How Does Seasonal Forcing Affect Vole Population Cycles?

Jonathan A. Sherratt

Department of Mathematics Heriot-Watt University

University of Dundee, 27 January 2014

This talk can be downloaded from my web site www.ma.hw.ac.uk/~jas

Jonathan A. Sherratt

- 32

Introduction

Vole Cycles in Fennoscandia: Predation Vole Cycles in UK: Killer Grass Modelling the Vole-Grass Interaction Summary and Conclusions

Voles in Fennoscandia and UK

Fennoscandian voles

Kielder forest vole

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas How

How does seasonal forcing affect vole population cycles?

Introduction

Vole Cycles in Fennoscandia: Predation Vole Cycles in UK: Killer Grass Modelling the Vole-Grass Interaction Summary and Conclusions

Voles in Fennoscandia and UK

Fennoscandian voles

Kielder forest vole

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

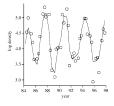
How does seasonal forcing affect vole population cycles?

- 32

Introduction

Vole Cycles in Fennoscandia: Predation Vole Cycles in UK: Killer Grass Modelling the Vole-Grass Interaction Summary and Conclusions

Voles in Fennoscandia and UK



Fennoscandian voles

Kielder forest vole

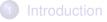
Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

How does seasonal forcing affect vole population cycles?

Э

Summary and Conclusions


Outline

- 2 Vole Cycles in Fennoscandia: Predation
- 3 Vole Cycles in UK: Killer Grass
- 4 Modelling the Vole-Grass Interaction
- 5 Summary and Conclusions

n Predator-Prey Model Beasonal Forcing: Poincaré Map Resonance, Arnold Tongues and Period Doubling Mifurcation and Simulation Diagrams Conclusions So Far

Outline

- 2 Vole Cycles in Fennoscandia: Predation
- 3 Vole Cycles in UK: Killer Grass
- 4 Modelling the Vole-Grass Interaction
- 5 Summary and Conclusions

A Predator-Prey Model Seasonal Forcing: Poincaré Map Resonance, Arnold Tongues and Period Doubling Bifurcation and Simulation Diagrams Conclusions So Far

Predation by Weasels

Voles in Fennoscandia are subject to predation by weasels.

Vole

Weasel

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas How o

How does seasonal forcing affect vole population cycles?

A Predator-Prey Model Seasonal Forcing: Poincaré Map Resonance, Arnold Tongues and Period Doubling Bifurcation and Simulation Diagrams Conclusions So Far

Predation by Weasels

Voles in Fennoscandia are subject to predation by weasels.

Vole

Weasel

Removal of weasels \Rightarrow loss of multi-year cycles Implication: vole cycles are caused by predation by weasels

< < >> < <</>

A Predator-Prey Model Seasonal Forcing: Poincaré Map Resonance, Arnold Tongues and Period Doubling Bifurcation and Simulation Diagrams Conclusions So Far

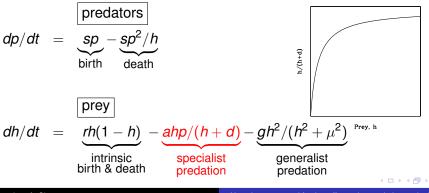
A Predator-Prey Model

In Fennoscandia voles are subject to predation from weasels (a vole specialist) and also birds, badgers and foxes (generalists). Turchin & Hanski (Am. Nat. 149: 842-874, 1997) proposed the model:

$$dp/dt = \underbrace{sp}_{\text{birth}} - \underbrace{sp^2/h}_{\text{death}}$$

$$dh/dt = \underbrace{rh(1-h)}_{\text{intrinsic}} - \underbrace{ahp/(h+d)}_{\text{specialist}} - \underbrace{gh^2/(h^2 + \mu^2)}_{\text{generalist}}$$

Jonathan A. Sherratt


www.ma.hw.ac.uk/~jas

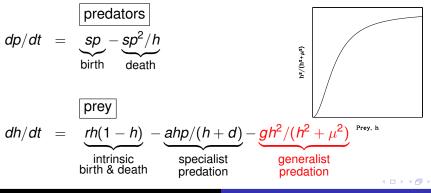
How does seasonal forcing affect vole population cycles?

A Predator-Prey Model Seasonal Forcing: Poincaré Map Resonance, Arnold Tongues and Period Doubling Bifurcation and Simulation Diagrams Conclusions So Far

A Predator-Prey Model

In Fennoscandia voles are subject to predation from weasels (a vole specialist) and also birds, badgers and foxes (generalists). Turchin & Hanski (Am. Nat. 149: 842-874, 1997) proposed the model:

Jonathan A. Sherratt


www.ma.hw.ac.uk/~jas

How does seasonal forcing affect vole population cycles?

