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Habitat Boundaries in Ecology

@ Ecological habitats are often surrounded by unfavourable
environments
@ Examples: a wood surrounded by open terrain
moorland surrounded by farmland
marsh surrounded by dry ground

@ An appropriate boundary condition is
“population density=0"
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@ Red grouse is a cyclic population (period 4-6 years)

@ The study site is moorland, with farmland at its Northern
edge

@ Farmland is very hostile for red grouse
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Second Example: Field Voles in Kielder Forest

iy

Field voles in Kielder Forest are also cyclic (period 4 years)
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Boundary Condition at the Reservoir Edge

@ \oles are an important prey species for owls and kestrels

@ The open expanse of Kielder Water will greatly facilitate
hunting at its edge

Common kestrel

Short eared owl
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Boundary Condition at the Reservoir Edge

@ \oles are an important prey species for owls and kestrels

@ The open expanse of Kielder Water will greatly facilitate
hunting at its edge

@ Therefore we expect very high vole loss at the reservoir
edge, implying that a suitable boundary condition is
“vole density=0"
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Periodic Travelling Waves in Red Grouse & Field Voles

Spatiotemporal data shows that both red
grouse cycles on Kerloch Moor and field
vole cycles in Kielder Forest are spatially
organised into a periodic travelling wave
(wavetrain)

Space
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Ecological Motivation

Habitat Boundaries in Ecology

Example: Red Grouse on Kerloch Moor

Second Example: Field Voles in Kielder Forest
Periodic Travelling Waves in Red Grouse & Field Voles

Periodic Travelling Wave Generation Question

Does the Dirichlet condition
at the habitat boundary
play a role in generating

the periodic travelling waves?
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Amplitude and Phase Equations
Equilibrium Equations and the Wavetrain Amplitude

Mathematical Model

| consider a generic oscillator model (“A\—w equations”)

ou d2u
ﬁ = W +)\(r)u —w(r)V (_\J
ov 9%v
ﬁ = M—FW(I’)U—F)\(I’)V !
r = Vu2+v2
AMr) = 1-r2
w(r) = wo+wir?

This is the normal form of an oscillatory reaction-diffusion
system with scalar diffusion close to a supercritical Hopf
bifurcation
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Typical Model Solutions

~ _ou d%u

: Egns: - e + A(r)u —w(r)v
ov 0%v

: , 5 = W—kw(r)uJﬁ\(r)v

SN eIV

R Arr) = 1-r?

£ w(l’) = wO-i-wlrz

Becsiu=v=0 at x=0
0 10 20 20 40 Uy =Vvx =0 at x =50

Jonathan A. Sherratt ww. ma. hw. ac. uk/ ~j as Defect Dynamics in an Oscillatory Reaction-Diffusion Equation



A Generic Mathematical Model Mathematical Model
Amplitude and Phase Equations
Equilibrium Equations and the Wavetrain Amplitude

Typical Model Solutions

Dirichlet boundary conditions
generate a
periodic travelling wave

Time incr —>

v(x.t)

What is the amplitude,
speed and wavelength of the
AT AR AN, periodic travelling wave?
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Amplitude and Phase Equations

To study the A—w equations, it is helpful to replace u and v by
r =+vu2 +v2and 6 = tan~1(v/u), giving

N = fha—r024+r(1—r?
2ry0

Family of periodic travelling wave solutions (0 < r* < 1):
r=r* u=r*cos [w(r*)t + )\(r*)x]
<
0 = [w(r*)t + A(r*)x} Vv =r* sin |:w(r*)t + A(r*)x}

Our question: what r* is selected by the Dirichlet boundary
condition?
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Typical Solutions Replotted

u(xt)

Replotting the solutions
in terms of r and 6y

¢ shows that the

£ o long-term solutions for
~ 1 r and 0y are

3 * independent of time
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Equilibrium Equations and the Wavetrain Amplitude

1 There is an exact solution for
1> r=R(x), fx = ¥(x)on 0 < x < oc:
| R(x) = R* tanh (x/\@) W(x) = VU*tanh (x/\@)
, -1/
. e RY= {% [1+,/1+gw§” Yy = —sign(w;)(1-R*2)"/2
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Equilibrium Equations and the Wavetrain Amplitude

