r 
• . f (t - 9) e -2R2~ rig, 

J~ :O =0 

so, rearranging: we have 

f ( t  - -  y ) e  - 2 R 2 y  dy. ' 
- -  e - - 2 R 2 T  -----0 

The leading order solution as t ~ c~ is then 

1 L T ~ - 1 - e -2R~T =0 I ( t  - g)e -2R% dy. (10) 

The term f(-) is a T-periodic function of time t, and thus, solution (10) is also periodic in time, 
with period T. 

Now that  we have a leading order form of ~ at large t, we consider how the amplitude of the 
~-oscillations depend on T. For the simple ease of sinusoidal forcing, that  is f ( t )  = sin(27rt/T),  

equation (10) can be integrated directly to give 

= 2x/zr2+R4T 2s in  - - - f l  , (11) 

where tan(D) = zr /R2T.  The amplitude of the ~-oscillations in this case is then 

T 
r a m  p -~ 

~/r  2 + R 4 T  2' 

which is an increasing function of T bounded above by 1 / R  2. A comparison between the leading 
order form of r~mp given by (11) and the numerical solution is illustrated in Figure 4. The 
comparison is very good at small values of T, but becomes worse as T is increased. This is 
because the solution form ~ = ~(t), t7 = 8(t) is not valid for larger periods of forcing, in which 
case ¢ -= O= demonstrates more complicated spatiotemporal oscillations. 

1.2 
G. --O- -O / 

1 

"O 

-0.8 

e'- 
.o 

0.6 

0.4 

0.2 

~ ~ ~ 1'0 0 2 4 6 8 
Forcing period (T) 

Figure 4. Graphs  i l lustrat ing the  comparison be tween approximat ion  (11) for f ( t )  = sin(2~rt /T)  (solid line) 
wi th  numerical  solutions (o and dashed  line), found via  numerical  solut ion of (1). T h e  pa rame te r  values are 
A0 = 1, w0 ---- 2, wl = 1, giving the  unforced wave t ra in  ampl i tude  R = 0.914. We take e =- 0.1. T h e  remaining 
pa rame te r s  are as in Figure 1. T h e  comparison is ext remely  good for small  values of T,  bu t  becomes worse 
as T increases. 
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We now go on consider whether wave train solutions with general (zero-mean) forcing terms 

exhibit similar T dependence to the sinusoidal case. In this general case, we restrict our attention 
to approximating the form of e at its maximum and minimum values, which we denote by rma x 

and rmin, respectively. From (10) 

de df(d O. 
d--~ = 0 ¢==~ = 

=0 
(12) 

It is convenient here to rescale (12) so that  f has period 1, using { = t / T  and f ( t )  = g( t /T)  = g(t~. 
If we then replace y with ~ = t / T  - y / T  as the integration variable, the rmax/mi n condition (12) 
becomes 

g'(~)e 2R2T~ d~ = 0, (13) 
= ~ - 1  

where prime denotes derivative with respect to ~. The problem now boils down to finding ~ in 
0 < t < 1 as a function of T for which (13) is satisfied. 

Typical forms for g'(.) and g(.) are sketched in Figures 5a and 5b, respectively. We restrict 
attention to the case of g(~) having just two zeros in [0, 1]. From their definition, the functions 
g'(.) and g(.) are periodic with period 1 and zero mean. Without  loss of generality, we consider 
the case where g(~) has a maximum on [0, 1) at ~ = 0 and a minimum at ~ = ~ < 1. We also 
take ~ = a and ~ = b to be the two zeros of g, where a and b satisfy 1 > b > a > a > 0 (see 
Figure 5). 

We begin by considering the case ~ c [a, 1]. Figure 6 schematically illustrates the form of 

g'(~)e 2R2T¢ in this situation. Integral (12) is, thus, given simply by comparing the areas A1, A2, 

and A3 so that  A1 + A3 = A2. Since RUT is strictly positive, the exponential term implies that  
A1 +A3 increases monotonically with ~. Moreover, from Figure 6 we see that  if ~ -- a,  then A3 = 0 
and A1 < A2. Similarly, if~ = 1, then A1 = 0 and A3 > A2. Therefore, for each positive T, there 
is a unique ~ E (a, 1) satisfying A1 + A3 = A:. 

We now consider how ~ E [c~, 1] varies with R2T. When R2T is small, we can approximate (13) 
by 

= 0 

=t-I 

and so integrating by parts gives 

- = 0 ,  

1 
=0, (14) 

~ = a o r b .  