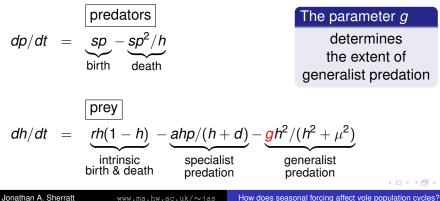
A Predator-Prey Model Seasonal Forcing: Poincaré Map Resonance, Arnold Tongues and Period Doubling Bifurcation and Simulation Diagrams Conclusions So Far

A Predator-Prey Model

In Fennoscandia voles are subject to predation from weasels (a vole specialist) and also birds, badgers and foxes (generalists). Turchin & Hanski (Am. Nat. 149: 842-874, 1997) proposed the model:

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

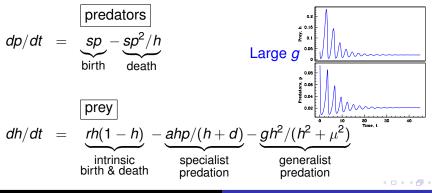

How does seasonal forcing affect vole population cycles?

A Predator-Prev Model

э

A Predator-Prey Model

In Fennoscandia voles are subject to predation from weasels (a vole specialist) and also birds, badgers and foxes (generalists). Turchin & Hanski (Am. Nat. 149: 842-874, 1997) proposed the model:



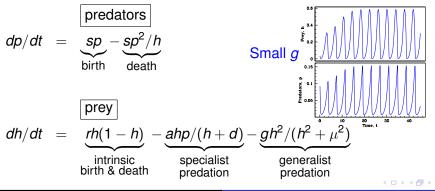
www.ma.hw.ac.uk/~jas

A Predator-Prey Model Seasonal Forcing: Poincaré Map Resonance, Arnold Tongues and Period Doubling Bifurcation and Simulation Diagrams Conclusions So Far

A Predator-Prey Model

In Fennoscandia voles are subject to predation from weasels (a vole specialist) and also birds, badgers and foxes (generalists). Turchin & Hanski (Am. Nat. 149: 842-874, 1997) proposed the model:

Jonathan A. Sherratt


www.ma.hw.ac.uk/~jas

How does seasonal forcing affect vole population cycles?

A Predator-Prey Model Seasonal Forcing: Poincaré Map Resonance, Arnold Tongues and Period Doubling Bifurcation and Simulation Diagrams Conclusions So Far

A Predator-Prey Model

In Fennoscandia voles are subject to predation from weasels (a vole specialist) and also birds, badgers and foxes (generalists). Turchin & Hanski (Am. Nat. 149: 842-874, 1997) proposed the model:

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

How does seasonal forcing affect vole population cycles?

A Predator-Prey Model Seasonal Forcing: Poincaré Map Resonance, Arnold Tongues and Period Doubling Bifurcation and Simulation Diagrams Conclusions So Far

Population Dynamics in Northern and Southern Fennoscandia

North

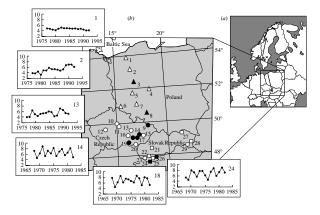
Few generalist predators Multi-year vole cycles

South

Many generalist predators No multi-year vole cycles

A Predator-Prey Model Seasonal Forcing: Poincaré Map Resonance, Arnold Tongues and Period Doubling Bifurcation and Simulation Diagrams Conclusions So Far

Traditional Explanation for Fennoscandian Gradient


Traditional explanation for Fennoscandian gradient: specialist predators (weasels) cause multi-year vole cycles when there are few generalist predators.

- * ロ > * 個 > 三臣

A Predator-Prey Model Seasonal Forcing: Poincaré Map Resonance, Arnold Tongues and Period Doubling Bifurcation and Simulation Diagrams Conclusions So Far

Vole Cycles in Central Europe

BUT: in Central Europe there is an opposing geographical gradient (E. Tkadlec & N.C. Stenseth, Proc. R. Soc. Lond. B 268: 1547-1552, 2001)

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

How does seasonal forcing affect vole population cycles?

Э

A Predator-Prey Model Seasonal Forcing: Poincaré Map Resonance, Arnold Tongues and Period Doubling Bifurcation and Simulation Diagrams Conclusions So Far

A Gradient of Seasonality

Traditional explanation for Fennoscandian gradient: specialist predators (weasels) cause multi-year vole cycles when there are few generalist predators.

Question: can the inclusion of seasonality reconcile the Fennoscandian and Central European data sets? Note that the breeding season varies between 3 and 8 months across Fennoscandia.

A Predator-Prey Model Seasonal Forcing: Poincaré Map Resonance, Arnold Tongues and Period Doubling Bifurcation and Simulation Diagrams Conclusions So Far

A Model with Seasonal Forcing

$$\frac{dp}{dt} = \underbrace{F(t)sp}_{\text{birth}} - \underbrace{sp^2/h}_{\text{death}}$$

$$\frac{dh}{dt} = \underbrace{F(t)rh(1-h)}_{\text{intrinsic}} - \underbrace{\frac{ahp}{(h+d)}}_{\text{specialist}} - \underbrace{\frac{h^2}{(h^2 + \mu^2)}}_{\text{generalist}}$$

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas How does seasonal forcing affect vole population cycles?

