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Vegetation Pattern Formation

Bushy vegetation in Niger

(Western New South Wales)

@ Banded vegetation patterns are found on gentle slopes in
semi-arid areas of Africa, Australia and Mexico

@ First identified by aerial photos in 1950s
@ Plants vary from grasses to shrubs and trees
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Ecological Background
Vegetation Pattern Formation
Mechanisms for Vegetation Patterning
Two Key Ecological Questions

Mechanisms for Vegetation Patterning

@ Basic mechanism: competition for water
@ Possible detailed mechanism: water flow downhill causes

stripes

@ The stripes move uphill (very slowly)
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Two Key Ecological Questions

@ How does the spacing of the vegetation bands depend on
rainfall, herbivory and slope?

@ At what rainfall level is there a transition to desert?
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The Mathematical Model Mathematical Model of Klausmeier

Typical Solution of the Model

Mathematical Model of Klausmelier

Rate of change = Rainfall — Evaporation — Uptake by + Flow

of water plants downihill
Rate of change = Growth, proportional — Mortality + Random
plant biomass to water uptake dispersal

ow/ot = A—w —wu?+ vow/ox

du/dt = wu? — Bu + d%u/dx>
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Typical Solution of the Model

Mathematical Model of Klausmelier

Rate of change = Rainfall — Evaporation — Uptake by + Flow

of water plants downihill
Rate of change = Growth, proportional — Mortality + Random
plant biomass to water uptake dispersal

ow/ot = A—w —wu?+ vow/ox

du/dt = wu? — Bu + d%u/dx>

The nonlinearity in wu? arises because the presence of roots
increases water infiltration into the soil.
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The Mathematical Model Mathematical Model of Klausmeier

Typical Solution of the Model

Mathematical Model of Klausmelier

Rate of change = Rainfall — Evaporation — Uptake by + Flow

of water plants downihill
Rate of change = Growth, proportional — Mortality + Random
plant biomass to water uptake dispersal

ow/ot = A—w —wu?+ vow/ox

du/dt = wu? — Bu + d%u/dx>

Parameters:  A: rainfall B: plant loss v: slope
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Linear Analysis

Homogeneous Steady States

@ For all parameter values, there is a stable “desert” steady
stateu =0,w = A

@ When A > 2B, there are also two non-trivial steady states,
one of which is unstable to homogeneous perturbations

@ Patterns develop when the other steady state (us,ws) is
unstable to inhomogeneous perturbations
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Shortcomings of Linear Stability Analysis

Approximate Conditions for Patterning

Look for solutions (u,w) = (us, Ws) + (Ug, Wp) exp{ikx + At}

0.04 - B
/
ooz | B

ooz L , .
o 0.1 0.2
Wavenumber, k

The dispersion relation Re[A(k)] is algebraically complicated

Growth rate, Re(A)
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Approximate Conditions for Patterning

Look for solutions (u,w) = (us, Ws) + (Ug, Wp) exp{ikx + At}
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/
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Wavenumber, k

The dispersion relation Re[A(k)] is algebraically complicated
An approximate condition for pattern formation is
A < H/2B5/4 ) gl/4

Growth rate, Re(A)
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Linear Analysis Data on the Effects of Changing Rainfall

Shortcomings of Linear Stability Analysis

Approximate Conditions for Patterning

Look for solutions (u,w) = (us, Ws) + (Ug, Wp) exp{ikx + At}

0.04 [

/
ooz | B

ooz L , .
o 0.1 0.2
Wavenumber, k

The dispersion relation Re[A(k)] is algebraically complicated
An approximate condition for pattern formation is
2B < A < /2 B5/4)gl/4

One can niavely assume that existence of (us, ws) gives a
second condition

Growth rate, Re(A)
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Homogeneous Steady States
Approximate Conditions for Patterning

Linear Analysis Data on the Effects of Changing Rainfall

Shortcomings of Linear Stability Analysis

An lllustration of Conditions for Patterning

Mh The dots show parameters for
[~ vegetation . .
- which there are growing
< 10fF linear modes.
= r Qtrippq
s |
s
e 5
I No vegetation
O -.;.:I 1 I 11 1 1 I 111 1 I 111 1 I
0 1 2 3 4