So in (a, 1), we have ~ = b to leading order when R2T is small. Moreover, as R2T increases, 
decreases because the difference between A3 and A4 increases; eventually ~ tends to c~ as 

R2T --* c~. This is illustrated in Figure 7a, with the corresponding values of g(~ shown in 
Figure 7b. The case ~ E [0, a] is sketched in Figures 7c and 7d. Equation (14) implies that  ~ = a 
near R2T -- 0 in this case. From the form of (13), such as for t e [c~, 1], we see that  ~ becomes 
smaller as R2T increases, but  with ~ approaching zero as R2T ~ oc. Here, the solution for g(~ 
is a monotonic increasing function of T bounded above by its maximum value. 

If we now evaluate integral (12) by parts and simplify, we get 

=o f ( t  - y)e -2R2y dy = 

when e is at its maximum or minimum. Thus, substitution of this into (10) implies tha t  a 
stationary value of e (rmax/min) must satisfy 
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g 

0 a ~ l  

(a) 

g 

(b) 

Figure 5. Schematic illustrations of the forms of (a) g'(.) with (b) g(.) satisfying (4). From their definition, 
the functions g'(.) and g(.) are periodic with period 1 and zero mean. We consider the case where g(~) has 
a maximum on [0, 1) at ~ -- 0 and a minimum at ~ -- c~ < 1. We also take g(a) = 9(b) = 0, where a and b 
satisfy l > b > ~ > a > 0 .  

g'(~)e2R21"~ 

0 

Figure 6. A schematic illustration of the form of g~(~)e 2R2T~ plotted against ~ for a typical periodic forcing 
term g(.) given in Figure 5. Integral (12) between ~ ---- t -  1 and ~ ---- t is given simply by comparing the 
areas A1, A2, and A3 so that A1 + A3 ---- A2. Since R2T is strictly positive, the exponential term implies that 
A1 + A3 increases monotonically with t. 

S ( t )  _ 9 (15)  
r m ~ x / m i n -  2R 2 2R 2 

So, the  form of rma x and  rmin as funct ions  of T are de te rmined  by  g ( ~  in  Figures  7b and  7d, 

respectively. W i t h  these, the  m a x i m u m  value of ~ is, thus,  a mono ton ic  increas ing func t ion  of T 

b o u n d e d  above by  f m a x / 2 R  2, whereas the  m i n i m u m  of ~ describes a decreasing mono ton ic  form 
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Figure 7. (a) A schematic illustration of the change in t E [c~, 1] when the period of forcing R 2 T  is increased. 
Note tha t  t = b when R 2 T  is small. As R Z T  increases, ~ decreases because the  difference between A3 and A4 
in Figure 6 increases; eventually t tends to c~ as R 2 T  --+ c~. (b) The  corresponding values of g(~  as a function 
of R2T.  (c) Here, we consider t E [0, c~]. Note tha t  t = a near R 2 T  ----- 0 in this  case, with t approaching zero 
as R 2 T  --~ ~ .  (d) g(~  as a function of R 2 T  predicted by the  form of t E [0, c~] i n (c). (e) The maximum and 
minimum values of the  wave amplitude per turbat ion ~ given by rmax/mi n = g ( ~ / 2 R  2 with g(~  in (b) and (d). 
The maximum value of ~ is a monotonic increasing function of T bounded above by fmax/2-R 2, whereas the 
minimum of ? has a decreasing monotonic form with ? ---* fm ln /2R  2 as T --* c~. Compare (e) to the  examples 
of simple piecewise periodic forcing terms f ( t )  defined in (16)-(18) (Figure S). 

with ? --+ fmin/2R 2 as T ---+ cx). This is illustrated in Figure 7e. Thus, our analysis shows that  to 
leading order, our conclusions from the simple sinusoidal case can be extended to more general 
forcing terms satisfying (4). By way of example, we end this section by showing the results 
of a numericM investigation into three simple cases of piecewise temporM forcing, all of which 
satisfy (4): The three cases are as follows. 

(i) Square-wave: 

[ 1, 

f ( t )  = 

[ 

ifnT <_t < (n+l )  T, 

if ( n ÷ l )  T<__t<(n÷l)T. 
(i6) 
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Figure 8. (a), (c), (e) Examples of simple piecewise periodic forcing terms f(t)  to A0 satisfying (4) defined 
in (16)-(18), respectively. Note that the areas $1 and $2 balance in (e) so that (4) is satisfied. (b), (d), (f) 
The corresponding change in the amplitude of the r-oscillations when T is increased with forcing terms given 
in (a): (c), and (f). We plot the the maximum and minimum values of these oscillations as a function of T 
with the amplitude of forcing e fixed. The numerical values of rmax and r m i  n (o  and dashed line) are given 
by solving (1) subject to (4, with (16), (17), or (18)). The parameter values in each case are A0 ---- 1, wo = 2, 
Wl = 1, with e = 0.1. The other parameters are as in Figure 1. 