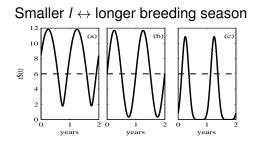
A Predator-Prey Model Seasonal Forcing: Poincaré Map Resonance, Arnold Tongues and Period Doubling Bifurcation and Simulation Diagrams Conclusions So Far

A D > A A P >

- 32

A Model with Seasonal Forcing

$$dp/dt = \underbrace{F(t)sp}_{\text{birth}} - \underbrace{sp^2/h}_{\text{death}}$$


$$dh/dt = \underbrace{F(t)rh(1-h)}_{\text{intrinsic}} - \underbrace{ahp/(h+d)}_{\text{specialist}} - \underbrace{h^2/(h^2 + \mu^2)}_{\text{generalist}}$$

$$F(t) = 2\left[\frac{1}{2}\left(1 + 0.95\sin(2\pi t)\right)\right]^{t}$$

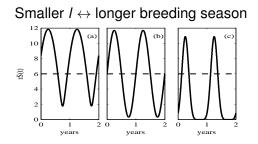
Jonathan A. Sherratt

A Predator-Prey Model Seasonal Forcing: Poincaré Map Resonance, Arnold Tongues and Period Doubling Bifurcation and Simulation Diagrams Conclusions So Far

A Model with Seasonal Forcing

$$F(t) = 2\left[rac{1}{2}\left(1 + 0.95\sin(2\pi t)
ight)
ight]^{t}$$

Jonathan A. Sherratt

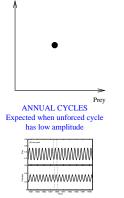

www.ma.hw.ac.uk/~jas

Э

A Predator-Prey Model Seasonal Forcing: Poincaré Map Resonance, Arnold Tongues and Period Doubling Bifurcation and Simulation Diagrams Conclusions So Far

э

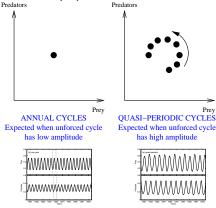
A Model with Seasonal Forcing



We will consider the population dynamics predicted by the model as a function of g and l.

A Predator-Prey Model Seasonal Forcing: Poincaré Map Resonance, Arnold Tongues and Period Doubling Bifurcation and Simulation Diagrams Conclusions So Far

Seasonal Forcing: Poincaré Map

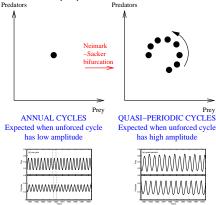

To study dynamics with seasonal forcing, fix a census date and consider population densities on that date in successive years. Predators

A Predator-Prey Model Seasonal Forcing: Poincaré Map Resonance, Arnold Tongues and Period Doubling Bifurcation and Simulation Diagrams Conclusions So Far

Seasonal Forcing: Poincaré Map

To study dynamics with seasonal forcing, fix a census date and consider population densities on that date in successive years.

Jonathan A. Sherratt


www.ma.hw.ac.uk/~jas

How does seasonal forcing affect vole population cycles?

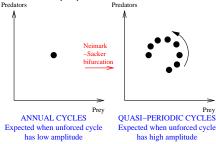
A Predator-Prey Model Seasonal Forcing: Poincaré Map Resonance, Arnold Tongues and Period Doubling Bifurcation and Simulation Diagrams Conclusions So Far

Seasonal Forcing: Poincaré Map

To study dynamics with seasonal forcing, fix a census date and consider population densities on that date in successive years.

◆□ → ◆母 → 三臣 -

Jonathan A. Sherratt

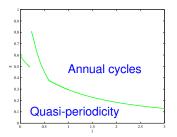

www.ma.hw.ac.uk/~jas

How does seasonal forcing affect vole population cycles?

A Predator-Prey Model Seasonal Forcing: Poincaré Map Resonance, Arnold Tongues and Period Doubling Bifurcation and Simulation Diagrams Conclusions So Far

Seasonal Forcing: Poincaré Map

To study dynamics with seasonal forcing, fix a census date and consider population densities on that date in successive years.


It is possible to track the location of the Neimark-Sacker bifurcation in the l-g plane.

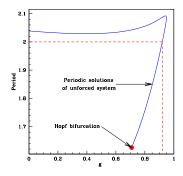
Jonathan A. Sherratt

A Predator-Prey Model Seasonal Forcing: Poincaré Map Resonance, Arnold Tongues and Period Doubling Bifurcation and Simulation Diagrams Conclusions So Far

Seasonal Forcing: Poincaré Map

To study dynamics with seasonal forcing, fix a census date and consider population densities on that date in successive years.