Plant loss, B
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Homogeneous Steady States
Approximate Conditions for Patterning

Linear Analysis Data on the Effects of Changing Rainfall

Shortcomings of Linear Stability Analysis

An lllustration of Conditions for Patterning

[Homog Numerical simulations show
et patterns in both the dotted
< 10 B and green regions of
= [ Stripes parameter space.
g sf
o L ]
0 1 2 3 4

Plant loss, B
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Homogeneous Steady States
Approximate Conditions for Patterning
Data on the Effects of Changing Rainfall

Linear Analysis

Shortcomings of Linear Stability Analysis

Predicting Pattern Wavelength

Pattern wavelength is the most accessible property of
vegetation stripes in the field, via aerial photography.
Wavelength can be predicted from the linear analysis.

—
@

Most linearly
unstable mode

—
I}

—
[e))

Pattern wavelength
[e2]

—
S

B L b by
2.2 2.4 2.6 2.8
Rainfall, A
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Homogeneous Steady States
Approximate Conditions for Patterning
Data on the Effects of Changing Rainfall

Linear Analysis

Shortcomings of Linear Stability Analysis

Predicting Pattern Wavelength

Pattern wavelength is the most accessible property of
vegetation stripes in the field, via aerial photography.
Wavelength can be predicted from the linear analysis.

—
@

Most linearly
unstable mode

—
I}

However this prediction
doesn't fit the patterns
= seen in numerical
rObserved pattern

o simulations.
2.2 2.4 2.6 2.8
Rainfall, A

Pattern wavelength
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Homogeneous Steady States
Approximate Conditions for Patterning
Data on the Effects of Changing Rainfall

Linear Analysis

Shortcomings of Linear Stability Analysis

Data on the Effects of Changing Rainfall
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Homogeneous Steady States
Approximate Conditions for Patterning

Linear Analysis Data on the Effects of Changing Rainfall

Shortcomings of Linear Stability Analysis

Shortcomings of Linear Stability Analysis

Linear stability analysis fails in two ways:
@ It significantly over-estimates the minimum rainfall level for
patterns.
@ Close to the maximum rainfall level for patterns, it
incorrectly predicts a variation in pattern wavelength with
rainfall.
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Travelling Wave Equations
When do Patterns Form?
Pattern Formation for Low Rainfall
Travelling Wave Equations Pattern Stability
Hysteresis

Outline

@ Travelling Wave Equations
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Travelling Wave Equations

When do Patterns Form?

Pattern Formation for Low Rainfall
Travelling Wave Equations Pattern Stability

Hysteresis

Travelling Wave Equations

The patterns move at constant shape and speed
= u(x,t) =U(z),w(x,t) =W(z),z=x —ct

d?U/dz? +cdU/dz +WU? -BU = 0
(v+c)dW/dz +A-W —WU? = 0

The patterns are periodic (limit cycle) solutions of these
equations
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Travelling Wave Equations

When do Patterns Form?

Pattern Formation for Low Rainfall
Travelling Wave Equations Pattern Stability

Hysteresis

When do Patterns Form?

Locus

of Hopf
bifurcation
points

Parameter region
giving patterns
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Travelling Wave Equations

When do Patterns Form?

Pattern Formation for Low Rainfall
Travelling Wave Equations Pattern Stability

Hysteresis

Pattern Formation for Low Rainfall

Patterns are also seen for

2o Linear parameters in the green
2 analysis region.
< N implies
%: 1.5 :_ patterns
= i
s 1
a1 [
05 F
0 i il ARV I B TR AR A
0 02 04 06 08

Plant loss, B
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Travelling Wave Equations

When do Patterns Form?

Pattern Formation for Low Rainfall
Travelling Wave Equations Pattern Stability

Hysteresis

Pattern Formation for Low Rainfall

C FlLocus bf
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Travelling Wave Equations

When do Patterns Form?

Pattern Formation for Low Rainfall
Travelling Wave Equations Pattern Stability

Hysteresis

Pattern Formation for Low Rainfall
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= 15 patterns i
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Travelling Wave Equations

When do Patterns Form?

