Population Cycles in Voles: Predators, Seasonality and Killer Grass

Jonathan A. Sherratt

Department of Mathematics Heriot-Watt University

ICAM 2012, Hong Kong, 28 May-1 June 2012

This talk can be downloaded from my web site www.ma.hw.ac.uk/~jas

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Population cycles in voles: predators, seasonality and killer grass

< □ > < 同 > 三

Voles in Fennoscandia and UK

Fennoscandian voles

Kielder forest vole

田鼠=VOLE

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Voles in Fennoscandia and UK

Fennoscandian voles

Kielder forest vole

< □ > < @ > < Ξ</p>

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Voles in Fennoscandia and UK

Fennoscandian voles

Kielder forest vole

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Population cycles in voles: predators, seasonality and killer grass

- 2 Vole Cycles in UK: Killer Grass
- Modelling the Vole-Grass Interaction
- 4 Model Including Seasonal Forcing

Cycles in Predator-Prey Models Predation by Weasels Predator Exclusion Experiments in Fennoscandia

Vole Cycles in Fennoscandia: Predation

- 2 Vole Cycles in UK: Killer Grass
- 3 Modelling the Vole-Grass Interaction
- 4 A Model Including Seasonal Forcing
- 5 Summary and Conclusions

Cycles in Predator-Prey Models Predation by Weasels Predator Exclusion Experiments in Fennoscandia

Cycles in Predator-Prey Models

Population cycles in predator-prey systems is a long-standing prediction from mathematical models.

Cycles in Predator-Prey Models Predation by Weasels Predator Exclusion Experiments in Fennoscandia

Predation by Weasels

Voles in Fennoscandia are subject to predation by weasels.

Vole

Weasel

田鼠=VOLE→ 鼬屬(黃鼠狼)=WEASEL

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Cycles in Predator-Prey Models Predation by Weasels Predator Exclusion Experiments in Fennoscandia

Predator Exclusion Experiments in Fennoscandia

(日)

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Cycles in Predator-Prey Models Predation by Weasels Predator Exclusion Experiments in Fennoscandia

Predator Exclusion Experiments in Fennoscandia

Implication: vole cycles are caused by predation

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Outline

Predator Exclusion Experiments in UK Grass Can Bite Back Silica Induction: Greenhouse Experiment Jata on Vole Response to Silica Silica Induction Hypothesis

Vole Cycles in Fennoscandia: Predation

- Vole Cycles in UK: Killer Grass
 - 3 Modelling the Vole-Grass Interaction
 - 4 A Model Including Seasonal Forcing
 - 5 Summary and Conclusions

Predator Exclusion Experiments in UK Grass Can Bite Back Silica Induction: Greenhouse Experiment Data on Vole Response to Silica Silica Induction Hypothesis

Predator Exclusion Experiments in UK

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Predator Exclusion Experiments in UK Grass Can Bite Back Silica Induction: Greenhouse Experiment Data on Vole Response to Silica Silica Induction Hypothesis

Predator Exclusion Experiments in UK

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Population cycles in voles: predators, seasonality and killer grass

3

Predator Exclusion Experiments in UK Grass Can Bite Back Silica Induction: Greenhouse Experiment Data on Vole Response to Silica Silica Induction Hypothesis

Predator Exclusion Experiments in UK

Implication: vole cycles are not caused by predation

Possible alternative cause: vole-grass interaction 草=GRASS

< □ > < @ > 三注:

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Predator Exclusion Experiments in UK Grass Can Bite Back Silica Induction: Greenhouse Experiment Data on Vole Response to Silica Silica Induction Hypothesis

Predator Exclusion Experiments in UK

Implication: vole cycles are not caused by predation

Possible alternative cause: vole-grass interaction 草=GRASS

Food quantity is not (usually) a consideration, but cycles could be caused by changes in food quality

Predator Exclusion Experiments in UK

NERC Consortium Grant

Vole ecologists (Univ Aberdeen)

Xavier Lambin

Plant ecologists (Univ York)

Mathematical biologists (Heriot-Watt U)

Jane Degabriel

Stefan Reidinger

Jennifer Reynolds

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Predator Exclusion Experiments in UK Grass Can Bite Back Silica Induction: Greenhouse Experiment Data on Vole Response to Silica Silica Induction Hypothesis

Grass Can Bite Back

Deschampsia caespitosa

After grazing, grass regrows with higher levels of silica

二氧化硅=silica

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Predator Exclusion Experiments in UK Grass Can Bite Back Silica Induction: Greenhouse Experiment Data on Vole Response to Silica Silica Induction Hypothesis

Grass Can Bite Back

Deschampsia caespitosa

After grazing, grass regrows with higher levels of silica

二氧化硅=silica

Silica affects vole growth rate

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Predator Exclusion Experiments in UK Grass Can Bite Back Silica Induction: Greenhouse Experiment Data on Vole Response to Silica Silica Induction Hypothesis

Silica Induction: Greenhouse Experiment

Damage (induction) - 6 months

Relaxation - 7 months

温室 = greenhouse

▲□▶▲圖▶ (注)