(ii) R e g u l a r - t o o t h :  

4t  
f ( t ) =  ~ - 2 ,  if n +  T < _ t <  n +  T, 

- - -~- -+4 ,  if  n +  T < _ t < ( n + l ) T .  

(iii) Skewed- too th :  

"8-T ' if nT  < t < n +  T, 

8 - T -  2 '  if n +  T < _ t <  n +  T, 

f ( t ) =  lOt ( 4 )  ( 9 )  
- - f - - - 8 ,  if n +  T _ < t <  n +  T, 

, 0 ,  
T - F 1 0 ,  if  n +  T < t < ( n + l ) T ,  

where  n E Z in al l  cases. 

(17) 

(18) 
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Figure  9. An  i l lus t ra t ion  of invasion of a prey popu la t ion  by p reda to r s  wi th  t empora l ly  vary ing  pa ramete r s .  
r ~  O 2 h  

T h e  so lu t ions  shown  are  for a s t a n d a r d  preda tor -prey  mode l  of  t he  form ~ = L, ho---~ - t - fh(h,p , t ) ,  ~ = 

Dp ~ + fp (h, p, t), wi th  osci l latory kinetics;  here  h and  p den9 te  t h e  prey  and  p reda to r  densi t ies ,  respectively.  
We plot t he  prey  dens i ty  h as a func t ion  of space  at  successive t imes.  T h e  so lu t ion  of t h e  p reda to r  dens i ty  p 
ha s  a qua l i t a t ive ly  s imilar  form. Initially, t he  s y s t e m  is in t he  prey-only  s t e a d y  s t a t e  everywhere  except  near  
t he  x = 0 b o u n d a r y  where  p reda to r s  are in t roduced.  Th i s  initial p e r t u r b a t i o n  sp reads  t h r o u g h  t he  doma in  
co r respond ing  to t he  invasion of t he  prey popu la t ion  by preda tors .  Immed ia t e ly  beh ind  t h e  invading  wave front,  
t h e  so lu t ions  are  close to t he  (uns table)  coexis tence  s t e ady  s ta te ,  and  fu r the r  back  periodic t ravel l ing waves 
develop. T h e  kinet ic  func t ions  used  axe fp(h,p) = p(ach/(1- t -ch)- l ) /ab,  fh(h,p)  = h (1 -h ) - cph / (1 -bch ) .  We 
show the  effects of vary ing  each of t he  kinetic pa r ame te r s  i ndependen t ly  wi th  s inusoidal  forcing. T h e  pa r ame te r s  
used  are  (a) a(t)  = 3 + 0.085 sin(21rt/T), b ---- 4, c = 3 wi th  T = 36, 38, 39.5; (b) b(t) = 4 + 0.7sin(21rt/T), 
a ---- 3, c --= 3 wi th  T = 16, 18.5, 19; (c) c(t) ---- 3 + (3:2 x 10 - 4  ) s in (27r t /T) ,  a = 3, b = 4 wi th  T ---- 36, 38, 40. 
In  g r aph  (b), t he  t empora l  var ia t ion  induces  a d i s tu rbance  to  the  wave t r a in  p a t t e r n  which  d e p e n d s  on t he  
forcing per iod  in a very  s imi lar  m a n n e r  to  t h a t  in A-w sys tems .  In g r aphs  (a) a n d  (c), chang ing  T al ters  t h e  
average  speed  of  t he  t ravel l ing wave t ra in  beh ind  t he  advanc ing  front in add i t ion  to i ts  ampl i tude .  In  each 
case, t he  b o u n d a r y  condi t ion  a t  x = 0 is zero flux h~ = pz ---- 0, p lo t t ed  for (a),(b) 900 < t < 1000 and  (c) 
1800 < t < 2000. T h e  equa t ions  were solved numer ica l ly  us ing  a Crank-Nico lson  scheme.  



58 S. D. WEBB AND J. A. SHERRATT 

Solving (1) with (i6), (17), or (18) gives solutions of the same basic form, as illustrated in 
Figure 2, namely an advancing front of the wave train amplitude moving across the domain, 
with either regular temporal or spatiotemporal oscillations behind it. We have found that the 
amplitude of such oscillations increase with T, in a manner Very similar to that for the sinusoidal 
forcing. In particular, these solutions reproduce exactly the same qualitative behaviour that we 
predict in Figure 7 for general forcing terms. The form of f(.)  with numerically calculated values 
for ~max and ?:rain in each case (16)-(18) is illustrated in Figure 8. 