Rachel Taylor

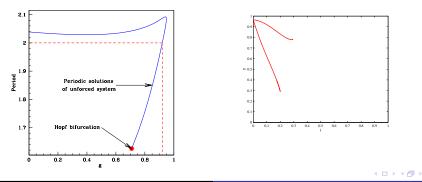

It is possible to track the location of the Neimark-Sacker bifurcation in the l-g plane.

< □ > < /ī[®] >

A Predator-Prey Model Seasonal Forcing: Poincaré Map Resonance, Arnold Tongues and Period Doubling Bifurcation and Simulation Diagrams Conclusions So Far

Resonance and Arnold Tongues

Setting I = 0 gives an unforced system (always breeding season). When this has a limit cycle with a rational period (in number of years), there is resonance. These points are the cusps of "Arnold tongues", in which there are multi-year cycles.


Jonathan A. Sherratt

< < >> < <</>

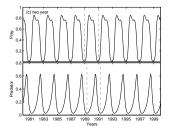
A Predator-Prey Model Seasonal Forcing: Poincaré Map Resonance, Arnold Tongues and Period Doubling Bifurcation and Simulation Diagrams Conclusions So Far

Resonance and Arnold Tongues

Setting I = 0 gives an unforced system (always breeding season). When this has a limit cycle with a rational period (in number of years), there is resonance. These points are the cusps of "Arnold tongues", in which there are multi-year cycles.

Jonathan A. Sherratt


www.ma.hw.ac.uk/~jas


How does seasonal forcing affect vole population cycles?

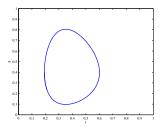
A Predator-Prey Model Seasonal Forcing: Poincaré Map Resonance, Arnold Tongues and Period Doubling Bifurcation and Simulation Diagrams Conclusions So Far

Period Doubling

A further complication is that the annual cycles can undergo period doubling as the forcing is increased.

- * ロ * * 御 * 三臣

Jonathan A. Sherratt

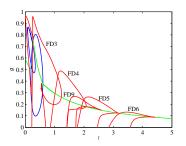

www.ma.hw.ac.uk/~jas

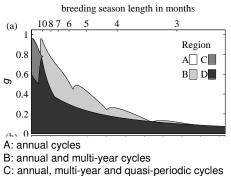
How does seasonal forcing affect vole population cycles?

A Predator-Prey Model Seasonal Forcing: Poincaré Map Resonance, Arnold Tongues and Period Doubling Bifurcation and Simulation Diagrams Conclusions So Far

Period Doubling

A further complication is that the annual cycles can undergo period doubling as the forcing is increased.


Jonathan A. Sherratt


www.ma.hw.ac.uk/~jas How does seasonal forcing affect vole population cycles?

A Predator-Prey Model Seasonal Forcing: Poincaré Map Resonance, Arnold Tongues and Period Doubling Bifurcation and Simulation Diagrams Conclusions So Far

Bifurcation and Simulation Diagrams

Combining these and other similar curves gives a complete bifurcation diagram

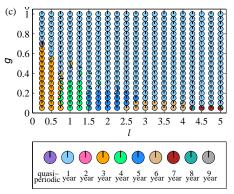
D: multi-year and quasi-periodic cycles

A Predator-Prey Model Seasonal Forcing: Poincaré Map Resonance, Arnold Tongues and Period Doubling Bifurcation and Simulation Diagrams Conclusions So Far

Bifurcation and Simulation Diagrams

Combining these and other similar curves gives a complete bifurcation diagram

The bifurcation diagram gives information about the possible solutions, but not their frequency. For this we use simulations.



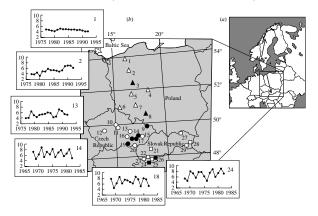
A Predator-Prey Model Seasonal Forcing: Poincaré Map Resonance, Arnold Tongues and Period Doubling Bifurcation and Simulation Diagrams Conclusions So Far

Bifurcation and Simulation Diagrams

Combining these and other similar curves gives a complete bifurcation diagram

The bifurcation diagram gives information about the possible solutions, but not their frequency. For this we use simulations.

A Predator-Prey Model Seasonal Forcing: Poincaré Map Resonance, Arnold Tongues and Period Doubling Bifurcation and Simulation Diagrams Conclusions So Far


Conclusions So Far

- Vole cycles in Fennoscandia are driven by predation by weasels
- The differences between North and South Fennoscandia involve a complex interplay between gradients in generalist predation and breeding season length.

A Predator-Prey Model Seasonal Forcing: Poincaré Map Resonance, Arnold Tongues and Period Doubling Bifurcation and Simulation Diagrams Conclusions So Far

Vole Cycles in Central Europe

A gradient in breeding season length but not in generalist predators would explain the Central European data.