Wave amplitude
R*is in very
good agreement

- There is an exact solution for
with that found

r=R(X), 0x = ¥(x)on 0 < x < oo:

in numerical

simulations. R(x) = R* tanh (X/\fz) V(x) = V*tanh (x/\@)
e O =

E

oo,
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Stability in the Periodic Travelling Wave Family
Stability of the Selected Wave

Periodic Travelling Wave Stability Convective and Absolute Stability
Absolute Stability of Wavetrains

Generation of Absolutely Stable and Unstable Wavetrains

Stability in the Periodic Travelling Wave Family

In any oscillatory reaction-diffusion

system, some members of the s iR e
periodic travelling wave family are
stable as solutions of the partial
differential equations, while others
are unstable.

Wave amplitude

Wave speed

For our A—w system, the stability condition is

1/2
2+2w% /

3+2w%

*
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Stability of the Selected Wave

The stability of the selected wave depends on w;.

-1/2
R*:{§[1+\/1+gwﬂ}
This is stable
1/2
. 2+ 2uw? /
s R > | ———=
3+2w%

< |wp] < 1.110468. ..
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Stability of the Selected Wave

The stability of the selected wave depends on w;.

-1/2
* 1 8 2 12
R = {2 [1 Tyt 9w1} } ,,,,, st o Yt oo m i
This is stable Joof

1/2 Tl /
2 4 2w? H !
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Convective and Absolute Stability

@ There are a variety of different solution forms for
|w1| > 1.110468. .. (unstable waves).
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Convective and Absolute Stability
@ There are a variety of different solution forms for
lw1] > 1.110468. .. (unstable waves).
@ The key concept for distinguishing these is
“absolute stability”.
@ In spatially extended systems, a solution can be unstable,

but with any perturbation that grows also moving.
This is “convective instability”.
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Convective and Absolute Stability

@ There are a variety of different solution forms for
lw1] > 1.110468. .. (unstable waves).

@ The key concept for distinguishing these is
“absolute stability”.

@ In spatially extended systems, a solution can be unstable,
but with any perturbation that grows also moving.
This is “convective instability”.

@ Alternatively, a solution can be unstable with perturbations
growing without moving. This is “absolute instability”.
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Convective and Absolute Stability

@ There are a variety of different solution forms for
lw1] > 1.110468. .. (unstable waves).

@ The key concept for distinguishing these is
“absolute stability”.

@ In spatially extended systems, a solution can be unstable,
but with any perturbation that grows also moving.
This is “convective instability”.

@ Alternatively, a solution can be unstable with perturbations
growing without moving. This is “absolute instability”.

@ Absolute instability implies instability irrespective of
boundary conditions.
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Absolute Stability of Wavetrains

@ Absolute stability is much harder to calculate than stability.

@ For wavetrain solutions of A—w reaction-diffusion
equations, we have calculated absolute stability by
computing the “absolute spectrum” via numerical
continuation, adapting the method of Rademacher,
Sandstede & Scheel (Physica D 229: 166-183, 2007)

Jonathan A. Sherratt ww. ma. hw. ac. uk/ ~j as Defect Dyi cs in an Oscillatory Reaction-Diffusion Equation



Stability in the Periodic Travelling Wave Family
Stability of the Selected Wave
Periodic Travelling Wave Stability Convective and Absolute Stability
Absolute Stability of Wavetrains

Generation of Absolutely Stable and Unstable Wavetrains

Absolute Stability of Wavetrains

@ Absolute stability is much harder to calculate than stability.

@ For wavetrain solutions of A—w reaction-diffusion
equations, we have calculated absolute stability by
computing the “absolute spectrum” via numerical
continuation, adapting the method of Rademacher,
Sandstede & Scheel (Physica D 229: 166-183, 2007)

@ Our calculation shows that the stability of the selected
wavetrain is:
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Generation of Absolutely Stable and Unstable
Wavetrains by Dirichlet Boundary Conditions

Numerical simulations show distinct behaviours in the
absolutely stable and unstable parameter regimes
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Sources, Sinks, and Convective Instability

Movement of Sources and Sinks

Travelling Waves of Amplitude
Source-Sink Dynamics Solution Structure

Perturbation Theory Calculation

Outline

@ Source-Sink Dynamics
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Sources, Sinks, and Convective Instability

Movement of Sources and Sinks

Travelling Wi mplitude
Source-Sink Dynamics So Structure

Perturbation Theory Calculation

Sources, Sinks, and Convective Instability

I focus on the convectlvely unstable but absolutely stable case.