5. D I S C U S S I O N  

Periodic wave trains are the generic solution form for reaction-diffusion equations in one space 
dimension in which the kinetics have a limit cycle. Many systems in biology and chemistry 
are oscillatory, with classic examples including the Belousov-Zhabotinskii reaction [i], and the 
intracellular calcium system [2]. In ecology, spatiotemporal field data on cyclic populations 
is generally too limited for the detection of periodic plane waves. However, recent data on 

vole populations in the Kielder forest (Northern U.K.) has presented evidence for the presence 
of such waves [16,17]. Here, the authors use statistical techniques to show that the observed 

spatially asynchronous, oscillating vole populations correspond to a periodic wave train. Cyclic 

populations such as the field vole are subject to strong temporal forcing by seasonal variations, 

and this represents one of the main points of difference between real ecological systems and the 
theoretical models used to study them. In this paper, we have considered the effect of temporal 

variations on the behaviour of solutions to oscillatory reaction-diffusion equations. Rather than 
study the ecological details of a particular case, our focus has been on the generic effects on 

periodic forcing in kinetic parameters. 

We have investigated temporal forcing in systems of two reaction diffusion equations close to 

a supercritical Hopf bifurcation in the kinetics, with equal diffusion coefficients. In this case, the 

kinetics can be approximated by the Hopf normal form, giving equations of ~-w type. Numerical 
solutions of this model show that temporal variation leads to oscillations of the wave train am- 
plitude, which is constant in the unforced situation. An interesting result is that the amplitude 

of these oscillations becomes larger as the period of temporal forcing increases. Plotting these 

solutions in terms of the wave train amplitude and phase gradient reveals details of this forcing, 

and we used this to derive an approximation to the amplitude of the forced wave train solutions 
for small period temporal forcing, valid to leading order at large times. We then use this ap- 
proximation to describe in detail how these solutions depend on the period of forcing for general 

periodic forcing terms with zero mean. 

Some of the open questions related to this problem concern the form, and in particular the 
speed of the advancing front of wave amplitude, via which periodic waves are generated in our 

numerical simulations. Work is in progress on investigating the transition front, but we briefly 
summarize some of our recent findings here (full details of this will be presented elsewhere). In the 

unforced case, the wave amplitude evolves to a transition front moving with constant shape and 
speed. In this paper, we have shown that temporal forcing causes the wave amplitude to oscillate 

behind this front. In addition to this, we have observed in subsequent simulations that the speed 
of the advancing front in the temporally forced case is also periodic (data not shown). So far, 

we have investigated this by linearising the r-0 equations, and using simple intuitive criteria, to 
derive an analytic expression for both the oscillating speed and form of this advancing front. 
These analytical predictions compare very well with numerical solutions of the ~-w PDEs at the 
leading edge of the advancing front, but do not compare so well for solutions towards the tail of 

the transition front. This is because, although the different points on the transition wave front 
oscillate with the same average speed, we have found that the amplitude of these oscillations 
actually increases towards the tail of the transition front. Understanding this behaviour is an 

important challenge for our future research. 



Oscillatory Reaction-Diffusion Equations 59 

Many authors have used A-w systems as a prototype for reaction-diffusion equations whose 
kinetics have a limit cycle. It is, therefore, natural to ask whether similar behaviour is observed 
in more general oscillatory reaction-diffusion systems. In models of this type, the classic solution 
is a wave of invasion of one equilibrium state by another. For example, a wave of pursuit by a 
predator species and of evasion by its prey; ahead of the wave there are prey but no predators, and 
behind the wave the two species coexist. Here, the rear of the invasive wave front will impose an 
exponentially decaying perturbation to the unstable coexistence equilibrium, which will in turn 
give rise to periodic plane waves [18]. This is not possible in any system of A-w type, as there is 
no equivalent of the prey-only steady state. 

We have investigated temporal varying parameters numerically in a set of standard predator- 
prey kinetics, all of which have a stable limit cycle for appropriate parameter values, and we did 
indeed find very similar behaviour (see Figure 9). However, these solutions also demonstrated 
behaviour which was not observed in the A-w case. In the predator-prey model, changing T 
also affected the average speed of the wave train behind the advancing front, as well as its 
amplitude. This new behaviour is not unexpected, however, since varying the kinetic parameters 
in the more general reaction-diffusion system corresponds to varying parameters A0, w0, and wl 
simultaneously, whereas the work described in this paper applies only to the case in which ),0 
varies in time. The fact that the w0 and Wl parameters affect the phase of the solutions, whereas A0 
affects its amplitude, suggests that w0 and wl variations may give new behaviour not seen with 
simple A0 forcing. 

The temporal forcing of the various other ),-w parameters in the problem is an obvious extension 
to this work, and would give a fuller picture of the response of oscillatory reaction-diffusion 
systems to temporal variations. Nevertheless, the analysis with Ao-forcing has given considerable 
insight into effects of temporal variations; in particular, the way in which the period of the 
temporal forcing can modify the amplitude of the wave train patterns behind invasion. 
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