Jonathan A. Sherratt

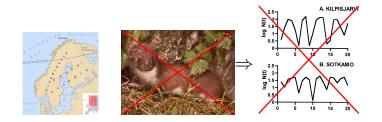
www.ma.hw.ac.uk/~jas

How does seasonal forcing affect vole population cycles?

Outline

Jonathan A. Sherratt

1 Introduction

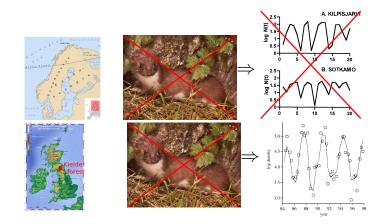

- 2 Vole Cycles in Fennoscandia: Predation
- 3 Vole Cycles in UK: Killer Grass
 - 4 Modelling the Vole-Grass Interaction
- 5 Summary and Conclusions

- 32

Summary and Conclusions

Predator Exclusion Experiments in UK Grass Can Bite Back Silica Induction: Greenhouse Experiment Data on Vole Response to Silica Silica Induction Hypothesis

Predator Exclusion Experiments in UK


Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas How does se

Summary and Conclusions

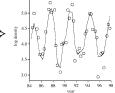
Predator Exclusion Experiments in UK Grass Can Bite Back Silica Induction: Greenhouse Experiment Data on Vole Response to Silica Silica Induction Hypothesis

Predator Exclusion Experiments in UK

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Predator Exclusion Experiments in UK Grass Can Bite Back Silica Induction: Greenhouse Experiment Data on Vole Response to Silica Silica Induction Hypothesis


Predator Exclusion Experiments in UK

Implication: vole cycles are not caused by predation

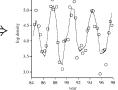
Possible alternative cause: vole-grass interaction

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Predator Exclusion Experiments in UK Grass Can Bite Back Silica Induction: Greenhouse Experiment Data on Vole Response to Silica Silica Induction Hypothesis

Predator Exclusion Experiments in UK


Implication: vole cycles are not caused by predation

Possible alternative cause: vole-grass interaction

Food quantity is not (usually) a consideration, but cycles could be caused by changes in food quality

(**D**) (**D**) =

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Predator Exclusion Experiments in UK

NERC Consortium Grant

Vole ecologists (Univ Aberdeen)

Plant ecologists (Univ York)

Mathematical biologists (Heriot-Watt U)

Jonathan Sherratt

www.ma.hw.ac.uk/~jas

Andy White

Jennifer Reynolds

Jonathan A. Sherratt

How does seasonal forcing affect vole population cycles?

Stefan Reidinger

Predator Exclusion Experiments in UK Grass Can Bite Back Silica Induction: Greenhouse Experiment Data on Vole Response to Silica Silica Induction Hypothesis

Grass Can Bite Back

Deschampsia caespitosa

After grazing, grass regrows with higher levels of silica

(□) (□) (□) [□

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas Howd

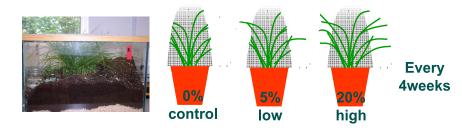
Predator Exclusion Experiments in UK Grass Can Bite Back Silica Induction: Greenhouse Experiment Data on Vole Response to Silica Silica Induction Hypothesis

Grass Can Bite Back

After grazing, grass regrows with higher levels of silica

Deschampsia caespitosa

Silica affects vole growth rate


Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

How does seasonal forcing affect vole population cycles?

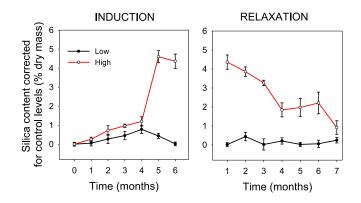
Modelling the Vole-Grass Interaction Summary and Conclusions Predator Exclusion Experiments in UK Grass Can Bite Back Silica Induction: Greenhouse Experiment Data on Vole Response to Silica Silica Induction Hypothesis

Silica Induction: Greenhouse Experiment

Damage (induction) – 6 months Relaxation – 7 months

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

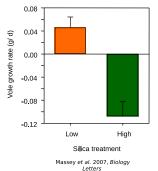

How does seasonal forcing affect vole population cycles?