4000, \ / - / N 4000
3995 / / fl 3995
= 3990 / 7 // 3990
: // / /
£ 3085 / / 7 E 3085
3980 // NN //\ // 3980
3075 LN // 3975
100 200 300 400 500 0 100 200 300 400 500
space X spacex
|
- -05 0 05 1 0 0.2 0.4 06 0.8 1
u r

This solution is a pattern of “sources and sinks”.
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Sources, Sinks, and Convective Instability
Movement of Sources and Sinks
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Solution Structure

Perturbation Theory Calculation

Sources, Sinks, and Convective Instability

I focus on the convectively unstable but absolutely stable case.
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This solution is a pattern of “sources and sinks”.
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Sources, Sinks, and Convective Instability

Movement of Sources and Sinks

Travelling Wave: mplitude
Source-Sink Dynamics Sol Structure

Perturbation Theory Calculation

Sources, Sinks, and Convective Instability

I focus on the convectlvely unstable but absolutely stable case.
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This solution is a pattern of “sources and sinks”.
The wavetrain between the defects has (approximately) amplitude

= (i)}
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Sources, Sinks, and Convective Instability

Movement of Sources and Sinks

Travelling Waves of Amplitude
Source-Sink Dynamics Solution Structure

Perturbation Theory Calculation

Sources, Sinks, and Convective Instability

Question: How can an unstable wavetrain persist between the
sources and sinks?
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Sources, Sinks, and Convective Instability

Movement of Sources and Sinks

Travelling Waves of Amplitude
Source-Sink Dynamics Solution Structure

Perturbation Theory Calculation

Sources, Sinks, and Convective Instability

Question: How can an unstable wavetrain persist between the
sources and sinks?

Answer: Any growing perturbations moves, and is absorbed
when it reaches a sink.
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Sources, Sinks, and Convective Instability
Movement of Sources and Sinks
Travelling Wa of Amplitude

Source-Sink Dynamics
rbation Theory Calculation

Movement of Sources and Sinks

The sources and sinks appear

to be stationary........
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Sources, Sinks, and Convective Instability
Movement of Sources and Sinks
Travelling Wa of Amplitude
Source-Sink Dynamics Solution Structure

Perturbation Theory Calculation

Movement of Sources and Sinks

The sources and sinks appear ... but very long simulations
to be stationary........ show that they move.
4000 o

3251
3001
2751
2501
2251
»
T 2001
§
100 200 300 400 500 31
space X = 1501
EENT 0 s £ 1251

0 02 04 0.6 08 1 1001
r

space,x
EEET 0000 T
0 0.2 0.4 06 08 1

r

onathan A. Sherratt

amics in an Oscillatory Reaction:



Sources, Sinks, and Convective Instability

Movement of Sources and Sinks

Travelling Waves of Amplitude
Source-Sink Dynamics Solution Structure

Perturbation Theory Calculation

Travelling Waves of Amplitude

The source-sink patterns are of travelling wave form in
amplitude.

Substitute r(x,t) =T(z), Ox(x,t) = ¥(z), z = x — ct
= d?r/dz? +cdr/dz+r( 1/12) =
d¢/dz +c ¢ +K —w1?2+2$(dF/dz)/? =

(K is a constant of integration).
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Sources, Sinks, and Convective Instability

Movement of Sources and Sinks

Travelling Waves of Amplitude
Source-Sink Dynamics Solution Structure

Perturbation Theory Calculation

Solution Structure

Amplitude, r

SINK SOURCE SINK
Space, X

Between the source and the neighbouring sinks,
—c(1—R?Y2 1 R? =K = +c(1 —R3)Y2 + wR3

— ¢ has the same sign as R; — R.
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Sources, Sinks, and Convective Instability

Movement of Sources and Sinks

Travelling Waves of Amplitude
Source-Sink Dynamics Solution Structure

Perturbation Theory Calculation

Eigenvalue Structure of Stationary Sources and Sinks

Stationary sources and sinks satisfy
d2F /dz2 +?(1 2 122) -0
di/dz + K — w2 +2¢ (df/dz)/f = 0.
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Sources, Sinks, and Convective Instability

