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Introduction to Cancer Invasion

Carcinoma of the uterine cervix

Cells in a solid tumour invade
surrounding tissue due to changes in:

migration

protease/anti-protease production

adhesion
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Introduction to Cancer Invasion

Carcinoma of the uterine cervix

Cells in a solid tumour invade
surrounding tissue due to changes in:

migration

protease/anti-protease production

adhesion: decreased cell-cell
adhesion and increased cell-matrix
adhesion
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Modelling Adhesion in Cancer

Variables: n(x , t) tumour cell density, m(x , t) matrix density

∂n
∂t

= −

cell-cell
adhesion

︷ ︸︸ ︷

∂

∂x
[n · Knn]−

cell-matrix
adhesion

︷ ︸︸ ︷

∂

∂x
[n · Knm] +

cell
proliferation
︷ ︸︸ ︷

n(1− n)

∂m
∂t

= − λ · n ·m2
︸ ︷︷ ︸

matrix
degradation
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Modelling Adhesion in Cancer

Variables: n(x , t) tumour cell density, m(x , t) matrix density

∂n
∂t

= −

cell-cell
adhesion

︷ ︸︸ ︷

∂

∂x
[n · Knn]−

cell-matrix
adhesion

︷ ︸︸ ︷

∂

∂x
[n · Knm] +

cell
proliferation
︷ ︸︸ ︷

n(1− n)

Knn = cell flux due to cell-cell adhesion

∂m
∂t

= − λ · n ·m2
︸ ︷︷ ︸

matrix
degradation
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Modelling Cell-Cell Adhesion

Adhesive flux Knn is proportional to the force due to
breaking and forming adhesive bonds
(Stokes’ Law: low Reynolds number)
The force on a cell at x exerted by cells and matrix a
distance x0 away depends on:

1 cell and matrix densities at x + x0

2 distance |x0|

3 sign of x0 (⇒ direction of force)

f (x , x0) = g (n(x + x0, t), m(x + x0, t)) · ω(x0)

x x + x0
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Modelling Cell-Cell Adhesion

Adhesive flux Knn is proportional to the force due to
breaking and forming adhesive bonds
(Stokes’ Law: low Reynolds number)
The force on a cell at x exerted by cells and matrix a
distance x0 away depends on:

1 cell and matrix densities at x + x0

2 distance |x0|

3 sign of x0 (⇒ direction of force)

f (x , x0) = g (n(x + x0, t), m(x + x0, t)) · ω(x0)

x x + x0

Total force = sum of all forces acting on cells at x

F (x) =
∫ +R
−R f (x , x0) dx0
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Model Details: The Function ω(x0)

• • • • •
x − R x1 ← x → x2 x + R

Force due to Force due to
cells at x1 cells at x2

ω(x0) is an odd function. For simplicity we take

ω(x0) =

{
−1 if −R < x0 < 0
+1 if 0 < x0 < +R
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Model Details: The Function g(n)

At low cell densities, the force f (x , x0) will increase with cell
density at x + x0 when this is small.

However, there will be a density limit beyond which cells
will no longer aggregate.

We account for this via
a nonlinear g(.); we take
g(n, m) = n(nmax − n −m).
Here nmax corresponds
to no empty space.

We rescale to give nmax = 2.
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α and β are adhesion coefficients
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Variables: n(x , t) tumour cell density, m(x , t) matrix density
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Extension to 2-D is straightforward
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Simulation of a Non-Invasive Tumour

For cell-cell adhesion (α) relatively large and cell-matrix
adhesion (β) relatively small, the model predicts a non-invasive
tumour

t = 0 t = 75 t = 150

Invasion can be initiated either by decreasing cell-cell adhesion
(α) or by increasing cell-matrix adhesion (β)
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The Sequential Development of an Invasive Tumour

Stage 1:
non-invasive
tumour growth

t = 0 t = 75 t = 150
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The Sequential Development of an Invasive Tumour

Stage 2:
mutation,
followed by
tumour invasion
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Invasion Speed vs α and β
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Mathematical Issue: Boundedness

For biological realism, we require n, m ≥ 0 for all x , t

Recall that n = 2 corresponds to close cell packing

Therefore for biological realism we also require
n ≤ 2 for all x , t

There is no standard theory from which these boundedness
properties can be deduced. It is relatively straightforward to
show that positivity holds in all cases, but the condition n ≤ 2
does not always hold.
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Example of a Solution with n > 2
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Conditions for Boundedness

Question: What is the largest α for which 0 ≤ n ≤ 2 at t = 0⇒
0 ≤ n ≤ 2 for all t ≥ 0?