Predator Exclusion Experiments in UK Grass Can Bite Back Silica Induction: Greenhouse Experiment Data on Vole Response to Silica Silica Induction Hypothesis

Silica Induction: Greenhouse Experiment

温室 = greenhouse

3

Predator Exclusion Experiments in UK Grass Can Bite Back Silica Induction: Greenhouse Experiment Data on Vole Response to Silica Silica Induction Hypothesis

Data on Vole Response to Silica

Captive voles fed high-silica grasses showed reduced growth

- Grasses grown in greenhouse in low and high silica soils
- No-choice feeding experiment

Predator Exclusion Experiments in UK Grass Can Bite Back Silica Induction: Greenhouse Experiment Data on Vole Response to Silica Silica Induction Hypothesis

Data on Vole Response to Silica

Juvenile voles also grew poorly on high-silica grasses

Silica prevents voles from breaking plant cell walls and absorbing nitrogen

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Predator Exclusion Experiments in UK Grass Can Bite Back Silica Induction: Greenhouse Experiment Data on Vole Response to Silica Silica Induction Hypothesis

Silica Induction Hypothesis

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Stage 1: Modelling the Greenhouse Experiment Stage 2: Including Vole Dynamics Nodel Solution

Vole Cycles in Fennoscandia: Predation

- 2 Vole Cycles in UK: Killer Grass
- Modelling the Vole-Grass Interaction
 - 4 A Model Including Seasonal Forcing
 - 5 Summary and Conclusions

Stage 1: Modelling the Greenhouse Experiment Stage 2: Including Vole Dynamics Model Solution

Stage 1: Modelling the Greenhouse Experiment

S(t)=silica concentration in grass

$$\frac{dS}{dt} = -c \cdot (S(t) - S_{\text{control}}) + P(t - T)$$

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Population cycles in voles: predators, seasonality and killer grass

3

Stage 1: Modelling the Greenhouse Experiment Stage 2: Including Vole Dynamics Model Solution

Stage 1: Modelling the Greenhouse Experiment

S(t)=silica concentration in grass

$$\frac{dS}{dt} = -c \cdot (S(t) - S_{\text{control}}) + P(t - T)$$

We estimate c, T, $S_{control}$, P_{low} and P_{high} using the data from the greenhouse experiment

3

Stage 1: Modelling the Greenhouse Experiment Stage 2: Including Vole Dynamics Model Solution

Stage 2: Including Vole Dynamics

V(t)=vole density

Silica production:
$$P(t) = KV(t)^n / [V_0^n + V(t)^n]$$

Stage 2: Including Vole Dynamics

Stage 2: Including Vole Dynamics

V(t)=vole density

Silica production: $P(t) = KV(t)^n / \left[V_0^n + V(t)^n \right]$

Vole birth/death: $dV/dt = F(S(t))V(t) - \delta V(t)$ birth

death

< □ > < /**P** >

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Stage 1: Modelling the Greenhouse Experiment Stage 2: Including Vole Dynamics Model Solution

Stage 2: Including Vole Dynamics

V(t) = vole densitySilica production: $P(t) = KV(t)^n / \left[V_0^n + V(t)^n\right]$ Vole birth/death: $dV/dt = \underbrace{F(S(t))V(t)}_{\text{birth}} - \underbrace{\delta V(t)}_{\text{death}}$ Binin Binin Binin and estimated data from on caged

Silica Concentration. (% drv mass)

 B_{min} and B_{max} are estimated using data from experiments on caged voles

Stage 1: Modelling the Greenhouse Experiment Stage 2: Including Vole Dynamics Model Solution

Model Solution

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Stage 1: Modelling the Greenhouse Experiment Stage 2: Including Vole Dynamics Model Solution

Model Solution

The model predicts population cycles, but only for unrealistically high values of vole birth rate, and the period of the cycles is too short.

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Stage 1: Modelling the Greenhouse Experiment Stage 2: Including Vole Dynamics Model Solution

Model Solution

The model predicts population cycles, but only for unrealistically high values of vole birth rate, and the period of the cycles is too short.

Remedy: include seasonal forcing

Seasonal Forcing in Kielder Forest, UK A Model including Seasonal Forcing Comparison of Different Effects of Silica

Outline

- 1 Vole Cycles in Fennoscandia: Predation
- 2 Vole Cycles in UK: Killer Grass
- 3 Modelling the Vole-Grass Interaction
- A Model Including Seasonal Forcing
 - 5 Summary and Conclusions

Seasonal Forcing in Kielder Forest, UK A Model including Seasonal Forcing Comparison of Different Effects of Silica

Seasonal Forcing in Kielder Forest, UK

- Voles in Kielder Forest have a well-defined breeding season
- The breeding season length is variable, mainly due to a variable start
- We assume that the start date depends on the silica level in grass in the early part of the year

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Population cycles in voles: predators, seasonality and killer grass

< □ > < 同

Seasonal Forcing in Kielder Forest, UK A Model including Seasonal Forcing Comparison of Different Effects of Silica

A Model including Seasonal Forcing

< □ > < @ > 三連 :

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Seasonal Forcing in Kielder Forest, UK A Model including Seasonal Forcing Comparison of Different Effects of Silica