Pattern Formation for Low Rainfall
Travelling Wave Equations Pattern Stability

Hysteresis

Minimum Rainfall for Patterns
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Travelling Wave Equations

When do Patterns Form?

Pattern Formation for Low Rainfall
Travelling Wave Equations Pattern Stability

Hysteresis

Pattern Stability

Not all of the possible patterns are stable as solutions of the
model equations.

5T

. The wavelengths
shown are those

] compatible with
periodic boundary
conditions on a domain
b of length 80.

©
T
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Travelling Wave Equations

When do Patterns Form?

Pattern Formation for Low Rainfall
Travelling Wave Equations Pattern Stability

Hysteresis

Pattern Stability: Numerical Approach

The boundary between stable and unstable patterns can be
calculated by numerical continuation of the essential spectrum.

Im(eigenvalue)
Im(eigenvalue)

T o 97 07 07 o1 0 o1 T a7 4 0% o8 01 07 0
Re(eigenvalue) Re(eigenvalue)

Calculations of this type can be performed using the software
package WAVETRAIN (Www. ma. hw. ac. uk/ wavet r ai n).
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Travelling Wave Equations

When do Patterns Form?

Pattern Formation for Low Rainfall
Travelling Wave Equations Pattern Stability

Hysteresis

Pattern Stability: Wavelength vs Rainfall

@
o

[e2]
(=}

S
o

Wavelength

[y
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Rainfall, A

The wavelengths shown are those compatible with periodic
boundary conditions on a domain of length 80.
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Travelling Wave Equations

When do Patterns Form?

Pattern Formation for Low Rainfall
Travelling Wave Equations Pattern Stability

Hysteresis

Pattern Stability: Wavelength vs Rainfall

@
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[e2]
(=}

S
o

Wavelength

[y
(=]

Il L L B B B
- 3

o

w

Rainfall, A

The wavelengths shown are those compatible with periodic
boundary conditions on a domain of length 80.
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Travelling Wave Equations

When do Patterns Form?

Pattern Formation for Low Rainfall
Travelling Wave Equations Pattern Stability

Hysteresis

Pattern Stability: Key Result

Key Result

Many of the possible patterns are
unstable and thus will never be seen.

However, for a wide range of rainfall
levels, there are multiple stable
patterns.
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Travelling Wave Equations
When do Patterns Form?

Pattern Formation for Low Rainfall
Travelling Wave Equations Pattern Stability

Hysteresis

Hysteresis

Rainfall

e

Time

@ The existence of multiple stable
patterns raises the possibility of
hysteresis

@ We consider slow variations in the
rainfall parameter A

@ Parameters correspond to grass,

and the rainfall range corresponds to
130-930 mm/year
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Travelling Wave Equations
When do Patterns Form?
Pattern Formation for Low Rainfall
Travelling Wave Equations Pattern Stability
Hysteresis

Hysteresis

Rainfall

<< Mode5 >> <<<<< Model>>>>> < Mode 3 >
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Travelling Wave Equations

When do Patterns Form?

Pattern Formation for Low Rainfall
Pattern Stability

Hysteresis

Travelling Wave Equations

Hysteresis

Rainfall

Wavelength vs Rainfall

Mode 1

Mode 2

Mode 3

Mode 4
Mode 5
N Mode 8
y c Mode 7
Mode 9 Mode 8

<< Mode5 >> <<<<< Model>>>>> < Mode 3 >
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e Conclusions
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Predictions of Pattern Wavelength

References

Conclusions

Predictions of Pattern Wavelength

@ In general, pattern wavelength depends on initial
conditions

@ When vegetation stripes arise from homogeneous
vegetation via a decrease in rainfall, pattern wavelength
will remain at its bifurcating value.

80 [ Node 1
60 [-

40F - oie 2

Wavelength

20 |-

Rainfall, A
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Predictions of Pattern Wavelength

References

Conclusions

Predictions of Pattern Wavelength

@ In general, pattern wavelength depends on initial
conditions

@ When vegetation stripes arise from homogeneous
vegetation via a decrease in rainfall, pattern wavelength
will remain at its bifurcating value.
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