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This pattern is a wavetrain: a periodic function of x − at
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This pattern is a wavetrain: a periodic function of x − at
Wavetrains are a generic feature of oscillatory systems
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For other parameters: more disordered dynamics
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The Complex Ginzburg-Landau Equation

I consider a generic oscillator model, the complex
Ginzburg-Landau equation:

At = (1 + ib)Axx + A − (1 + ic)|A|2A.

I will look exclusively at b = 0. Then writing

A(x , t) = e−iat [u(x , t) + iv(x , t)]

gives a reaction-diffusion system of “λ–ω” type:

∂u
∂t

=
∂2u
∂x2 + (1 − r2)u − (a + cr2)v

∂v
∂t

=
∂2v
∂x2 + (a + cr2)u + (1 − r2)v

where r =
√

u2 + v2

This is the normal form of an oscillatory reaction-diffusion
system with scalar diffusion close to a supercritical Hopf

Jonathan A. Sherratt www.ma.hw.ac.uk/∼jas Patterns of Sources and Sinks



Wavetrain Patterns
Unstable Wavetrains

Source-Sink Patterns
The Patterned Transition From Periodicity to Chaos

Conclusions

Applications of Wavetrains
Transition from Pattern to Disorder
The Complex Ginzburg-Landau Equation
Amplitude and Phase Equations
Wavetrain Generation by Dirichlet Bndy Conditions

Amplitude and Phase Equations

To study these equations, it is helpful to use the variables
r(x , t) =

√
u2 + v2 and θ(x , t) = tan−1(v/u), giving

rt = rxx − rθ2
x + r(1 − r2)

θt = θxx +
2rxθx

r
+ a − cr2

There is a family of wavetrain solutions (0 < r∗ < 1):
{

r = r∗

θ =
[

(a + cr∗ 2)t ±
√

(1 − r∗ 2)x
]

}

↔







u = r∗ cos
[

(a + cr∗ 2)t ±
√

(1 − r∗ 2)x
]

v = r∗ sin
[

(a + cr∗ 2)t ±
√

(1 − r∗ 2)x
]






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Wavetrain Generation by Dirichlet Bndy Conditions

I consider these equations
subject to u = v = 0 at x = 0
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Wavetrain Generation by Dirichlet Bndy Conditions

I consider these equations
subject to u = v = 0 at x = 0

Dirichlet boundary conditions
are very natural in ecology,
at transitions between
different types of habitat.
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Wavetrain Generation by Dirichlet Bndy Conditions

I consider these equations
subject to u = v = 0 at x = 0
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Wavetrain Generation by Dirichlet Bndy Conditions

Conclusion
Dirichlet boundary conditions

generate a wavetrain

r = R∗ tanh
(

x/
√

2
)

θx = Ψ∗ tanh
(

x/
√

2
)

R∗ =


1
2

»

1+
q

1+ 8
9 c2

–ff

−1/2

Ψ∗ = −sign(c)(1−R∗ 2)
1/2
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Wavetrain Generation by Dirichlet Bndy Conditions

Conclusion
Dirichlet boundary conditions

generate a wavetrain

r = R∗ tanh
(

x/
√

2
)

θx = Ψ∗ tanh
(

x/
√

2
)

R∗ =


1
2

»

1+
q

1+ 8
9 c2

–ff

−1/2

Ψ∗ = −sign(c)(1−R∗ 2)
1/2

The wavetrain of amplitude R∗

is stable ⇔ |c| < 1.110468 . . .

What happens when
|c| > 1.110468 . . .?
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Two Types of Solution

There are two types of solution for |c| > 1.110468 . . .
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Two Types of Solution

There are two types of solution for |c| > 1.110468 . . .
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Two Types of Solution

There are two types of solution for |c| > 1.110468 . . .
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Convective and Absolute Stability
There are two types of solution for |c| > 1.110468 . . .

The key concept for distinguishing these is
“absolute stability”.
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Convective and Absolute Stability
There are two types of solution for |c| > 1.110468 . . .

The key concept for distinguishing these is
“absolute stability”.

In spatially extended systems, a solution can be unstable,
but with any perturbation that grows also moving.
This is “convective instability”.
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Convective and Absolute Stability
There are two types of solution for |c| > 1.110468 . . .

The key concept for distinguishing these is
“absolute stability”.

In spatially extended systems, a solution can be unstable,
but with any perturbation that grows also moving.
This is “convective instability”.

Alternatively, a solution can be unstable with perturbations
growing without moving. This is “absolute instability”.
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Generation of Absolutely Stable and Unstable
Wavetrains by Dirichlet Boundary Conditions

Numerical simulations show distinct behaviours in the
absolutely stable and unstable parameter regimes

Convectively
unstable,
absolutely
stable

Absolutely
unstable
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Sources, Sinks, and Convective Instability

The solution in the convectively unstable but absolutely stable
case is a pattern of “sources and sinks”.

Note: sources and sinks are defined in terms of group velocity.
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Sources, Sinks, and Convective Instability

The solution in the convectively unstable but absolutely stable
case is a pattern of “sources and sinks”.

Note: sources and sinks are defined in terms of group velocity.
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Sources, Sinks, and Convective Instability

The solution in the convectively unstable but absolutely stable
case is a pattern of “sources and sinks”.

Question: How can an unstable wavetrain persist between the
sources and sinks?
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Sources, Sinks, and Convective Instability

Question: How can an unstable wavetrain persist between the
sources and sinks?

Answer: Any growing perturbations moves, and is absorbed
when it reaches a sink.
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Previous Mathematical Work on Sources and Sinks

Sources are “Nozaki–Bekki” holes (Nozaki & Bekki, Phys. Lett. A

110: 133-135, 1985), on which the literature is extensive
(> 100 citations).

Sinks are also well studied, though only numerically.

Important work on classification of “defects” has been done
by Sandstede & Scheel (SIAM J. Appl. Dyn. Syst. 3: 1-68, 2004).

But patterns of sources and sinks have received almost no
attention.

Question: are there constraints on the distances separating
sources and sinks?
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Numerical Study of Source-Sink Separations

What is the effect of translating a source
in between two fixed sinks?
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Numerical Study of Source-Sink Separations

Original solution
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Numerical Study of Source-Sink Separations

Original solution

Solution with
translated source
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Conclusions on Source-Sink Separations

Numerical results suggest: source-sink separations appear to
be constrained to a discrete set of possible values.

Analytical study shows:
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arg [exp (−L−(1 + iδ)/
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2)

+ exp (−L+(1 + iδ)/
√

2)]

= constant

to leading order for large L
−

, L+

where
δ

2
= 11 − 24
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1 +
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Methodology

Objective: a more detailed understanding of the transition
from pattern to chaos
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Methodology

Approach: increase c very slowly: by 0.001 every 3000 time
units
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Slowly Increasing the Parameter c

|A| = 0.0 |A| = 1.0
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Slowly Increasing the Parameter c

change in

absolute stability

|A| = 0.0 |A| = 1.0
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Localised and Global Chaos

Chaos changes from local to global as c is increased
above the absolute stability threshold.
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Summary and Conclusions

Wavetrain patterns are a generic feature of oscillatory
systems

The transition from wavetrain patterns to chaos occurs via
patterns of sources and sinks

There is a discrete family of possible source-sink
separations

There is a clear, structured transition in the source-sink
pattern, leading to chaos

The chaos is initially localised, and gradually becomes
global
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This work is in collaboration with:

Matthew Smith

(Microsoft Research

Ltd., Cambridge)

Jens Rademacher

(CWI, Amsterdam)
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