< < >> < <</>

Summary and Conclusions

Predator Exclusion Experiments in UK Grass Can Bite Back Silica Induction: Greenhouse Experiment Data on Vole Response to Silica Silica Induction Hypothesis

Silica Induction: Greenhouse Experiment


э

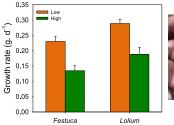
Summary and Conclusions

Predator Exclusion Experiments in UK Grass Can Bite Back Silica Induction: Greenhouse Experiment Data on Vole Response to Silica Silica Induction Hypothesis

Data on Vole Response to Silica

Captive voles fed high-silica grasses showed reduced growth

- Grasses grown in greenhouse in low and high silica soils
- No-choice feeding experiment



Summary and Conclusions

Predator Exclusion Experiments in UK Grass Can Bite Back Silica Induction: Greenhouse Experiment Data on Vole Response to Silica Silica Induction Hypothesis

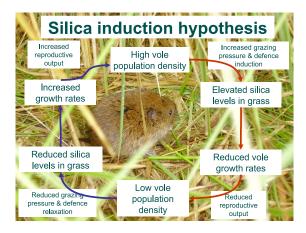
Data on Vole Response to Silica

Juvenile voles also grew poorly on high-silica grasses

Massey & Hartley 2006, Proc. Roy. Soc. B

Silica prevents voles from breaking plant cell walls and absorbing nitrogen

- * ロ * * 御 * 三連


Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Summary and Conclusions

Predator Exclusion Experiments in UK Grass Can Bite Back Silica Induction: Greenhouse Experiment Data on Vole Response to Silica Silica Induction Hypothesis

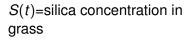
Silica Induction Hypothesis

- * ロ * * 御 * 三臣

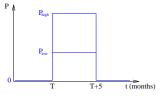
Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

stage 1: Modelling the Greenhouse Experiment stage 2: Including Vole Dynamics beasonal Forcing in Kielder Forest, UK Model including Seasonal Forcing comparison of Different Effects of Silica


Outline

Introduction


- Vole Cycles in Fennoscandia: Predation
- 3 Vole Cycles in UK: Killer Grass
- 4 Modelling the Vole-Grass Interaction
- 5 Summary and Conclusions

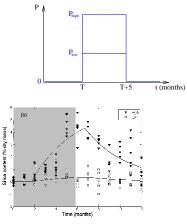
Stage 1: Modelling the Greenhouse Experiment Stage 2: Including Vole Dynamics Seasonal Forcing in Kielder Forest, UK A Model including Seasonal Forcing Comparison of Different Effects of Silica

Stage 1: Modelling the Greenhouse Experiment

$$\frac{dS}{dt} = -c \cdot (S(t) - S_{\text{control}}) + P(t - T)$$

How does seasonal forcing affect vole population cycles?

э


Stage 1: Modelling the Greenhouse Experiment Stage 2: Including Vole Dynamics Seasonal Forcing in Kielder Forest, UK A Model including Seasonal Forcing Comparison of Different Effects of Silica

Stage 1: Modelling the Greenhouse Experiment

S(t)=silica concentration in grass

$$\frac{dS}{dt} = -c \cdot (S(t) - S_{\text{control}}) + P(t - T)$$

We estimate c, T, $S_{control}$, P_{low} and P_{high} using the data from the greenhouse experiment

э

Stage 1: Modelling the Greenhouse Experiment Stage 2: Including Vole Dynamics Seasonal Forcing in Kielder Forest, UK A Model including Seasonal Forcing Comparison of Different Effects of Silica

Stage 2: Including Vole Dynamics

V(t)=vole density

Silica production:
$$P(t) = KV(t)^n / [V_0^n + V(t)^n]$$

Jonathan A. Sherratt

Stage 1: Modelling the Greenhouse Experiment Stage 2: Including Vole Dynamics Seasonal Forcing in Kielder Forest, UK A Model including Seasonal Forcing Comparison of Different Effects of Silica

Stage 2: Including Vole Dynamics

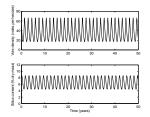
V(t)=vole density Silica production: $P(t) = KV(t)^n / \left[V_0^n + V(t)^n \right]$ Vole birth/death: $dV/dt = F(S(t))V(t) - \delta V(t)$ birth death Birth Rate, (yr⁻¹) Bmin 2.54 6.6 Silica Concentration, (% dry mass)

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas How does seasonal forcing affect vole population cycles?

Stage 1: Modelling the Greenhouse Experiment Stage 2: Including Vole Dynamics Seasonal Forcing in Kielder Forest, UK A Model including Seasonal Forcing Comparison of Different Effects of Silica

Stage 2: Including Vole Dynamics

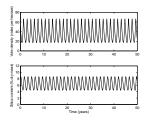

V(t)=vole density Silica production: $P(t) = KV(t)^n / \left[V_0^n + V(t)^n \right]$ Vole birth/death: $dV/dt = F(S(t))V(t) - \delta V(t)$ birth death Birth Rate, (yr⁻¹) B_{min} and B_{max} are estimated using data from experiments Bmin on caged voles 2.54 6.6 Silica Concentration, (% dry mass)

э

< □ > < /ī[®] >

Stage 1: Modelling the Greenhouse Experiment Stage 2: Including Vole Dynamics Seasonal Forcing in Kielder Forest, UK A Model including Seasonal Forcing Comparison of Different Effects of Silica

Model Solution


< □ > < @ > 三目

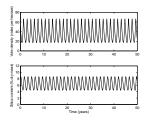
Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Stage 1: Modelling the Greenhouse Experiment Stage 2: Including Vole Dynamics Seasonal Forcing in Kielder Forest, UK A Model including Seasonal Forcing Comparison of Different Effects of Silica

Model Solution

The model predicts population cycles, but only for unrealistically high values of vole birth rate, and the period of the cycles is too short.