Partial answer: If 0 ≤ n ≤ 2 and 0 ≤ m ≤ M at t = 0 then
0 ≤ n ≤ 2 for all t ≥ 0 provided that

α + min{1, M/2}β < a critical value .

The critical value depends on ω(.); it is infinite if ω(ξ) = sign(ξ).
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The Importance of Tumour Morphology

Tumour morphology:
Detailed studies of
tumour pathology
reveal a correlation
between the invasive
potential of tumours
and their shape.
(Tumour shape is often
quantified via fractal
dimension.)

Jonathan A. Sherratt Nonlocal Models for Cancer Invasion and Pattern Formation



Modelling Adhesion in Cancer Invasion
Simulations of Cancer Invasion

The Community Effect in Differentiation

Simulation of a Non-Invasive Tumour
Mathematical Issue: Boundedness
Investigation of Tumour Fingering
Conclusions and Challenges

Investigation of Tumour Fingering

Model solns predict: invasion of uniform matrix⇒ flat boundary
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Cells Matrix
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Investigation of Tumour Fingering

Model solns predict: invasion of uniform matrix⇒ flat boundary
invasion of non-uniform matrix⇒ fingering

Basic explanation: invasion speed varies with matrix density.
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Fingering due to a Pattern in the Initial Matrix Density

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

P
eriodic B

C
sP

er
io

di
c 

B
C

s

Zero flux BCs

Reflective BCs

x

y (a)

Cell deposition

Matrix

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

(c)

(f)
Jonathan A. Sherratt Nonlocal Models for Cancer Invasion and Pattern Formation



Modelling Adhesion in Cancer Invasion
Simulations of Cancer Invasion

The Community Effect in Differentiation

Simulation of a Non-Invasive Tumour
Mathematical Issue: Boundedness
Investigation of Tumour Fingering
Conclusions and Challenges

Varying the Initial (Random) Matrix Density

Jonathan A. Sherratt Nonlocal Models for Cancer Invasion and Pattern Formation



Modelling Adhesion in Cancer Invasion
Simulations of Cancer Invasion

The Community Effect in Differentiation

Simulation of a Non-Invasive Tumour
Mathematical Issue: Boundedness
Investigation of Tumour Fingering
Conclusions and Challenges

Conclusions and Challenges

Our model results are consistent with traditional thinking
on cancer invasion.

The model makes quantitative predictions on how invasion
speed depends on adhesion strengths and matrix density,
which are experimentally testable.

The model makes detailed predictions on how tumour
fingering depends on matrix heterogeneity; these are also
experimentally testable.

The model raises many computational challenges, in
particular concerning extension to 3-D.

Jonathan A. Sherratt Nonlocal Models for Cancer Invasion and Pattern Formation



Modelling Adhesion in Cancer Invasion
Simulations of Cancer Invasion

The Community Effect in Differentiation

Introduction to the Community Effect
A Model for Community-Based Differentiation
Homogeneous Steady States of the Community Model
Model Solutions
Conclusions

Outline

1 Modelling Adhesion in Cancer Invasion

2 Simulations of Cancer Invasion

3 The Community Effect in Differentiation

Jonathan A. Sherratt Nonlocal Models for Cancer Invasion and Pattern Formation



Modelling Adhesion in Cancer Invasion
Simulations of Cancer Invasion

The Community Effect in Differentiation

Introduction to the Community Effect
A Model for Community-Based Differentiation
Homogeneous Steady States of the Community Model
Model Solutions
Conclusions

Introduction to the Community Effect

Our modelling framework can also be used to study
other phenomena that depend on nonlocal cell
interactions

Specific example: community effect in differentiation
(Gurdon, Nature 336: 772, 1988)
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Introduction to the Community Effect