Movement of Sources and Sinks

Travelling Waves of Amplitude
Source-Sink Dynamics Solution Structure

Perturbation Theory Calculation

Eigenvalue Structure of Stationary Sources and Sinks

Stationary sources and sinks satisfy
d2F /dz2 +?(1 2 122) -0
di/dz + K — w2 +2¢ (df/dz)/f = 0.
Linearise about the wavetrain

= stationary sources decay to the wavetrain at rate v/2
& stationary sinks decay to the wavetrain at rate 1/v/2 =i /4

(0 =VI1—12R*Z€ R)

= the effect of the moving sinks on the sources dominates
the effect of the moving sources on the sinks

= when ¢ is small, we can just consider the correction
to a stationary source
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Eigenvalue Structure of Stationary Sources and Sinks

Stationary sources and sinks satisfy
d2F /dz2 +?(1 2 122) -0
di/dz + K — w2 +2¢ (df/dz)/f = 0.
Linearise about the wavetrain

= stationary sources decay to the wavetrain at rate /2
& stationary sinks decay to the wavetrain at rate 1/v/2 =i /4

(0 =VI1—12R*Z€ R)

= the effect of the moving sinks on the sources dominates
the effect of the moving sources on the sinks

= when ¢ is small, we can just consider the correction
to a stationary source
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Movement of Sources and Sinks

Travelling Waves of Amplitude
Source-Sink Dynamics Solution Structure
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Eigenvalue Structure of Stationary Sources and Sinks

Stationary sources and sinks satisfy
d2F /dz2 +?(1 2 122) -0
di/dz + K — w2 +2¢ (df/dz)/f = 0.
Linearise about the wavetrain

= stationary sources decay to the wavetrain at rate /2
& stationary sinks decay to the wavetrain at rate 1/v/2 =i /4

(0 =VI1—12R*Z€ R)

= the effect of the moving sinks on the sources dominates
the effect of the moving sources on the sinks

= when ¢ is small, we can just consider the correction
to a stationary source
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Sources, Sinks, and Convective Instability

Movement of Sources and Sinks

Travelling Waves of Amplitude
Source-Sink Dynamics Solution Structure

Perturbation Theory Calculation

Eigenvalue Structure of Stationary Sources and Sinks

Stationary sources and sinks satisfy
d2F /dz2 +?(1 2 122) -0
di/dz + K — w2 +2¢ (df/dz)/f = 0.
Linearise about the wavetrain

= stationary sources decay to the wavetrain at rate /2
& stationary sinks decay to the wavetrain at rate 1/v/2 =i /4

(6 =V11 —12R*2 € R)
= the effect of the moving sinks on the sources dominates
the effect of the moving sources on the sinks

= when ¢ is small, we can just consider the correction
to a stationary source: r = R*|tanh(z/v/2)|
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Sources, Sinks, and Convective Instability

Movement of Sources and Sinks

Travelling Waves of Amplitude
Source-Sink Dynamics Solution Structure

Perturbation Theory Calculation

rbation Theory Calculation

The wave speed is a natural small
parameter........
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Travelling Wave
Source-Sink Dynamics Solution

Perturbation Theory Calculation

Perturbation Theory Calculation

The wave speed is a natural small
parameter........
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Sources, Sinks, ¢
Movement of
Travelling Wavi
Source-Sink Dynamics Solution Structure

Perturbation Theory Calculation

urbation Theory Calculation

The wave speed is a natural small
parameter........

time, t (thousands)
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is a better choice, where R* is the
amplitude of the stationary source. | e—
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Sources, Sinks, and Convective Instability

Movement of Sources and Sinks

Travelling Waves of Amplitude
Source-Sink Dynamics Solution Structure

Perturbation Theory Calculation
Perturbation Theory Calculation

Transition
layer of
width €

g

Amplitude,'\r(z)

L(g) U L&)

SINK SOURCE SINK
z=x—-ct
Fore=0:c = O
= (9-/81+7202)/(4wy)
= R*|tanh(z/V2)|
= —(1-R*?)Y2tanh(z/V2)

<y =) AN
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Sources, Sinks, and Convective Instability

Movement of Sources and Sinks

Travelling Waves of Amplitude
Source-Sink Dynamics Solution Structure

Perturbation Theory Calculation
Perturbation Theory Calculation

Transition
layer of
width €

g

Amplitude,'\r(z)

L(g) U L&)

SINK SOURCE SINK
z=x—-ct
. _ 2
Fore#0:c = ec;+ O(e)

= (9—/81+72w?)/(4w;) + €K1 + 0(62)
= R*[tanh(z/V2)| + r1(z) + O(?)
= —(1-R*?)Y2tanh(z/V2) + ei1(z) + O(e?)