- - - - - - - - - 三三

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas How

Stage 1: Modelling the Greenhouse Experiment Stage 2: Including Vole Dynamics Seasonal Forcing in Kielder Forest, UK A Model including Seasonal Forcing Comparison of Different Effects of Silica

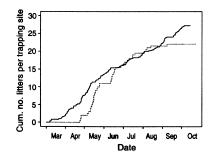
Model Solution

The model predicts population cycles, but only for unrealistically high values of vole birth rate, and the period of the cycles is too short.

Remedy: include seasonal forcing

Jonathan A. Sherratt

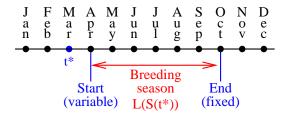
www.ma.hw.ac.uk/~jas

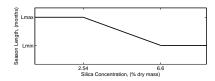

э

< □ > < 何.

Stage 1: Modelling the Greenhouse Experiment Stage 2: Including Vole Dynamics Seasonal Forcing in Kielder Forest, UK A Model including Seasonal Forcing Comparison of Different Effects of Silica

Seasonal Forcing in Kielder Forest, UK

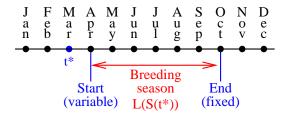

- Voles in Kielder Forest have a well-defined breeding season
- The breeding season length is variable, mainly due to a variable start
- We assume that the start date depends on the silica level in grass in the early part of the year

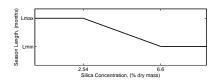


< < >> < <</>

Stage 1: Modelling the Greenhouse Experiment Stage 2: Including Vole Dynamics Seasonal Forcing in Kielder Forest, UK A Model including Seasonal Forcing Comparison of Different Effects of Silica

A Model including Seasonal Forcing


(4日)


Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Stage 1: Modelling the Greenhouse Experiment Stage 2: Including Vole Dynamics Seasonal Forcing in Kielder Forest, UK A Model including Seasonal Forcing Comparison of Different Effects of Silica

A Model including Seasonal Forcing

 L_{min} and L_{max} are estimated using field data from Kielder Forest

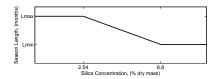
Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

How does seasonal forcing affect vole population cycles?

э

Stage 1: Modelling the Greenhouse Experiment Stage 2: Including Vole Dynamics Seasonal Forcing in Kielder Forest, UK A Model including Seasonal Forcing Comparison of Different Effects of Silica


A Model including Seasonal Forcing

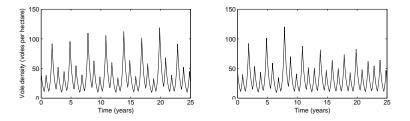
 $dS/dt = KV(t)^{n}/[V_{0}^{n} + V(t)^{n}] - c \cdot (S(t) - S_{\text{control}})$

Non-seasonal model: $dV/dt = F(S(t))V(t) - \delta V(t)$

Seasonal model:

$$dV/dt = \begin{cases} B_{max}V(t) - \delta V(t) & \text{in breeding season} \\ -\delta V(t) & \text{otherwise} \end{cases}$$

 L_{min} and L_{max} are estimated using field data from Kielder Forest


Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Э

Stage 1: Modelling the Greenhouse Experiment Stage 2: Including Vole Dynamics Seasonal Forcing in Kielder Forest, UK A Model including Seasonal Forcing Comparison of Different Effects of Silica

A Model including Seasonal Forcing

The model now predicts realistic population cycles for appropriate parameter values.

< □ > < @ > E

Jonathan A. Sherratt

Stage 1: Modelling the Greenhouse Experiment Stage 2: Including Vole Dynamics Seasonal Forcing in Kielder Forest, UK A Model including Seasonal Forcing Comparison of Different Effects of Silica

Comparison of Different Effects of Silica

- Non-seasonal model: silica affects vole birth rate
- Seasonal model: silica affects breeding season length
- In reality silica has both of these effects
- Which is the most important?

Stage 1: Modelling the Greenhouse Experiment Stage 2: Including Vole Dynamics Seasonal Forcing in Kielder Forest, UK A Model including Seasonal Forcing Comparison of Different Effects of Silica

Comparison of Different Effects of Silica

- Non-seasonal model: silica affects vole birth rate
- Seasonal model: silica affects breeding season length
- In reality silica has both of these effects
- Which is the most important?