Our modelling framework can also be used to study
other phenomena that depend on nonlocal cell
interactions

Specific example: community effect in differentiation
(Gurdon, Nature 336: 772, 1988)

Key question 1: What are the biochemical mechanisms
causing community effects?
(Monk, Bull. Math. Biol. 59: 409, 1997)

Key question 2: Can a community effect cause spatial
patterning? (Moreira & Deutsch, Dev. Dyn. 232: 33, 2005)
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Introduction to the Community Effect

Our modelling framework can also be used to study
other phenomena that depend on nonlocal cell
interactions

Specific example: community effect in differentiation
(Gurdon, Nature 336: 772, 1988)

Prototype system: zebrafish pigmentation
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A Model for Community-Based Differentiation

∂a/∂t = f (Ia)− da a

∂b/∂t = f (Ib)− db b

Ia =
1
A

∫∫

⊙

a(x + r)
a(x + r) + b(x + r)

dA

Ib =
1
A

∫∫

⊙

b(x + r)
a(x + r) + b(x + r)

dA = 1− Ia
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A Model for Community-Based Differentiation

∂a/∂t = f (Ia)− da a

∂b/∂t = f (Ib)− db b

Ia =
1
A

∫∫

⊙

a(x + r)
a(x + r) + b(x + r)

dA

Ib =
1
A

∫∫

⊙

b(x + r)
a(x + r) + b(x + r)

dA = 1− Ia
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A Model for Community-Based Differentiation

∂a/∂t = f (Ia)− da a

∂b/∂t = f (Ib)− db b
Weak
community
effect

Ia =
1
A

∫∫

⊙

a(x + r)
a(x + r) + b(x + r)

dA

Ib =
1
A

∫∫

⊙

b(x + r)
a(x + r) + b(x + r)

dA = 1− Ia
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A Model for Community-Based Differentiation

∂a/∂t = f (Ia)− da a

∂b/∂t = f (Ib)− db b
Strong
community
effect

Ia =
1
A

∫∫

⊙

a(x + r)
a(x + r) + b(x + r)

dA

Ib =
1
A

∫∫

⊙

b(x + r)
a(x + r) + b(x + r)

dA = 1− Ia
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A Model for Community-Based Differentiation

∂a/∂t = f (Ia)− da a

∂b/∂t = f (Ib)− db b
f (1− I)
= 1− f (I)

Ia =
1
A

∫∫

⊙

a(x + r)
a(x + r) + b(x + r)

dA

Ib =
1
A

∫∫

⊙

b(x + r)
a(x + r) + b(x + r)

dA = 1− Ia
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A Model for Community-Based Differentiation

∂a/∂t = f (Ia)− da a

∂b/∂t = f (Ib)− db b

da, db are dimensionless and
reflect the ratio of the death rate
to the differentiation rate

Ia =
1
A

∫∫

⊙

a(x + r)
a(x + r) + b(x + r)

dA

Ib =
1
A

∫∫

⊙

b(x + r)
a(x + r) + b(x + r)

dA = 1− Ia
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Homogeneous Steady States of the Community Model

(a, b) = (1/da, 0) stable to homogeneous perturbations

(a, b) = (as, bs) unstable

(a, b) = (0, 1/db) stable to homogeneous perturbations

Question: are there (stable) patterns in which the solution
alternates between the two cell types?

a = 1/da a = 0 a = 1/da a = 0 a = 1/da a = 0

b = 0 b = 1/db b = 0 b = 1/db b = 0 b = 1/db
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Typical Model Solutions (da=db=0.75)
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The Shape of the Interface
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The Shape of the Interface
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The Shape of the Interface

Community effect⇒ stripes not spots
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Stripe Maintainance
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Conclusions

Question: Can a community effect cause spatial patterns?
Answer: Yes, but it requires suitable initial conditions:

a mechanism for pattern maintainance

Patterning also requires da ≈ db, i.e. approximately equal
death rates of the two cell types

The interfaces between pattern regions are always flat:
stripes not spots

A future computational challenge is to simulate the model
on larger spatial scales, e.g. corresponding to a whole
zebrafish
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