<y =) AN
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Sources, Sinks, and Convective Instability

Movement of Sources and Sinks

Travelling Waves of Amplitude
Source-Sink Dynamics Solution Structure

Perturbation Theory Calculation

Perturbation Theory Calculation

Transition
layer of
width €

g

Amplitude,'\r(z)

L(g) U L&)

SINK SOURCE SINK

z=x—ct

Results:  Li(e) = —v2log|e| — v2log s+ + 0(1)
where k_exp{+idlogk_} + ki exp{+idlogri} =A

A'is a (complex) constant, independent of ¢, O(1) ase — 0
(recall that §=+/11—12R*2¢R)
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A Family of Moving Sources and Sinks
Implications for the PDE Solutions
Overall Conclusion

Objectives for Future Work

Conclusions

A Family of Moving Sources and Sinks

There is a three parameter family of moving sources and sinks:

Parameter 1: ¢, which reflects the difference in wavetrain
amplitudes

Parameter 2: c,, which reflects the speed of movement

Parameter 3: ., which refects the O(1) contribution to the
source-sink separation
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Conclusions

Implications for the PDE Solutions

@ Source-sink separations are
variable. This corresponds to
different values of x4+ associated
with different sources.
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A Family of Moving Sources and Sinks
Implications for the PDE Solutions
Overall Conclusion

. Objectives for Future Work
Conclusions

Implications for the PDE Solutions

@ Source-sink separations are
variable. This corresponds to
different values of x4+ associated
with different sources.

@ The sources and sinks all stop
moving at (approximately) the same
time. This is expected: all are part of
a single travelling wave solution.
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Implications for the PDE Solutions
Overall Conclusion
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Implications for the PDE Solutions

@ Source-sink separations are
variable. This corresponds to
different values of x4+ associated
with different sources.

@ The sources and sinks all stop
moving at (approximately) the same
time. This is expected: all are part of
a single travelling wave solution.

@ There is (approximately) no change in the source-sink
separation when the sources and sinks stop moving. This is
because the equation for k. does not involve the parameter c;.
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Implications for the PDE Solutions

@ What is the distance between the
leading sink and the x = 0 boundary
when the sources and sinks stop
moving? A minor adaptation of the
calculation shows that the
separation Lpgy (€) is

—V/2log |¢[ — v2log fpay +0(1)

where Im [62kpay €xp {+id(log |e| + 109 kpay) } | = sign(e)

(o, is a (complex) constant; recall s=+/11—12R* ZER)
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Overall Conclusion

0.0 1.110468 1.576465
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BUT ABSOLUTELY UNSTABLE [,
STABLE
WAVETRAIN PATTERNS OF DISORDERED
SOURCES AND SPATIOTEMPORAL
SINKS OSCILLATIONS
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Objectives for Future Work

@ A better understanding of how a particular member of the
family of moving sources and sinks is selected.

@ A better understanding of the disordered solutions in the
absolutely unstable parameter regime.
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List of Frames

e Ecological Motivation e Source-Sink Dynamics

@ Habitat Boundaries in Ecology o Sources, Sinks, and Convective Instability
Qo Example: Red Grouse on Kerloch Moor @ Movement of Sources and Sinks

@ Second Example: Field Voles in Kielder Forest @ Traveling Waves of Amplitude

@ Periodic Travelling Waves in Red Grouse & Field Voles @ solution Structure

Perturbation Theory Calculation
A Generic Mathematical Model

Mathematical Model Conclusions ) )
Amplitude and Phase Equations da Family of Moving Sources and Sinks
@ Equilibrium Equations and the Wavetrain Amplitude @ implications for the PDE Solutions
- . . @ Overall Conclusion
Periodic Travelling Wave Stability Objectives for Future Work

o Stability in the Periodic Travelling Wave Family

o Stability of the Selected Wave

@ Convective and Absolute Stability

@ Absolute Stability of Wavetrains

@ Generation of Absolutely Stable and Unstable Wavetrains
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