To study this we set up a model with both dependences, with parameters p_{length} and p_{birth} between 0 and 1:

- $p_{length} = 0$: breeding season length fixed $p_{length} = 1$: breeding season length highly variable
- $p_{birth} = 0$: birth rate fixed $p_{birth} = 1$: birth rate highly variable

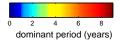
- 32

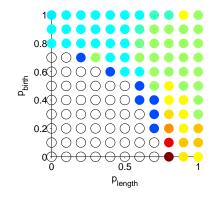
Stage 1: Modelling the Greenhouse Experiment Stage 2: Including Vole Dynamics Seasonal Forcing in Kielder Forest, UK A Model including Seasonal Forcing Comparison of Different Effects of Silica

Comparison of Different Effects of Silica

$$egin{array}{rcl} B_{min}&=&(1-
ho_{birth})B_{max}\ L_{min}&=&(1-
ho_{length})L_{max} \end{array}$$

To study this we set up a model with both dependences, with parameters p_{length} and p_{birth} between 0 and 1:


- $p_{length} = 0$: breeding season length fixed $p_{length} = 1$: breeding season length highly variable
- $p_{birth} = 0$: birth rate fixed $p_{birth} = 1$: birth rate highly variable


- 32

Stage 1: Modelling the Greenhouse Experiment Stage 2: Including Vole Dynamics Seasonal Forcing in Kielder Forest, UK A Model Including Seasonal Forcing Comparison of Different Effects of Silica

Comparison of Different Effects of Silica

Variability of birth rate within the breeding season

Variability of breeding season length

э

Conclusions Ongoing Field Tests: Vole Enclosures Collaborators References

Outline

Introduction

- Vole Cycles in Fennoscandia: Predation
- 3 Vole Cycles in UK: Killer Grass
- 4 Modelling the Vole-Grass Interaction

Conclusions Ongoing Field Tests: Vole Enclosures Collaborators References

Conclusions

- Vole cycles in Fennoscandia are driven by predation
- Seasonal forcing is a key ingredient of the cyclic dynamics
- The vole-grass interaction has the potential to generate population cycles
- The effect of silica on breeding season length is more important than its effect on birth rate
- This is a plausible mechanism for the population cycles observed in Kielder Forest, UK: field tests are ongoing

- 2

Conclusions Ongoing Field Tests: Vole Enclosures Collaborators References

Ongoing Field Tests: Vole Enclosures

- 81 4m×4m cells
- Add 0,1,2,4,6 or 8 voles per cell, for 3 days each month
- Monitor silica levels

Conclusions Ongoing Field Tests: Vole Enclosures Collaborators References

Collaborators

This work is in collaboration with:

Heriot-Watt University:

Jennifer Reynolds, Rachel Taylor, Andy White

University of Aberdeen:

Xavier Lambin, Jane Degabriel, Fergus Massey

University of York: Sue Hartley, Stefan Reidinger

Microsoft Research, Cambridge: Matthew Smith

- * ロ * * 御 * 三臣

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Conclusions Ongoing Field Tests: Vole Enclosures Collaborators References

References

R.A. Taylor, A. White, J.A. Sherratt: The impact of variations in seasonality on population cycles. *Proc. R. Soc. Lond. B* 280: 2012-2714 (2013).

R.A. Taylor, J.A. Sherratt, A. White: Seasonal forcing and multi-year cycles in interacting populations: lessons from a predator-prey model. *J. Math. Biol.* in press.

J.J.H. Reynolds, F.P. Massey, X. Lambin, S. Reidinger, J.A. Sherratt, M.J. Smith, A. White, S.E. Hartley: Delayed induced silica defences in grasses and their potential for destabilising herbivore population dynamics. *Oecologia* 170: 445-456 (2012).

J.J.H. Reynolds, J.A. Sherratt, A. White, X. Lambin: A comparison of the dynamical impact of seasonal mechanisms in a herbivore-plant defence system. *Theor. Ecol.* 6: 225-239 (2013).

Jonathan A. Sherratt

э

Ongoing Field Tests: Vole Enclosures References

List of Frames

Introduction

Vole Cycles in Fennoscandia: Predation

- A Predator-Prey Model
- Seasonal Forcing: Poincaré Map
- Resonance, Arnold Tongues and Period Doubling
- Bifurcation and Simulation Diagrams
- Conclusions So Far

4

5

Vole Cycles in UK: Killer Grass

- Predator Exclusion Experiments in UK
- Grass Can Bite Back
- Silica Induction: Greenhouse Experiment
- Data on Vole Response to Silica
- Silica Induction Hypothesis

Modelling the Vole-Grass Interaction

Stage 1: Modelling the Greenhouse Experiment

э

- Stage 2: Including Vole Dynamics
- Seasonal Forcing in Kielder Forest, UK
- A Model including Seasonal Forcing
- Comparison of Different Effects of Silica

Summary and Conclusions

- Conclusions
- Ongoing Field Tests: Vole Enclosures
- Collaborators
- References