A Model including Seasonal Forcing

L_{min} and *L_{max}* are estimated using field data from Kielder Forest

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Seasonal Forcing in Kielder Forest, UK A Model including Seasonal Forcing Comparison of Different Effects of Silica

A Model including Seasonal Forcing

$$dS/dt = KV(t)^{n}/[V_{0}^{n} + V(t)^{n}] - c \cdot (S(t) - S_{\text{control}})$$

Non-seasonal model: $dV/dt = F(S(t))V(t) - \delta V(t)$

Seasonal model:

$$dV/dt = \begin{cases} B_{max}V(t) - \delta V(t) & \text{in breeding season} \\ -\delta V(t) & \text{otherwise} \end{cases}$$

 L_{min} and L_{max} are estimated using field data from Kielder Forest

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Population cycles in voles: predators, seasonality and killer grass

Seasonal Forcing in Kielder Forest, UK A Model including Seasonal Forcing Comparison of Different Effects of Silica

A Model including Seasonal Forcing

The model now predicts realistic population cycles for appropriate parameter values.

Seasonal Forcing in Kielder Forest, UK A Model including Seasonal Forcing Comparison of Different Effects of Silica

Comparison of Different Effects of Silica

- Non-seasonal model: silica affects vole birth rate
- Seasonal model: silica affects breeding season length
- In reality silica has both of these effects
- Which is the most important?

Seasonal Forcing in Kielder Forest, UK A Model including Seasonal Forcing Comparison of Different Effects of Silica

Comparison of Different Effects of Silica

- Non-seasonal model: silica affects vole birth rate
- Seasonal model: silica affects breeding season length
- In reality silica has both of these effects
- Which is the most important?

To study this we set up a model with both dependences, with parameters p_{length} and p_{birth} between 0 and 1:

 $p_{length} = 0$: breeding season length fixed $p_{length} = 1$: breeding season length highly variable

 $p_{birth} = 0$: birth rate fixed $p_{birth} = 1$: birth rate highly variable

- 32

Seasonal Forcing in Kielder Forest, UK A Model including Seasonal Forcing Comparison of Different Effects of Silica

Comparison of Different Effects of Silica

$$egin{array}{rcl} B_{min}&=&(1-p_{birth})B_{max}\ L_{min}&=&(1-p_{length})L_{max} \end{array}$$

To study this we set up a model with both dependences, with parameters p_{length} and p_{birth} between 0 and 1:

- $p_{length} = 0$: breeding season length fixed $p_{length} = 1$: breeding season length highly variable
- $p_{birth} = 0$: birth rate fixed $p_{birth} = 1$: birth rate highly variable

- 22

Seasonal Forcing in Kielder Forest, UK A Model including Seasonal Forcing Comparison of Different Effects of Silica

Comparison of Different Effects of Silica

Variability of birth rate within the breeding season

Variability of breeding season length

3

Conclusions Ongoing Field Tests: Vole Enclosures Collaborators References

Outline

- 1 Vole Cycles in Fennoscandia: Predation
- 2 Vole Cycles in UK: Killer Grass
- 3 Modelling the Vole-Grass Interaction
- 4 A Model Including Seasonal Forcing

Conclusions Ongoing Field Tests: Vole Enclosures Collaborators References

Conclusions

- Vole cycles in Fennoscandia are driven by predation
- Seasonal forcing is a key ingredient of the cyclic dynamics
- The vole-grass interaction has the potential to generate population cycles
- The effect of silica on breeding season length is more important than its effect on birth rate
- This is a plausible mechanism for the population cycles observed in Kielder Forest, UK: field tests are ongoing

Conclusions Ongoing Field Tests: Vole Enclosures Collaborators References

Ongoing Field Tests: Vole Enclosures

- 81 4m×4m cells
- Add 0,1,2,4,6 or 8 voles per cell, for 3 days each month
- Monitor silica levels

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Conclusions Ongoing Field Tests: Vole Enclosures Collaborators References

Collaborators

This work is in collaboration with:

Heriot-Watt University: Jennifer Reynolds, Andy White

University of Aberdeen:

Xavier Lambin, Jane Degabriel, Fergus Massey

University of York: Sue Hartley, Stefan Reidinger

Microsoft Research, Cambridge: Matthew Smith

▲□→▲御→ 通

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Conclusions Ongoing Field Tests: Vole Enclosures Collaborators References

References

J.J.H. Reynolds, F.P. Massey, X. Lambin, S. Reidinger, J.A. Sherratt, M.J. Smith, A. White, S.E. Hartley: Delayed induced silica defences in grasses and their potential for destabilising herbivore population dynamics. Oecologia, in press.

J.J.H. Reynolds, J.A. Sherratt, A. White, X. Lambin: A comparison of the dynamical impact of seasonal mechanisms in a herbivore-plant defence system. Submitted.

Conclusions Ongoing Field Tests: Vole Enclosures Collaborators References

List of Frames

Jonathan A. Sherratt

www.ma.hw.ac.uk/~jas

Population cycles in voles: predators, seasonality and killer grass

3

< □ > < /**P** >